
IntelliSOLE

Final Report
ECE 445 (Spring 2022)

TA: Hanyin Shao

Team #18

Ritvik Avancha (rra2)

Alkesh Sumant (asumant2)

William Xu (xinyang8)

Abstract
For this project, we have designed and tested a foot pressure-mapping system which informs the
user of their plantar foot pressure. This system has the capacity of measuring up to 750 kPa of
pressure, and the wearer can track their change in foot pressure via phone or tablet by displaying
a pressure-time graph on an android app. The data is transferred wirelessly via Bluetooth
Low-Energy (BLE) between the shoe insole and the wireless device.

The foot pressure is measured using five force-sensing resistors (FSRs) attached to a shoe insole,
and connected to an enclosure via ribbon cables from underneath the shoe insole. The enclosure
is attached to the side of the shoe, which houses the PCB, battery and Bluetooth antenna. The
PCB houses the analog circuitry needed to amplify the sensor signals, an analog-to-digital
converter and digital signal processing subsystems, the Bluetooth module and the power
distribution subsystem necessary for the function of these components.

i

Table of Contents

1. Introduction 1
1.1. Description of Problem 1
1.2. Solution 1
1.3. High-level Requirements List 2

2. Design 3
2.1. Design Procedure 4
2.2. Design Details: Pressure Data Acquisition Subsystem 4
2.3. Design Details: Power Distribution Subsystem 6
2.4. Design Details: Signal Processing Subsystem 7
2.5. Design Details: Bluetooth Data Transfer Subsystem 7
2.6. Design Details: User Interface Subsystem 9

3. Design Verification 10
3.1. Design Verification: Pressure Data Acquisition Subsystem 10
3.2. Design Verification: Power Distribution Subsystem 12
3.3. Design Verification: Signal Processing Subsystem 13
3.4. Design Verification: Bluetooth Data Transfer Subsystem 13
3.5. User Interface Subsystem 14

4. Costs 15

5. Conclusion 16
5.1. Accomplishments 16
5.2. Uncertainties 16
5.3. Ethical Considerations 16
5.4. Future Work 17

References 18

Appendix A: Final Schematic 19

Appendix B: Requirements 21

Appendix C: Software Development 24

ii

1. Introduction
1.1. Description of Problem

Walking and running are activities many of us take for granted. Yet, any disruption to
these activities could pose enormous challenges to our daily lives. As such, studying human
motion is important in monitoring health and preventing injury. Mapping foot plantar pressure
can provide insights into the wearer's foot posture, and identify potential health issues that stem
from having abnormal gait, which range from flat feet to feet ulceration problems caused by
diabetes [1]. While there are solutions for foot pressure mapping, such as pressure mats and
treadmills, these are often high-cost products that are not easily accessible to the average person.
Current pressure-mapping shoe insoles on the market also suffer from the issue of high-cost, and
face many complaints of being uncomfortable and bulky to wear.

1.2. Solution
The aim is to develop a low-cost, comfortable solution to map foot plantar pressure and

provide the average user with information regarding their foot posture without having to see a
doctor or spend lots of money on. The plan is to develop a shoe insole sensor that is compatible
with any shoe and pair it with a mobile device application that allows the user to see their foot
pressure in real time. As seen in Figure 1, the pressure information will be gathered by a network
of force-resistive sensors (FSRs) attached to the shoe insole. The data is then transferred via
ribbon cable to an assembly hanging on the shoe ankle, which houses the components necessary
to process the pressure data. The data is then transferred to a mobile device via Bluetooth, where
the software uses the data to generate a heatmap available to the user.

Figure 1: High-level Overview of Product Components (Visual Aid)

1

1.3. High-level Requirements List
Our success is defined by our ability to meet the criteria below:

1) Ability to sense up to 100 kPa ± 20% of pressure per sensor for accurate plantar pressure
mapping.

2) Develop visualization corresponding to this range, indicating 0 kPa ± 20% to 100 kPa ±
20% of pressure.

3) The power source must be composed of small batteries with a voltage output between 3V
± 5% to 6V ± 5% and still efficiently use the power to function for more than 30 minutes.

2

2. Design

Figure 2: Subsystem Block Diagram

3

2.1. Design Procedure
As visualized in Figure 2, pressure data is collected from the shoe using the Pressure Data

Acquisition subsystem, which uses an array of force-sensing resistors to detect changes in
applied pressure. These changes in pressure are characterized by changes in the voltage response
of these sensors, which are amplified and fed into the Signal Processing subsystem. The Signal
Processing subsystem converts the analog data into digital data and applies digital filters to
remove high frequency signal noise. After processing, the pressure data is wirelessly transmitted
to the user’s phone via the Bluetooth subsystem. The User Interface subsystem converts the
received voltage data into a readable pressure data using linear regression model, and then
creates a pressure versus time graph upon user’s interaction.

Potential design alternatives included using a matrix-sensing array as the shoe insole
instead of discrete sensors. The sensor design would be composed of flat copper wires arranged
in perpendicular directions separated by a layer of Velostat (a pressure-sensitive conductive
sheet). The changes in resistance measured within the array of copper lines would correspond to
changes in pressure. The advantage of using this sensing approach is that the entire shoe insole
would serve as a sensing array; however, this would require self-manufacturing of the sensor,
increasing the difficulty of testing and establishing a range of linearity for pressure sensing. For
this reason, it was determined that using existing sensors and incorporating them into the shoe
insole would serve better given the time constraints of finishing the project within a semester. As
seen in Figure 2, the External Data Storage subsystem was listed as optional. The purpose of this
subsystem was to locally store pressure data onto an SD card, which can be transferred to a
computer. This subsystem was kept as a backup in case data was not able to be transmitted using
Bluetooth. As we had successfully implemented the Bluetooth subsystem, however, there was no
need for local storage. While working on the data transmission subsystem, Bluetooth Low
energy(BLE) protocol is chosen over regular Bluetooth protocol for energy efficiency purposes.
BLE protocol can save up to 99% energy consumption compared to regular Bluetooth[6].

2.2. Design Details: Pressure Data Acquisition Subsystem
The Pressure Data Acquisition subsystem is composed of an array of six Interlink

Electronics 400-Series Force Sensing Resistors (FSRs) placed throughout the shoe insole, as
seen in Figure 3. These FSRs are attached to the bottom of the shoe insole using masking tape
(between the shoe insole and base) with the sensing plane facing upwards. This improved the
durability of the FSRs as they are not directly exposed to the shearing forces between the user’s
foot and the shoe insole, while increasing comfort as the wires connecting to the FSRs can be
routed underneath the sole. As seen in Figures 3 and 4, a single FSR is modeled as a variable
resistor within an adjustable buffer circuit, with RFSR linearly decreasing based on pressure

4

applied normal to the sensing plane. When no pressure is applied, RFSR was measured to be
greater than 10 MΩ. The minimum activation force for sensor response was measured to be 0.04
N. The sensing area of the FSRs were measured to be 14.33 mm2, resulting in a total sensing area
of 85.98 mm2.

An adjustable buffer circuit was an ideal choice for analyzing FSR pressure data, as the
gain can be easily adjusted based on the ratio of R2 and R1. In addition, a greater degree of
linearity was observed between resistance and output voltage compared to a standard voltage
divider circuit. The ideal value of R3 was chosen to be one-twentieth the value of either R1 or
R2 (no difference in circuit behavior was observed between these two changes). By running
LTspice simulations, it was determined that a lower R2/R1 ratio resulted in higher output gain
(VOUT). As such, the ratio was tweaked until the maximum output voltage of ~2.0 V was
achieved. Figure 3 denotes the resistance values of R1 and R2.

Figure 3: Placement of FSRs within shoe insole numbered 1-6 (left) and adjustable buffer circuit
diagram with FSR component highlighted (right).

5

Figure 4: FSR amplifier circuit diagram.

2.3. Design Details: Power Distribution Subsystem
The power distribution subsystem is incharge of powering all the board system

components. All components of the system require an operational voltage between 2.8V and
3.3V. The power is supplied by one 1200mAh LiPo cell rated for 3.7V. The cells are chemically
powered by a lithium ion reaction with a conductive polymer gel. Since the LiPo cells come fully
charged at 4.2V, this solution requires the regulation of the battery voltage down to 3.3V± 5% to
power all the on-board subsystems.

The first and simplest option to regulate voltage at 3.3V is the low-dropout regulator

(LDO) as illustrated in Figure 5. The efficiency of an LDO is determined by where
𝑉

𝑜𝑢𝑡

𝑉
𝑖𝑛

= 3.3𝑉
𝑉

𝑖𝑛

ranges from 3.6V to 4.2V, the efficiency of the LDO ranges from 78.9% to 91.7%. The𝑉
𝑖𝑛

second option is to use a boost/buck converter aka a switching regulator illustrated in Figure 6. A
switching regulator offers the benefit of stepping the battery voltage down with an efficiency of
95%. The drawback for increased efficiency is the increased circuit complexity compared to an
LDO. The increased circuit complexity could pose a critical point of failure for the subsystem. In
the interest of chasing efficiency without jeopardizing the success of the project, the PCB was
designed for both a switching regulator and an LDO. The system design allows functionality as
long as there is only one regulator soldered on board at a time.

6

Figure 5: Voltage Regulator Solution Schematics

Figure 6: Voltage Regulator Solutions on PCB

2.4. Design Details: Signal Processing Subsystem
The microcontroller samples the analog resistance coming in from the pressure data

acquisition subsystem and applies an embedded FIR filter to remove noise. After the filter is
applied, the filtered values are stored onboard flash. If bluetooth is not connected, the data is
written to the external memory in the form of microSD. ADC convergence timing of 1000ns so
the convergence frequency is 1MHz convergence frequency.

2.5. Design Details: Bluetooth Data Transfer Subsystem
The bluetooth module serves as a more convenient medium to communicate data from

the microcontroller to the device with the user interface module. The subsystem achieves
bluetooth capabilities through the use of ESP32 along with the on-chip antenna. The bluetooth
module receives the data from the MCU internally once signal processing is applied to the data.
The bluetooth module encodes the data and runs through a bandpass filter before it is transmitted
by a 2.4GHz antenna printed on the PCB. The embedded code for the bluetooth module is based
on the BLE tutorials[6]. Upon initialization, the microcontroller will create a BLE server(service)
that contains 6 characteristics(channels) corresponding to one pressure sensor(Figure 8). Each

7

time the signal processing module finishes cleaning up data, values in each channel are updated
accordingly. The BLE server will then advertise those data in each channel(Figure 8).

Figure 7: Bluetooth Set-up layers

Figure 8: Flow Chart for software Subsystems

8

2.6. Design Details: User Interface Subsystem
The user interface interprets the sensor data and displays a graph for the user to visualize

the foot pressure over time. This is accomplished by establishing connection between frontend
and BLE broadcasting server on the microcontroller and then letting the user choose among 6
channels corresponding to each sensor(Figure 8 and 9). After the channel selecting fragment, the
user will be taken into the visualization fragment(Figure 9) where the read button will trigger the
graph to display the data received. The data being displayed will be preprocessed so as to
transform voltage readings into pressure data using a linear regression model.

Figure 9: Visualization of buffer setup with rows denoting a sensor and columns denoting
specific time instances.

9

3. Design Verification
3.1. Design Verification: Pressure Data Acquisition Subsystem

To verify that the maximum output voltage of the adjustable buffer circuit was within the
range of 2V ± 5% when the FSR was under maximum load, the circuit was initially prototyped
onto a breadboard connected to a power supply generating 3.3V. When the sensor was fully
depressed, an output voltage of 2.005 V was measured using a multimeter probing the voltage
output. This value falls within the 2V ± 5% margin of error. The purpose of this verification step
was to ensure that the FSR voltage response was amplified enough to be detected by the
analog-to-digital converters within the Signal Processing subsystem.

To verify that the FSR linearity was observed between force and resistance while the
sensor load is less than 10 kg, weights in ascending order were placed on the FSRs while
connected to the breadboard amplifier circuit. When the FSR was fully depressed, the output was
observed to be 0.125 V. Figure 10 depicts the increasing voltage response for each corresponding
increase in weight, which is shown to be a linear relationship between 4.5 to 254.5 grams of
applied weight. Saturation of the FSR response occurred once the weight exceeded 255 g. The
range of weight values in which a linear voltage output was observed was converted into
pressure values using the formula depicted in Figure 11. It is shown that the maximum pressure
value measured before the FSR entered saturation was approximately 170 kPa, higher than what
was outlined in the High Level Requirements list (Section 1.3). The data displayed in figures 10
and 11 were fed into a linear regression calculator, which returned a linear model with mean
square error of 13.88 and regression p_value of 0.00083 which is considered statistically
significant for the model to be considered linear.

10

Figure 10. Linear relationship between weight and FSR response.

Figure 11. Conversion of weight (in grams) to pressure values (in kPa)

11

Figure 12: Linear Regression Model Calculation Between Voltage and Pressure

3.2. Design Verification: Power Distribution Subsystem
The power distribution subsystem is primarily required to regulate the battery voltage to

3.3V ±5% (see Appendix B, Table 3). To verify this requirement, only the components required
to regulate power on the board were soldered and the battery terminals were connected to a
power supply. The power supply voltage was swept from 3.6V to 4.2V and the output of the
regulated terminals were probed.

The boost-buck converter solution was verified with the method described above. During
verification, the regulated output voltage was measured at 1.85V ±0.15V thus the boost-buck
solution does not meet the requirements of regulating output voltage at 3.3V ±5%. The root
cause of the failure stems from the wrong variant of the boost-buck IC being shipped due to
vendor error. The IC variant shipped to us was intended to regulate voltage at 1.8V as opposed to
3.3V.

Similarly, the low-dropout regulator solution was verified using the same method. The
output terminals measured 3.3V ±0.15V thus this solution met the requirement of regulating
output voltage at 3.3V ±5%.

Another requirement of the subsystem was to limit the battery current to 600mA to
prevent over current scenarios. This was verified by soldering the relevant components to the
PCB and connecting the battery terminals to a power supply. The power supply was set to output
700mA at 4.2V. The power solution managed to limit the power supply current to 600mA thus
the requirements were successfully met.

12

3.3. Design Verification: Signal Processing Subsystem
The signal processing subsystem is primarily required to convert analog data to digital

values. This was verified using a waveform generator across the sensor terminals as described in
Table 4 (see Appendix B). The waveform generator produced a sine wave with a frequency of
60Hz with an amplitude of 1.5V and an offset of 1.5V. The success of the analog to digital
conversion was verified by utilizing a JTAG debugger connected to the microcontroller and
visualized using the serial plotter. The shape of the converted waveform was very similar to the
analog sine waveform produced without clipping or saturation indicating initial success of data
conversion. The result is verified as a scaled digital waveform has a peak to peak amplitude of
3V.

Another requirement of the signal processing subsystem is the ability to digitally filter
out high frequency noise. To verify the success of the digital filter, small signal noise was created
using a waveform generator with an offset as described in Table 4 (see Appendix B) and the
relevant filtering capacitors were desoldered. While the analog data was noisy as expected, the
digital waveform illustrated a near linear line around 2V verifying the success of the digital filter.

3.4. Design Verification: Bluetooth Data Transfer Subsystem
The Bluetooth subsystem is required to set up a BLE server and establish stable broadcast

channels to send out data received from the signal processing module. The verification process is
that Bluetooth connection between our device and the microcontroller using nRF application be
established and a string value (“testing”) hard-coded (Figure 13) to see if the data received is
correct (Appendix B, Table 5). After a positive response, values are updated to match the data
received from FSRs and by comparing to values displayed on oscilloscope and values received
on client side.

13

Figure 13: Bluetooth Data Transmission Tests
3.5. User Interface Subsystem

User Interface Subsystem is required to establish stable connection and receive data
correctly from the microcontroller and while converting the voltage data into pressure data and
visualize the data in a graph(Appendix B, Table 7).

As shown in Figure 9, a stable connection and correct reception of data from 6
characteristics are verified. While constantly receiving voltage data, linear transformation takes
place and voltage is transformed into Pressure data. This is verified using Figure 10’s linearity
table.

A final verification is tested by having one of our teammates wearing the insole and
reading the data on the frontend(Figure 14). As shown in the figure, a pike with up and down
trendings is displayed on the graph with maximum pressure and minimum pressure the same
with our projections: 0 Kpa when foot is in the air, a slow increase on the pressure when foot is
being pressed onto the ground and 150 Kpa maximum pressure when the foot is fully pressed.

Figure 14: Data Visualization on a Step Taken by Use

14

4. Costs
Table 1: Cost breakdown of parts

Component Subsystem Total Item Cost (Quantity)

LM324PWRG3 Operational
Amplifier

Pressure Data Acquisition $4.04 (x10)

FSR 402 Force Sensing
Resistor

Pressure Data Acquisition $51.84 (x6)

BAT-HLD-003-SMT Battery
Retainer

Power Distribution $1.84 (x4)

36-1058-ND Battery Holder Power Distribution $4.92 (x4)

CR2032 Battery Power Distribution $4.66 (x12)

TPS62203 Voltage
Step-Down

Power Distribution $5.22 (x3)

ESP32-DEVKITC-32D Signal Processing $19.94 (x2)

ESP32-U4WDH Signal Processing $6.21 (x3)

HR1964TR-ND Micro-SD
Connector

Data Storage $2.50 (x1)

AP-MSD256ISI-1T
Micro-SD

Data Storage $12.92 (x2)

TOTAL: $116.65

Labor Cost:
𝐶𝑜𝑠𝑡 = $43. 75/ℎ𝑟 * 3 𝑝𝑒𝑜𝑝𝑙𝑒 * 2. 5 * 10 𝑤𝑒𝑒𝑘𝑠 * 10 ℎ𝑟𝑠/𝑤𝑒𝑒𝑘 = $32, 812. 50

𝐶𝑜𝑠𝑡
𝑝𝑒𝑟𝑠𝑜𝑛 = $43. 75/ℎ𝑟 * 2. 5 * 10 𝑤𝑒𝑒𝑘𝑠 * 10 ℎ𝑟𝑠/𝑤𝑒𝑒𝑘 = $10, 937. 50

Total Cost: $32, 812. 50 + $116. 65 = $32, 929. 15

15

5. Conclusion
5.1. Accomplishments

Overall, we were able to demonstrate that IntelliSOLE was able to detect changes in
pressure, convert the analog voltage response of the FSRs into digital pressure values, wirelessly
transmit and visualize pressure values into a pressure versus time graph. The Data Acquisition
subsystem displayed high accuracy and sensitivity in amplifying the voltage response of the
FSRs when the pressure applied was within the linear range (3-170 kPa). The signal process
subsystem successfully applies real time digital filtering and removes high frequency noise. The
Bluetooth subsystem is able to broadcast the received data and establish a stable connection with
the Frontend Subsystem while the Frontend subsystem is able to receive the data, transform the
data into pressure data and display it on a graph.

5.2. Uncertainties
Pressure exceeding 170 kPa resulted in the FSRs reaching saturation and unable to

change their voltage response for any additional change in pressure. As such, pressure cannot be
accurately measured past 170 kPs, which poses an upper limit to how much pressure can be
sensed by the shoe insole. This was a tradeoff that was considered, as flexible pressure sensing
devices with thin profiles are known to have a limited sensing range - however, sensors with
such profiles were needed in order to be successfully integrated into the space of a shoe.

Bluetooth connections are disabled each time the Frontend application is restarted and
restart of the microcontroller is required to reestablish stable connections. The frontend
application is also unfinished in that it cannot receive data from all 6 channels simultaneously.

5.3. Ethical Considerations
The primary aim of this project is to map the user’s foot plantar pressure in order to

provide information on the wearer’s foot posture. This correlates with IEEE’s Code of Ethics
Section I.2, which is to “improve the understanding by individuals of the capabilities of
conventional and emerging technologies, including intelligent systems [4],” as information is
being provided regarding the wearer’s health.

The mapping of the user’s feet plantar pressure will be done by obtaining a finite set of
sensor values from the shoe insole and using software to generate a continuous heatmap
visualizing high and low areas of pressure. As such, it must be ensured that the visuals seen by
the user are as accurate as possible to the data collected. However, in accordance with IEEE’s
Code of Ethics Section I.5 [4], it must be acknowledged that there will be limitations of this
accuracy based on the sensor resolution and sensitivity, the placement of sensors on the shoe
insole, and the algorithms used in software to generate the pressure heatmaps.

16

As this is a wearable product meant for regular use, extra steps were taken to ensure the
safety of the user and developers in order to prevent injury, in accordance with IEEE’s Code of
Ethics Section I.1 [4]. The device power is supplied by CR2032 batteries, which were an ideal
choice due to their low-profile and robust construction. These batteries utilize a Li/MnO2

chemistry, which have the potential to explode or cause serious burns caused by the lithium
component. As such, ensuring good handling of power distribution is essential for safe
operations, and fail-safe mechanisms designed to cut-off battery power are implemented to
ensure user safety. For example, Schottky diodes are connected in parallel with the battery to
prevent current flow in the opposite direction if battery polarity is reversed. In addition, design
considerations such as choosing slim FSRs and keeping the microcontroller/battery assembly as
light as possible are considered to improve user comfort. This is particularly important as this
product is aimed to be worn for extended periods of time.

In addition to ensuring user safety, considerations to minimize risk are taken within the
design process. As this device requires PCBs, the use of soldering is required to attach the
components to the board. Soldering produces dust and fumes which are considered hazardous,
and so much of this work was conducted under a fume hood to minimize exposure.

5.4. Future Work
Future iterations of the IntelliSOLE can drastically reduce the footprint of the PCB along

with the enclosure. Without using smaller components or redesigning the schematic, the PCB
size can be reduced by optimizing the space on the rear of the PCB and omitting the redundant
boost-buck power distribution solution in favor of the compact LDO.

Additionally, the shoe insole can be redesigned to allow for use of a matrix
pressure-sensing array (as described in Section 2.1). Instead of retrofitting an existing shoe insole
with force-resistive sensors, the matrix pressure-sensing array can be cut as per the shoe
geometry, and can be used as the shoe insole itself. Depending on the number of copper rows and
columns used, each copper line would require a signal amplification circuit similar in design to
Figure 4 - but may require different resistance values. A linearity range between weight and
voltage will have to be established for each of the copper lines within the matrix
pressure-sensing array similar to the methods used in Section 3.1.

A new fragment in the Frontend application is planned to process received data and give
out warnings to users about their foot postures based on the data. Effort on receiving different
channels’ data will also be made so that users will be able to see all the sensor data at once
without going through different fragments.

17

References
[1] A. H. Abdul Razak, A. Zayegh, R. K. Begg, and Y. Wahab, “Foot Plantar Pressure

Measurement System: A Review,” Sensors, vol. 12, no. 7, pp. 9884–9912,

Jul. 2012, doi: 10.3390/s120709884.

[2] Espressif Systems, “ESP32 Series,” ESP32-U4WDH datasheet, Aug. 2016

[Revised Oct. 2021].

[3] Hirose Electric, “DM3 Series Data Sheet”, DM3AT – SF – PEJM5 Datasheet

[4] IEEE, “IEEE Code of Ethics,” ieee.org, 2018.

https://www.ieee.org/about/corporate/governance/p7-8.html.

[5] Interlink Electronics, “FSR 400 Series Data Sheet,” 30-81794 datasheet

[6] Random Nerds Tutorial, “Getting Started with ESP32 Bluetooth Low Energy”,

Updated May 16, 2019.

https://randomnerdtutorials.com/esp32-bluetooth-low-energy-ble-arduino-ide/

18

https://www.ieee.org/about/corporate/governance/p7-8.html
https://randomnerdtutorials.com/esp32-bluetooth-low-energy-ble-arduino-ide/

Appendix A: Final Schematic

Figure 15: Final Board Schematic

Figure 16: Data Acquisition Subsystem Schematics

19

Figure 17: Final PCB Layout (Front)

Figure 18: Final PCB Layout (Back)

20

Appendix B: Requirements
Table 2: Pressure Data Acquisition Requirements

Requirement Verification Result
(Verified - ‘V’,
Unverified - ‘UV’)

1. The maximum output
voltage of the FSR circuit
must be within a range of
2V ± 5% when the FSR is
under maximum load.

1A. The FSR circuit must be prototyped
on a breadboard using a power supply to
generate 2V± 5% .
1B. The output must be measured using
an oscilloscope/voltmeter while the
sensor is fully pressed.

V

2. FSR linearity must be
observed between force
and resistance while the
sensor load is less than 10
kg.

2A. FSR circuit must be fully assembled
on breadboard.
2B. Use a multimeter to verify that each
sensor exhibits an output less than 1 V
when no force is applied.
2C. Incrementally add weight to the
FSR array and record corresponding
voltage output.
2E. Record at least two data points
where linearity relationship is lost (ie.
no changes in output voltage with
increasing weight).

V

Table 3: Power Distribution Requirements

Requirement Verification Result
(Verified - ‘V’,
Unverified - ‘UV’)

1. DC-DC step down
battery voltage from
3.5V - 4.2V to 3.3V
±5%.

1A. Use an oscilloscope to measure the
output voltage is within 3.3V ±5%.

V

2. Ensure the circuit
functions within a
current limit of
600mA ± 50mA.

2A. Use an amp meter built into the
power supply to verify the total current
draw is within 600mA ± 50mA.

V

21

Table 4: Signal Processing Requirements

Requirement Verification Result
(Verified - ‘V’,
Unverified - ‘UV’)

1. Convert analog data to
a digital reading.

1A. Simulate data using a signal
generator to create a sine wave with a
frequency of 60Hz with an amplitude
of 1.5V and an offset of 1.5V.
1B. Verify the converted digital data
reads a sine wave ranging from 3.3V ±
10% to 0V ± 10%.

V

2. Filter out analog noise
and analog-to-digital
conversion noise
using a digital filter.

2A. Simulate data with high-frequency
noise or small signal noise by using a
signal generator to create a sine wave
with a frequency of 3KHz with an
amplitude of 1V and an offset of 2V.
2B. Verify the converted digital data
reads a voltage of 2V ± 0.4V.

V

Table 5: Bluetooth Transmission Requirements

Requirement Verification Result
(Verified - ‘V’,
Unverified - ‘UV’)

1. Given accurate ADC
sensor data, transmit
the six channels of
data via BLE.

1A. Simulating acquired data then
successfully transmit via BLE and
verify using a bluetooth scanner app.
1B. Successful connection to the BLE
server verified by using a bluetooth
scanner app.
1C. Successful data read from each
BLE characteristic on the server
demonstrated by using a bluetooth
scanner app.

V - Steady
connection between
Microcontroller and
nRF connect app.

V - Correct preset
string values can be
received by nRF
connect app.

22

Table 6: External Storage (OPTIONAL)

Requirement Verification Result
(Verified - ‘V’,
Unverified - ‘UV’)

1. The supply voltage
needs to be within the
range of 3.3V ±5%
and power 1.5mA of
current during write
cycles

1A. Using an oscilloscope, ensure the
power supplied is above 3.3V ±5%.
1B. Using a multimeter, verify the
power draw during write cycles is
below 1.5mA

UV

2. The system would be
able to detect and
eliminate noises in
data.

2A. Simulate a noise signal and add it
to one of the lines. Then check on an
oscilloscope to see if the signal is
filtered out.

UV

Table 7: User Interface

Requirement Verification Result
(Verified - ‘V’,
Unverified - ‘UV’)

1. UI software must
retrieve accurate ADC
sensor data
transmitted via BLE.

1A. Simulating acquired data then
successfully transmit via BLE.
1B. Successful connection to the BLE
server verified by using breakpoints
and a debugger.
1C. Successful data read from each
BLE characteristic on the server
demonstrated by breakpoints and a
debugger.

V- Application is
able to receive the
sensor data and is
able to transform the
voltage data into
pressure data.

2. Given sensor data, the
front end must display
the acquired data in
the form of a
visualization.

2A. Use the android studio debugger to
step through the visualization.
2B. After pressing the read button, the
user is able to see the visualization on
screen for each sensor.

V- Application is
able to show a graph
of pressure v. time

23

Appendix C: Software Development
#include <BLEDevice.h>
#include <BLEUtils.h>
#include <BLEServer.h>
#include <Arduino.h>
#include "FS.h"
#include "SD.h"
#include <SPI.h>

// Bluetooth Definitions
#define SERVICE_UUID "4fafc201-1fb5-459e-8fcc-c5c9c331914b"
#define CHARACTERISTIC1_UUID "beb5483e-36e1-4688-b7f5-ea07361b26a8"
#define CHARACTERISTIC2_UUID "b2c19c80-b85e-11ec-b909-0242ac120002"
#define CHARACTERISTIC3_UUID "07789ee6-bc6e-11ec-8422-0242ac120002"
#define CHARACTERISTIC4_UUID "1f7b64f6-bc6e-11ec-8422-0242ac120002"
#define CHARACTERISTIC5_UUID "29909344-bc6e-11ec-8422-0242ac120002"
#define CHARACTERISTIC6_UUID "2f7a411a-bc6e-11ec-8422-0242ac120002"
// Pin Definitions
#define DATA1_GPIO 36
#define DATA2_GPIO 39
#define DATA3_GPIO 34
#define DATA4_GPIO 35
#define DATA5_GPIO 32
#define DATA6_GPIO 33
#define SD_CS 5
// Parameter Definitions
#define FILTER_SIZE 16

String dataMessage;
int8_t dataIdx;
uint8_t data1;
uint8_t data2;
uint8_t data3;
uint8_t data4;
uint8_t data5;
uint8_t data6;
uint16_t data1_raw;
uint16_t data2_raw;
uint16_t data3_raw;
uint16_t data4_raw;
uint16_t data5_raw;
uint16_t data6_raw;
BLECharacteristic pCharacteristic1(CHARACTERISTIC1_UUID, BLECharacteristic::PROPERTY_READ);
BLECharacteristic pCharacteristic2(CHARACTERISTIC2_UUID, BLECharacteristic::PROPERTY_READ);
BLECharacteristic pCharacteristic3(CHARACTERISTIC3_UUID, BLECharacteristic::PROPERTY_READ);
BLECharacteristic pCharacteristic4(CHARACTERISTIC4_UUID, BLECharacteristic::PROPERTY_READ);
BLECharacteristic pCharacteristic5(CHARACTERISTIC5_UUID, BLECharacteristic::PROPERTY_READ);
BLECharacteristic pCharacteristic6(CHARACTERISTIC6_UUID, BLECharacteristic::PROPERTY_READ);

void setup()
{
Serial.begin(115200);

dataIdx = 0;
data1 = 0;
data2 = 0;
data3 = 0;
data4 = 0;
data5 = 0;
data6 = 0;
data1_raw = 0;

24

data2_raw = 0;
data3_raw = 0;
data4_raw = 0;
data5_raw = 0;
data6_raw = 0;

BLEDevice::init("ECE445Team18");
BLEServer *pServer = BLEDevice::createServer();
BLEService *pService = pServer->createService(SERVICE_UUID);

// BLECharacteristic *pCharacteristic1 = pService->createCharacteristic(
// CHARACTERISTIC1_UUID,
// BLECharacteristic::PROPERTY_READ |
// BLECharacteristic::PROPERTY_WRITE);
// pCharacteristic1->setValue(&data1, sizeof(data1));
pService->addCharacteristic(&pCharacteristic1);
pService->addCharacteristic(&pCharacteristic2);
pService->addCharacteristic(&pCharacteristic3);
pService->addCharacteristic(&pCharacteristic4);
pService->addCharacteristic(&pCharacteristic5);
pService->addCharacteristic(&pCharacteristic6);

// BLECharacteristic *pCharacteristic2 = pService->createCharacteristic(
// CHARACTERISTIC2_UUID,
// BLECharacteristic::PROPERTY_READ |
// BLECharacteristic::PROPERTY_WRITE);
// pCharacteristic2->setValue("Tesing");
pService->start();

BLEAdvertising *pAdvertising = pServer->getAdvertising();
pAdvertising->start();

}

void loop()
{
// put your main code here, to run repeatedly:
data1_raw += analogRead(DATA1_GPIO); // read value into a 16 bit holder
data2_raw += analogRead(DATA2_GPIO);
data3_raw += analogRead(DATA3_GPIO);
data4_raw += analogRead(DATA4_GPIO);
data5_raw += analogRead(DATA5_GPIO);
data6_raw += analogRead(DATA6_GPIO);

dataIdx++;
if (dataIdx >= FILTER_SIZE)
{

data1_raw /= FILTER_SIZE; // read value into a 16 bit holder
data2_raw /= FILTER_SIZE;
data3_raw /= FILTER_SIZE;
data4_raw /= FILTER_SIZE;
data5_raw /= FILTER_SIZE;
data6_raw /= FILTER_SIZE;
data1_raw = data1_raw / 16; // recast 16bit to 8bit by right shifting 8 bits
data2_raw = data2_raw / 16;
data3_raw = data3_raw / 16;
data4_raw = data4_raw / 16;
data5_raw = data5_raw / 16;
data6_raw = data6_raw / 16;
data1 = data1_raw;
data2 = data2_raw;
data3 = data3_raw;
data4 = data4_raw;
data5 = data5_raw;

25

data6 = data6_raw;
// data1 = 2;
(&pCharacteristic1)->setValue(&data1, sizeof(data1));
(&pCharacteristic2)->setValue(&data2, sizeof(data2));
(&pCharacteristic3)->setValue(&data3, sizeof(data3));
(&pCharacteristic4)->setValue(&data4, sizeof(data4));
(&pCharacteristic5)->setValue(&data5, sizeof(data5));
(&pCharacteristic6)->setValue(&data6, sizeof(data6));

dataIdx = 0;
data1_raw = 0; // read value into a 16 bit holder
data2_raw = 0;
data3_raw = 0;
data4_raw = 0;
data5_raw = 0;
data6_raw = 0;

}
}

26

