
EpiCap–A wearable seizure monitoring
device

by
Yuanrui Chen (yuanrui3)

Yichen Wu(yichenw5)

Yiyang Xu (yiyangx6)

Final Report for ECE 445, Senior Design, Spring 2022

TA: Cheng(Jamie) Xu

With help from Kenny Leung

May 3, 2022

Abstract

Our project aims to build a portable device which is able to measure patients’ EEG data. There is

also a small, light-weighted camera at the front of the cap to take photos together with the EEG

measurements. Thus, when the data is further evaluated, physicians can pair the EEG data with

the patients’ facial expressions and body movements to see if there is any indication before a

seizure. The EEG data and photos are stored into an on-board micro-SD-card and uploaded to the

cloud, creating a potential database which is large enough for conducting research upon seizure

detection using deep learning.

1

Table of Contents
1. Introduction 3

1.1. Problem 3
1.2. Solution 3
1.3. High Level Requirements 4
1.4. Block Diagram 5

2. Design Procedure and Details 6

2.1. Physical Design 6

2.2. Power Subsystem 7

2.3. Sensor Subsystem 7

2.4. Camera Subsystem 8

2.5. Logic Subsystem 9

2.6. Storage Subsystem 9

2.7. Cloud Subsystem 10

3. Design Verification 11

3.1. Physical Design 11

3.2. Power Subsystem 11

3.3. Sensor Subsystem 12

3.4. Camera Subsystem 13

3.5. Logic Subsystem 13

3.6. Storage Subsystem 14

3.7. Cloud Subsystem 14

4. Cost 15

4.1. Labor 15

4.2. Parts 16

4.3. Total Cost 16

5. Conclusion 17

2

1. Introduction

1.1. Problem
EEG, electroencephalogram, is a method to record the electrical activity of the surface layer of
the brain. EEG tests are generally performed by physicians to diagnose and treat brain disorders,
especially epilepsy. In order to get tested, epilepsy patients are normally required to stay
overnight at the hospital so that their brain behaviors and body movements can be recorded.
However, hospital bills are usually very expensive. For a single epilepsy patient, the cost ranges
from 10000 to 20000 dollars per year.

The second option for those patients is the ambulatory device which is portable and can be
carried home. However, it’s very ugly and bulky, so those patients are less likely to carry them
anywhere else. Its functionality is also very limited because it does not contain cameras, so there
is no recording of the body movement available. Those patients never know when and where
they are gonna experience seizures, they might have to go to the hospital during work or school,
so they won’t be able to have a predictable schedule. And this leads to a lower employment rate
and a lower income.

OpenBCI Cyton Board is an off-shelf solution to this problem, which costs more than $700, and
it does not have camera and cloud functionalities. Our product will be less costly and have
additional features compared to the off-shelf product.

1.2. Solution
We wanted to create a device that can minimize its influence on the patient’s normal activity. To
minimize the weight of the device on the patient, the prototype should fit onto a baseball cap.
Apart from the EEG measurement modules, we added a camera to the seizure detecting device.
We wanted to put the camera on the front of the cap visor, recording the patient’s eye and arm
movements. It needs to open a stream on a specific web server that only the doctor has access to.
It is also able to take quick photos at a rate of 0.2 seconds per photo when it receives a signal that
the patient is experiencing seizure, and then save the photos into a local SD-card which later can
be reviewed by the doctor. The EEG data can also be saved into the SD-card.

The cap can also record EEG data in real time and synchronize the data onto the cloud, a web
server that only the doctor has access to. We haven’t implemented the seizure detection
algorithm on board, but the data collected will be extremely helpful for future research.

3

1.3. High Level Requirements
1. EEG data should be collected at 250 +/- 5% Hz and uploaded continuously to the

SD-card and web server in real time with timestamps.
2. The EEG cap should be able to record the patient’s eye and arm movement. Large

number of pictures should be taken with timestamps for future analysis by doctors.
3. Every component should be mounted under the cap visor and not affect the patient's line

of sight.

The final deliverable has achieved the high-level requirements.

1.4. Block Diagram

Figure 1. First Version of Block Diagram

Our final implementation is for the most part, consistent with the above block diagram. We have

made five changes. First, the EEG electrodes no longer need power supply. Second, instead of

using SDRAM, we use a micro SD-card for storage purposes. Third, the communication protocol

between the microcontroller and the storage subsystem is SPI, since the microcontroller in use

doesn’t have a SDIO interface. Fourth, The cloud subsystem is based on the server provided by

4

the microcontroller. Web API has not yet been deployed. Fifth, instead of connecting a camera

sensor to the microcontroller, we use a camera module that has its own storage, control and cloud

subsystems. The reason for this is the camera interface requires many pins from the

microcontroller and many of them are already occupied. Also, the camera module is extremely

cheap and efficient.

We divide the project into six major blocks:

The power block provides steady analog and digital power supply for all the components.

The sensor block measures EEG data and transmits them digitally to the microcontroller.

The storage block stores the EEG data.

The logic block handles the reading and writing of the EEG data. It also processes the data and

prints them to the serial plotter and monitor. Moreover, it provides a signal to the camera block

so that the camera can start taking pictures.

The cloud block uploads the data written to the SD card to the local server. It’s based on the

storage block and the logic block.

The camera block is responsible for taking pictures when a seizure happens. It has its own

storage and cloud support.

Figure 2. Final Version of Block Diagram

5

2. Design Procedure and Details

2.1. Physical Design
We designed a small container to hold the components like PCBs and the camera module. We
created a ramp with 5 degrees at the bottom of the container in order to give the camera a better
angle to capture the patient's eye and arm movements. The container is designed to be placed
under the cap visor and not affect the patient’s line of sight. We have two PCBs in total, one is
the ADC board which includes the ADC circuit, and the other one is the main board which
integrates most of the subsystems (logic, storage, power subsystems). Ideally, we will have the
ADC board plugged into the mainboard to reduce the size and add flexibility. Unfortunately, the
mainboard did not work out due to design errors, and we will discuss it later in the Conclusion
section.

Figure 3. CAD Model of Component Container

2.2 Power Subsystem
Since safety is the priority for this project, we chose to use rechargeable LiPo batteries. Unlike
lithium metal which is unstable during charging, LiPo batteries use lithium ions which have a
lower energy density, thus increasing safety measures during charging and discharging[1]. It is
becoming the mainstream option in the smartphone industry. The hazard of it is that it contains
flammable electrolyte. So the batteries should still be handled cautiously and stay away from fire
sources.

6

During the design process, we proposed two different schemes to provide 5V power to the
circuit: use a charge pump (DC-DC boost converter) which raises the voltage from a single 3.7V
battery to 5V or use two batteries piled up with a total 7.4V and a linear voltage regulator to
lower the voltage to 5V. The former one occupies less space since it only needs one battery,
however, charge pumps are switching regulators which usually create switching noise. It may
interfere with the microcontroller’s antenna which is operating in radio frequency and impact the
wireless applications[2]. On the other hand, the linear voltage regulator is simpler and has lower
noise on the output. Therefore, we chose the latter one and used a LiPo battery pack.

2.3 Sensor Subsystem
For electrodes, we will use the OpenBCI snap electrode cables and headset. We verified them
with the OpenBCI Cyton board.

Since the project measures the EEG data, and according to Table 1, its typical frequency and
amplitude lies between 0-30Hz and 2-100 μV respectively, we found ADS1299 from Texas
Instrument as an appropriate design choice. ADS1299 is a biopotential ADC designed for EEG,
ECG data acquisition with sampling frequency from 250 Hz to 16 kHz [3]. It also does not
require any additional amplifier and isolation ICs. It has internal gain up to 24 times. It is also
miniaturized.

Table 1. Frequency and Amplitude of EEG Signal

Bands Frequency(Hz) Amplitude(μV)

Delta 0-4 20-100

Theta 4-8 10

Alpha 8-13 2-100

Beta 13-30 5-10

ADS1299 is DC coupled and has a bias input. When measuring EEG, the bias input is tied to two
ear clips. The DC bias from the human body can be subtracted from the measurements. The
reference voltage is the maximum voltage the ADC can measure, and we used the internal
reference voltage of the ADC, which is 4.5V.

The formula to convert 24-bit raw data to actual voltage level is given below. In our case, gain is
24 and Vref is 4.5V. The 24-bit raw data is in MSB-first format. 2’s complement is used to
represent both positive and negative values.

1 (Eq 2.3.1)𝐿𝑆𝐵 =
2×𝑉𝑟𝑒𝑓

𝐺𝑎𝑖𝑛

224 =+ 𝐹𝑆

223

7

For the peripheral schematics of the ADC, we closely followed the OpenBCI schematics. At the
input stage, a low-pass RC filter is applied to suppress radio-frequency noise leaking from clocks
and antennas. The resistor value is 2.2 kΩ and the capacitor value is 1 µF. The cutoff frequency
is computed below:

= 723.43 Hz (Eq 2.3.2)𝑓
𝑐

= 1
2π·𝑅·𝐶 = 1

2π·2200·10−7

Figure 4. Bode Plot of The RC-filter
Since the ADCs are extremely sensitive to electrostatic discharge, we provide TVS diodes that
provide a path of discharge. Decoupling capacitors for the reference input, power supply, and
VCAP are also added to the schematics. Noticeably, we used resistor packs and diode packs in
our PCB design to minimize the board area.

Figure 5. Schematic of RC-filter and TVS Diodes

8

2.4 Camera Subsystem
For the camera subsystem, we implemented a camera in front of the cap visor which is able to
record the patient’s eye and arm movements during a seizure event for physicians to review
afterwards. To achieve this, we chose the ESP32-CAM module because it is small, and it
supports WiFi and micro SD-card. We build the communication between the camera module and
microcontroller by a single GPIO port, to be specific, the microcontroller will need to send a
digital low signal to enable the camera module and a digital high signal to disable it.

The camera module has two modes: streaming mode and picture mode:
For streaming mode, the camera module can take videos and stream it on the web server. We
used Arduino IDE to implement the WiFi onto the module through the FTDI programmer. The
web server was created for the camera module by using the ESP32-CAM WiFi library, and
physicians could have access by entering its unique IP address.

For picture mode, the camera can take photos at a user-defined frequency. The maximum
resolution for the camera module is 1600x1200 and the fastest rate it can achieve is 0.2 second
per photo. All of the photos taken will be saved locally into the micro SD-card and uploaded to
the web server once connected to WiFi. Since we also implemented the NTP, network time
protocol, we were able to add timestamps for each photo as its name. Along with the timestamps
for EEG data, we were able to synchronize both of them by pairing up their timestamps. That
allows the physicians to review the EEG data along with the corresponding physical movements
in the future.

This is a photo of the picture taken and saved into the SD card with a specific timestamp.

2.5 Logic Subsystem
For the logic subsystem, we were choosing among three 32-bit MCUs, STM32-WB, ESP32 and
ESP32-S2 as our microcontroller. STM32 was discarded since it’s incompatible with Arduino
IDE firmware. Also, STM32’s wireless modules are relatively expensive. If we choose STM32,
we need to assemble an additional antenna on board, which makes the project more susceptible
to mistakes. Between ESP32 and ESP32-S2, we chose ESP32-S2 for its better performance. The

9

ESP32-S2-WROOM-I module has an on-board antenna and has a corresponding development
board for us to conduct unit tests. It supports WiFi and has 2 sets of SPI, FSPI and HSPI. Since
the MCU needs to communicate with both the SD-card and the ADC, 2 sets of SPIs turned out to
be critical for the project to succeed.

We also designed an MCU breakout board to unit test the ESP32-S2 module. Most of the pins
are broken out and we made the BOOT button and RESET button for the code to be uploaded.

2.6 Storage Subsystem
A micro SD-card was chosen due to its size and storage capacities. Since we don’t need to access
the memory at very high frequencies, the micro SD-card’s relatively low speed is no longer an
issue.

We chose ESP32-S2 module for the logic subsystem, and this module has an internal SPI that
enables it to connect to a micro SD-card. When we were testing its functionality, we used a
ESP32-S2 DevkitM 1 development board. It can be directly connected to an micro SD-card
breakout board through GPIO 34, 35, 36, 37, with pins as CS, MOSI, SCLK and MISO. The CS
pin can be moved to any other vacant GPIO. Once the development board is connected to the
micro SD-card breakout board, it then can include “SD.h”, “FS.h”, “SPI.h” three libraries to
enable the function of SPI and SD-card. Then, it can create files and folders in the micro
SD-card, and write or append messages into the files created. Because we wanted to upload
whatever we write into the micro SD-card onto the web server later, we created an HTML file to
store all the data and messages. Since we also enabled the NTP, we can save the timestamp
information with each message we appended.

For the camera module, because it has its own on board micro SD slot, we just needed to plug
the micro SD card into the slot and the chip will be automatically connected. We also need to
include the three libraries of the SD card: “SD.h”, “FS.h”, “SPI.h”.

2.7 Cloud Subsystem
For the cloud subsystem, we used the ESP32-S2 module which itself supports the WiFi and
bluetooth function. For testing the functionality, we used the ESP32 S2 DevkitM-1 development
board and included the WiFi.h library in Arduino IDE. The SSID and password of the specific
wifi are required before initializing the WiFi by using WiFi.begin(). Our function will
continuously print “connecting to WiFi…” in the serial monitor if it is still looking for the
specific WiFi or is trying to connect. Once it is connected, it will output a message of the IP
address for this module. The web server can be accessed using its unique IP address.

10

For the timestamp information, we need to use the library “time.h”. This library requires the
WiFi connection in order to obtain the time information from the NTP. Based on this
implementation, timestamps can be added to each corresponding message and photo.

The most important part of the cloud subsystem was the real-time uploading of EEG data. In
order to achieve this particular functionality, we wrote the EEG data with timestamps into
HTML files and saved it into the micro SD-card. Using the HTML file enables the system to
continuously update the EEG data to the web server.

3. Design Verification

3.1. Physical Design
We put every component inside the 3D-printed container and glue it to the cap. The cap is able to
stay in balance. The camera sensor is able to capture the eye and arm area of the patient. The
container does not affect the patient’s line of sight.

3.2. Power Subsystem
The oscilloscope measurement of the soldered board shows that the power subsystem can
provide steady 3.3V and 5V outputs with ripples less than 0.1V. The load current of the enabled
ADC is around 50 mV. The load current of the MCU connected with WiFi is around 150 mV.
The load current of the microSD card is 30mV. Our two in-series LiPo batteries are 2000mAh.
Since the voltage regulators make the calculations complicated, we can roughly estimate that the
battery can sustain for around 8 hours. It’s rechargeable, so it meets the basic demand of the
patients.

3.3. Sensor Subsystem
The ADC communicates with the microcontroller via SPI mode 1. We made some modifications
to an online ADS1299 Arduino library. By the time the sensor subsystem was completed, the
logic subsystem was still incomplete. We used an Arduino Uno board to conduct the unit test.
Following the Initial Flow at Power-Up from the ADS1299 datasheet, we send the SDATAC
command to the ADC to enter register read/write mode. We first read the ID register to ensure
that the device is detected. Then we read the registers and write new values to them. We check if
the writes are successful afterwards. After this, we send the RDATAC command to enter the
continuous read mode. The ADC will start streaming data to DOUT pin after START is pulled
high and RESET is pulled low.

11

Figure 6. Expected SPI Waveform

The SPI protocol between the ADC and the microcontroller given above. The ADC operates at
2.048 MHz. The SPI rate can be set to 1.024 MHz, 2.048 MHz or 4.096 MHz. DRDY stands for
data ready. Whenever the ADC is ready to send the signal, DRDY is low. The microcontroller
will poll DRDY constantly to update the channel data. For pictures below, Yellow is SCLK,
Green is DRDY, Blue is DOUT and Pink is CS. The first two pictures below are consistent with
the expected waveforms.

Figure 7. Experimental Results for SPI

12

However, DRDY may behave differently when the processor uses too many cycles for data
processing between each reading. The SPI frequency will deviate from DRDY frequency,
leading to cyclic misreadings. An example waveform is given below.

After verifying the SPI communication, we used the internal test signal of the ADC to verify the
digital portion of the ADC. The internal test signal is a square wave and the serial plot of the data
is given below. We confirmed that Pk-Pk and frequency closely match the test signal and the
measurement match. The ADC is also able to measure internal noise at around 20 microvolts.
With the serial plotter, we also verified that the ADC is sensitive to hand touching, as expected.
However, we are yet to confirm that the EEG measurements are accurate. The reason will be
explained in the uncertainties section. Also, in the serial plotter, we see overshoot reading
happening every 1000 samples. This is likely due to the mismatch between SPI rate and baud
rate of the serial plotter.

Figure 8. Test Results for Internal Test Signal (Square Wave from ADS1299)

We also used the serial monitor for verification. C00000 is the status register, if it’s read
correctly, that indicates there is no timing issue. Also, we are able to convert the 24-bit to
microvolts in real time, allowing the physicians to interpret the data. A snapshot of the reading is
given below.

Figure 9. Data Appending in Serial Monitor Interface

13

Figure 10. Initial Flow at Power-Up

3.4. Camera Subsystem
Because the video stream needs to be on the web server of the provided ip address by the camera
chip so that the doctor can have access to it, we logged onto the web server using different
devices, and successfully watched the correct video streaming from the camera on the correct IP
address. Then we test the photos uploaded to the SD card by plugging out the micro SD card and
into the computer to check, and the photos are correctly shown in the SD card each with the
correct time stamp. We also changed the user-defined interval and frequency in the code, and the
number and rate of the photos taken correctly changed in the way we wanted.

3.5. Logic Subsystem
The logic subsystem has many overlaps with both the sensor subsystem and the storage
subsystem. ESP32-S2 is supported by Arduino IDE after we install the ESP32 board support.

14

ESP32-S2 has two sets of SPI interfaces. It also has two sets of SPI buses, namely HSPI and
FSPI [4]. We failed to use a single SPI interface to communicate with both devices due to the
hardware defect of the SD card. Thus, we assign FSPI and GPIOs 34-37 to the SD card. HSPI
and GPIOs 10-13 are assigned to the ADC. The minimal viable product runs smoothly on the
ESP32-S2 development board. Then we successfully uploaded the code to the ESP32-S2 module
using the breakout board. The module is able to execute the same tasks as the development board
does. This verifies that our project can be transferred to a PCB.

3.6. Storage Subsystem
As part of the storage subsystem is checked with the camera subsystem, we mainly focused on
checking if the ESP32 S2 module correctly stores the EEG data uploaded from the ADS 1299
chip. The SD card has to be in FAT 32 bit format, which means that we could only use an SD
card smaller than or equal to 32 GB. Other formats like exFAT won’t be recognized by the
ESP32 S2 module. Once both parts were connected, we first uploaded the code to the module
and opened the serial monitor of the Arduino IDE when we were running the program. If the
process succeeded, there would be “message successfully appended” printed onto the screen.
Once we saw this message, we plugged out the micro SD card on the breakout board and
plugged it into the computer. And we saw that each message with a specific time stamp was
listed in the HTML file in the micro SD card.

SD card SPI is mode 0. The library we use assigns the SD card to the FSPI bus. Noticeably, the
SD card has a defect that prohibits it to share the same SPI interface with other devices. For
normal SPI slaves, when CS is high, the MISO of the slave device is high impedance. However,
the MISO pin of the SD card is noisy after CS turns high, interrupting the communications of
other slave devices.

The format of the EEG data is CSV. Raw data of 24 bits are sign-extended to 32 bits. They are
printed in hexadecimal format. Each reading is followed by its timestamp. Every time the
recording starts, a new line starting with “Begin” will be printed to indicate the header of the new
measurement.

Every sample is around bytes. There will be5 × 9 × 2 = 90
samples every 24 hours. If the ADC is open for 24 hours,250 × 60 × 60 × 24 = 21600000

1.944 GB of data will be written.

15

Figure 11. Data written to SD card

3.7. Cloud Subsystem
The Cloud Subsystem was required to give the doctor an access to the patient’s EEG data in real
time. As a result, after we have successfully connected the module to the WiFi and uploaded data
into the SD card, we then opened the IP address web server given by the module on another
device such as our mobile phone, and we found that the data was correctly listed on the web
server. And everytime we press the refresh button, there would be new EEG data shown onto the
web server.

4. Cost

4.1. Labor
Labor cost estimates should use the following formula for each partner:
ideal salary (hourly rate) *actual hours spent * 2.5
We estimate our ideal salary per hour to be 40 dollar. We spend in average 20 hours per week, so
the labor cost would be $40 * 20hours * 36weeks * 2.5 = $72000

4.2 Parts

Part Supplier Retail
Price ($)

Quantity Total Cost
($)

16

ESP32-S2-DevKitM-1 Mouser Electronics 9.18 1 9.18

ESP32-S2 WROOM
Module

Adafruit Industry 3.25 5 15.75

ADS1299-4PAGR Digi-Key Corporation 39.38 4 157.52

2073-MEM2075-00-140-01
-ACT-ND

Digi-Key Corporation 2.06 2 4.12

3247-USDCOEM-32GB-N
D

Digi-Key Corporation 9.72 1 9.72

1597-1687-ND Digi-Key Corporation 9.97 1 9.97

ZSR500GCT-ND Digi-Key Corporation 1.26 4 5.04

ZSR330GCT-ND Digi-Key Corporation 1.03 5 5.15

595-TPD4E1B06DRLR Mouser Electronics 0.58 10 5.77

963-PMK212BBJ107MG-T Mouser Electronics 1.13 10 11.3

603-YC164-FR-072K2L Mouser Electronics 0.07 10 0.65

80-C1206C104K3GAUTO Mouser Electronics 2.01 4 8.04

910-SMDLTLFP Mouser Electronics 15.84 1 15.84

910-CQ4LF Mouser Electronics 7.95 1 7.95

80-C0805X104K1RAUTO Mouser Electronics 0.22 13 2.8

80-C0805C105K8RAUTO Mouser Electronics 0.20 15 3

485-1769 Mouser Electronics 0.75 6 4.5

424-PMOD-USB-UART Mouser Electronics 9.99 1 9.99

SparkFun LiPo Charger
Plus

Sparkfun Electronics 11.5 1 11.5

Lithium Ion Battery - 2Ah Sparkfun Electronics 13.95 2 27.9

Total

17

https://www.digikey.com/en/products/detail/texas-instruments/ADS1299-4PAGR/6590685

325.69

4.3 Total cost
The total cost is $325.69+$72000=$72325.69.

5. Conclusion

5.1. Achievements
Epicap is a hard project, but we still managed to build most of the parts. We have fully verified
every subsystem other than the ADC, and the digital part of the ADC is fully verified. Also we
are able to run the entire system on the ESP32 S2 development board.
We have verified that the unsoldered PCB can work, and the program can successfully upload to
the ESP32-S2 module with a breakout board.

5.2. Uncertainties
We have three major uncertainties. First, we have not verified that the EEG data can be
accurately captured. There are three possibilities for this. The ADS1299 chip may be broken.
The peripheral design for the ADC might be problematic. Or, the bias input that is supposed to
come from the clip is set up in a wrong way. Another uncertainty is that our MCU+Power+SD
PCB failed. The soldered board has its Vdd and GND shorted. However, the unsoldered PCB is
not shorted. We are still not sure what leads to the short circuit. If the problem is solved, the
project can be migrated entirely to PCBs.

5.3. Ethics
There are several concerns regarding our project. The cap confronts several risks and
vulnerabilities as a result of the use of batteries, electrodes, cables, chips, storage, camera.
Explosion, electric shock and mechanical danger are three dangerous factors in the design.
Falling is a common scenario for epilepsy patients. We must also take precautions that our device
does not create more danger for a patient in the event of a fall. We are not responsible for the
mechanical part of the design, but we will try to integrate most of the electronic components on
an integrated board and encase it with soft materials.

18

We need to ensure that both the battery and board present no hazard to the patient, especially in
the event of high heat, moisture, and any sort of mechanical perturbation. Chemical leak and
harmful electromagnetic radiation should be taken seriously.

When uploading the data and video to the cloud, we have to make sure that they are confidential
and only the specific doctor can have access to it. The camera attached should not be deployed
for any other purpose other than monitoring the patient’s eye movements. The access to the
camera data should be strictly obliged to medical ethics code. We can design a password system
for the web API and the local storage so that the confidentiality of the information is preserved.

The design and testing of this product will comply with the IEEE ethics code. We will not use
OpenBCI resources without proper citation. We will also consult doctors on the safety aspect of
the final deliverable.

5.4. Future work

In the future, we want to calibrate the ADC with real EEG inputs. Before this, we have to verify
that the electrodes and cables are functional. Solving the timing and overshoot issue of ADC
reading is also a problem that we need to solve.

On the issue of physical design, we need to put every subsystem on one PCB and reduce the size,
so that the whole system can better fit into the cap visor.

In the future we need to implement the Seizure Detection Algorithm on chip or on cloud. This is
a very important one because some of the subsystems need the signal of seizure detection to
activate. We also need to enable daisy chains that support more channels and develop a backend
server and a GUI that visualizes the EEG data, or try to integrate with the OpenBCI Software.

19

References

[1] W. Walter, “Step-Down Charge Pumps Are Tiny, Efficient and Very Low Noise,”Linear
Technology. [Online]. Available:
https://www.analog.com/media/en/reference-design-documentation/design-notes/dn310f.pdf.
[Accessed May 5, 2022].

[2] “Lithium-ion Polymer Battery Advantages and Disadvantages,” Large.net. [Online].
Available: https://www.large.net/news/8ju43nv.html. [Accessed May 5, 2022].

[3] Texas Instruments, “ADS1299-x Low-Noise, 4-, 6-, 8-Channel, 24-Bit, Analog-to-Digital
Converter for EEG and Biopotential Measurements,” ADS1299 datasheet, Oct 2016 [Revised
Jan. 2017]. [Accessed Feb 25, 2022].

[4] Espressif Systems, “ESP32- S2 -WROOM ESP32 -S2 -WROOM -I” Datasheet, 2022

20

https://www.analog.com/media/en/reference-design-documentation/design-notes/dn310f.pdf
https://www.large.net/news/8ju43nv.html

Appendix A: RV tables
Table 2. RV Table for Power Subsystem

Requirements Verification Verification Status

1. It must provide
relatively low noise
to the system in
case of affecting the
ADC (analog to
digital)
functionality.

1. Use an oscilloscope
to measure the
ripple voltage from
input
voltage(5V)/LDO
output
voltage(3.3V) to
ground respectively
and ensure they are
less than 1 μV.

Not Verified

2. The linear voltage
regulator should
continuously
provide 3.3V +/-
0.1V.

2. Use an
oscilloscope or a
digital multimeter
to measure the
output voltage of
the LDO and ensure
it’s within 3% of
3.3V.

Verified

3. The battery should
continuously
provide 7.4V +/-
0.1V.

3. Use an oscilloscope
or a digital
multimeter to
measure the output
voltage of the
battery and ensure
it’s within 3% of
7.4V.

Verified

4. The battery
capacity should be
large enough
(somewhere
between 5000mAh
to 7500mAh) to
support the circuit
for at least 24
hours.

4. A. Fully charge
the battery.

B. Discharge it
with the operating
voltage. Ensure it
can continuously
operate for at least
24 hours.

Not verified

5. The operating
temperature of the
battery should be

5. Use an infrared
thermometer to
measure the

Not verified

21

within 0 to 30°C. temperature during
discharging of the
battery and ensure
it’s less than 30°C.

Table 3. RV Table for Sensor Subsystem

Requirements Verification Verification Status

1. The ADC should
have a sampling
frequency of
250Hz+/- 5% to
ensure the quality
of the EEG data.

1. A. Send stream
command to
ADS

B. Receive the
test data to the
MCU.

C. calculate the
sampling
frequency by
looking at
timestamps.

Verified

2. Electrodes must
remain in contact
with the patient's
scalp during the
seizure and be
able to collect the
EEG data
continuously.

2. A. Have one of
the team
members
wearing the
EpiCap.

B. Ensure the
system is fully
and continuously
functioning.

C. Make some
big movements
such as running
and falling.

D. Ensure the
electrodes still
remain in contact
and the system
can still receive
data.

Not verified

22

3. The sampling
error for the EEG
data should be
less than 5%.

3. A. Use a function
generator to
simulate the
brain's electrical
signals (analog
signal) to one of
the electrodes.

B. Use Cyton +
Daisy Biosensing
Board to receive
the signal from
the electrode and
record the EEG
data with
OpenBCI
software.

C. Simulate the
same signal to
EpiCap and
compare the EEG
data with the
result from step
B.

Verified

4. The size of the
camera should be
small and the
weight should be
less than 50g.

4. Weight the
camera and
ensure it’s less
than 50g.

Verified

5. The camera must
be able to capture
the patient’s eye
and arm
movements
during seizure

5. A. Turn on the
camera and
record for a few
minutes.

B. Adjust the
angle if needed.

C. Check the
saved video on
the SD card to
see if it’s capable
of capturing eye
and arm

Verified

23

movements.

Table 4. RV Table for Logic Subsystem

Requirements Verification Verification Status

1. The
microcontroller
must be able to
establish duplex
communication
with the ADC
and camera.

1.
a. Send “start stream”

instruction to ADC
via SPI.

b. Observe the test data
stream and check if
the device is
functional.

c. Provide test signals to
the ADC. (Depending
on the number of
channels we use
different number of
test signals)

d. Probe the pins of
MCU and check if
the signals are
transmitted correctly.

e. Use an Arduino
programmer to check
if signals are
received.

f. Repeat the above
steps for the camera
module.

Verified

2. The microcontroller
must be able to upload
data given WiFi
connection.

2.
a. We first test the
wireless functionalities
on an ESP32 S2
development board.

b. As we have confirmed
the connection

Verified

24

between MCU and
ADC, we can connect
the ADC to MCU.

c. Provide a test signal to
the ADC.

d. Connect the ESP32
module with a
device.

e. Confirm that the test
signal is transmitted
without significant
loss.

3. The microcontroller
should have enough
RAM/cache to process
EEG data and camera
video data.

3. Compute the data input
size and compare it
against the RAM/cache
given in MCU datasheet.

Verified

4. The microcontroller
module must be able to
determine the WiFi
connectivity.

4. a. Test under WiFi
coverage.

b. Repeat step 2 to see if
WiFi is connected.

c. Probe the internal
signal that monitors WiFi
connection to check if it’s
high.

d. Disconnect the WiFi
and check the internal
signal again to see if it’s
low.

Verified

5. The microcontroller
is able to send signals to
the camera peripheral.

5. a. Connect the
corresponding pins.

b. Program the MCU to
provide a high input.

c. Access the camera data
in MCU and check if they
are updated.

Verified

25

6. The microcontroller
must write to the SD
FAT32 filesystem.

6. a. Remove the content of a
microSD card with a
computer.

b. Insert the microSD into
the board.

c. Partition the FAT16 file
system with the firmware.

d. Determine if the
microSD card has been
partitioned.

Verified

Table 5. RV Table for Storage Subsystem

Requirements Verification Verification Status

1. The storage device
must be large
enough to hold the
video and EEG
data. (Estimate
1GB).

1. a. Run the device for
a period of time to
check the amount of
data produced.

b. Connect to the pc
to verify the storage
space of the storage
device.

Verified

2. It should be easy
enough for
physicians to
extract the
EEG/video data

2. Connect the output
of the system to the
pc or mobile phone
and check the format
of the output to see
if it’s easily readable
by physicians.

Verified

Appendix B: Data uploaded to the server

26

Figure 12. EEG Data With Timestamps

Appendix C: Github codebase
https://github.com/yuanrui3/ECE445-Final-Project

27

https://github.com/yuanrui3/ECE445-Final-Project

