

CARBON CONTROL

By

Vikram Belthur

Mois Bourla

Tanmay Goyal

Final Report for ECE 445, Senior Design, Spring 2022

TA: Daniel Ahn

May 2022

Project No. 32

ii

Abstract

 The use of CO2 as an air quality metric has increased in recent years. Indoor CO2 levels above the

atmospheric background concentration of above 400ppm are strongly caused by CO2 exhalation from

human occupants. This causes a measurable increase in the CO2 levels. If these levels remain high over a

large enough period, it is indicative that fresh outdoor air is not being ventilated into the space. Thus,

the decay rates of CO2 can be used as a measure of ventilation quality. Carbon Control is a scalable,

multi-room, CO2 monitor and alarm. The device will alarm when it detects high concentrations of CO2.

The alarm is both visual and auditory in nature. It exposes a web interface for remote monitoring and

configuration.

iii

Contents

1. Introduction .. 1

1.1 Problem and Solution Overview ... 1

1.2 Visual Aid ... 2

1.3 Physical Design .. 3

2 Design ... 4

2.1 Block Diagram ... 4

2.1.1 MCU Subsystem ... 5

2.1.2 Sensor Subsystem .. 5

2.1.3 Alarm Subsystem ... 6

2.1.4 Power Subsystem ... 6

2.1.5 Server Subsystem ... 7

3. Design Verification .. 8

3.1 Sensor Subsystem ... 8

3.2 MCU Subsystem .. 9

3.3 Alarm Subsystem .. 9

3.4 Server Subsystem .. 10

3.5 Power Subsystem .. 10

4. Costs .. 12

4.1 Parts .. 12

4.2 Labor ... 12

5. Conclusion ... 13

5.1 Accomplishments .. 13

5.3 Ethical considerations ... 13

5.4 Future work ... 13

References .. 14

Appendix A Requirement and Verification Table ... 16

1. Power Subsystem .. 16

2. Sensor Subsystem ... 17

3. MCU ... 18

iv

4. Alarm Subsystem ... 20

5. Server Subsystem ... 20

Appendix B : Circuit Schematic ... 22

 .. 22

1

1. Introduction

1.1 Problem and Solution Overview

Air quality for indoor spaces is critically important, and universally needed. Whether it is an

office, a school, or a hospital, buildings where large amounts of people congregate need to be safe. A

key component of this is indoor ventilation. If a space is under ventilated the safety of its occupants is

compromised. The Wisconsin Department of Health reports that indoor CO2 concentrations between

1000-2000 parts per million (ppm) are associated with “complaints of drowsiness and poor air.”[1] While

levels between 2,000–5,000 ppm indicate “stagnant, stale, stuffy air.”[2] Public health experts have

recommended the use of CO2 monitoring in “assessing ventilation … in an effort to reduce the risk of

disease transmission” (Allen et al., 2020). Allen et al. recommend measuring the decay of CO2

concentration to estimate how many times the air is replaced in a room [3]. This metric is known as the

Air Changes Per Hour or ACH. These tests are conducted by artificially raising the indoor concentration

and then removing the CO2 source to monitor the rate of decay.

Commercially available CO2 sensors can monitor CO2 concentrations and alarms to alert

occupants of high concentrations. However, these solutions do not provide functionality that is needed

for large scale deployments across a variety of indoor environments. Current devices are also not

designed to monitor multiple zones within the same room. Lastly, commercially available devices cannot

run automated ventilation tests to estimate the ACH of a space by taking advantage of changes in a

room’s occupancy.

Carbon Control is a Wi-Fi enabled CO2 and occupancy sensing node. It can not only trigger

alarms based on CO2 concentrations but communicate its readings to server for facilities personnel to

track. Moreover, this device will support same room multi-zone deployments, where nodes in the same

room will have synchronized alarms. Finally, the devices will leverage the occupancy sensor to detect

recently emptied rooms. These rooms have high CO2 concentrations from their previous occupants and

have decaying concentrations. This allows the device to automatically estimate the ACH.

2

1.2 Visual Aid

Figure 1 - Visual Aid

3

1.3 Physical Design
The physical design of the project is shown below, the project is a device that contains a PCB

housed inside a square enclosure. The front side of the project depicts the LED (Light Emitting Diode)

along with the mounted PIR sensor and CO2 sensor. The device also has an accessible USB port towards

one side and has access holes for the internally placed speaker. The enclosure also has openings for the

charging state indication LEDs.

Figure 2 - CO2 Sensor and PIR Sensor

4

2 Design
Our high-level design philosophy involved first defining various use cases for our product. This

necessitating designating a set of actions our system had to make in response to various inputs or

stimuli. We then derived high-level requirements from these use cases and ultimately individual

subsystem requirements. This process ensures that all functionality central to the user experience is

properly tested and verified.

2.1 Block Diagram

Figure 3 - Carbon Control Block Diagram

5

2.1.1 MCU Subsystem

A carbon control node is built around its microcontroller (MCU). The MCU serves as a connectivity hub

for our device with all subsystems connected to it. As a result, the primary criteria for the MCU selection

IO capabilities. We required sufficient IO to connect to one I2S bus, one I2C bus, and two GPIO pins for

our PIR sensor and LED. Moreover, the MCU was selected to have wireless capabilities. Additional

considerations included whether the system was easily programmable, power efficient, and

computationally powerful. We ultimately selected the ESP32-WROOM-E as our MCU.

 The ESP32-WROOM -E has sufficient IO to maintain an I2C bus for the CO2 sensor, an I2S bus for

the sound signal of the alarm system, and two GPIO pins, one for the PIR output and one to trigger the

LED. Device libraries were used to interface with the CO2 sensor as well as the speaker and LED. The

MCU proved more than capable for our application. We did however run into computational difficulties.

A large difficulty was the single threaded nature of our code. This meant that only one command could

be executed at once. This problem manifested in the main loop of our program when the speaker

output would block the execution of our wireless communications. This problem can be solved in future

iterations by selecting a multi-core MCU with better support for multi-threading. The system’s standby

power draw was measured at an average of 40 mA (including inefficiencies of our power subsystem).

WIFI performance was solid with no dropped packets observed during our testing, but it was limited to

2.4 GHz networks, and was unable to authenticate on to the IllinoisNet network.

2.1.2 Sensor Subsystem

Our device is to be capable of monitoring CO2 levels in indoor space. To do this, we needed a

sensor which is accurate, has a low response time, and can detect CO2 at a high enough concentration.

Our sensor is capable of detecting values from 400 to 5000 ppm. For this project we used the Sensirion

SCD41-D-R2 as our CO2 sensor. This part was chosen in part due to its sensing range, accuracy, and

sufficient response time. This sensor communicated with the MCU through the I2C bus. It was also

calibrated through I2C as well using manufacture provided programs. Calibration entailed exposing the

sensor to concentrations of at least 400ppm once a week. Since the Carbon Control solution calculates

the ACH of a particular room when it is empty, we used a PIR sensor to determine the occupancy of that

room. We selected the EKMB1204112 PIR sensor manufactured by Panasonic since it had a maximum

range of 12 meters, while also consuming very little power.

The performance of Carbon Control’s sensor subsystem was satisfactory and there were no

significant errors. The CO2 sensor was able to measure the concentrations of CO2 quickly and accurately.

When it was exhaled upon, to see its response to the diffusion of CO2 gas, the sensor was able to detect

both the local maxima and subsequent exponential decay in CO2 concentration. The PIR sensor was able

to detect motion in a room, to use it as a proxy for occupancy. When individuals were moving in the

room the occupancy was set to true and the ACH for that room was not calculated. The CO2 and PIR

sensors were straightforward to program and were able to successfully integrate with one another. No

major difficulties were faced in this area.

6

2.1.3 Alarm Subsystem

The alarm subsystem informed the occupants of a room if they are safe based on the level of

CO2 in the air. The subsystem consists of an RGB LED which changes color-based CO2 concentration, and

an alarm will sound upon excessive levels of the gas. To accomplish these objectives, we used an

Adafruit Flora reprogrammable RGB LED, and a speaker used in conjunction in an amplifier (with an

onboard DAC). The LED was connected to the MCU via a GPIO pin. The sound for the alarm was

transmitted to the MCU via the I2S protocol, and the connection to the MCU was three GPIO pins. The

alarm subsystem was powered by the 5V rather than the 3.3V rail because the

For the project, we opted to use the MAX98357 audio amplifier by Maxim. The amplifier

integrates a digital audio interface, among other features, and a DAC on-chip. The alarm tone itself was

a simple sine wave (A440) generated by the MCU. The thresholds we used for the alarm and LEDs were

a green light if the gas concentration was beneath 1000ppm. If the concentration was between 1000

and 1300 ppm, the LED shone yellow. If the concentration of CO2 exceeded 1300 ppm, the LED emitted

a red color. Any CO2 concentration more than 1400 ppm would trigger the alarm. This is called the local

alarm setting. The server can also send an alarm signal to the MCU, thereby triggering it to sound on the

speakers. This would typically be done in a multi-zone configuration, with multiple Carbon Control

devices, when one of them has detected a spike in CO2 levels, but the other has not.

The overall performance of the alarm subsystem was satisfactory. The LED consumed on

average between 40 – 60 mA depending on the color being emitted. When touching the LED, it did not

get excessively hot, eliminating a source of potential hazard for this part of the project. In terms of the

sound emitted by the speaker, it was generated via a third-party library, where the parameters we could

change were the frequency (i.e., the note) and the sampling rate. Perhaps in future implementations of

this project, a different configuration and be used, to make the sound more agreeable to the audience.

This could be done with harmonics. An idea of merit is to save a warning audio message on the MCU’s

flash storage and have that be outputted by the speaker. A more powerful speaker can also be

considered if this project is to be deployed to a large hall or space.

2.1.4 Power Subsystem

 The power subsystem has two objectives. First, it must charge our battery cell from power

sourced from USB. The battery charging circuit is designed to charge our battery at a controlled

maximum 500mA. The charging IC in our final design is the MCP73831. The chip was selected because it

was cost effective compared to more specialized ICs that enable balance charging. The current limit was

set to 500mA to remain in compliance with the USB specification by a feedback resistor. An additional

feature that is used is the charge status signal that is reported to a GPIO pin on the MCU. The signal is

converted into a visual cue by two LEDs that are wired such that one is reverse biased, and one is

forward biased depending on the charge status.

 A PMOS transistor is used to switch between battery power and USB power. This helps

conserve battery life by disconnecting the battery when it is not needed. The battery voltage is boosted

by a boost converter to 5V, as our alarm subsystem requires 5V for our amplifier and LED. We used the

TPS61032 as our boost converted because of its high efficiency and its 5V output capability. We used a

7

5V rail as it would be more efficient than a simple 3.3V for these higher current draw applications. It is

rated at 1A, which is sufficient for our applications. The maximum current drawn by our device during a

standard operating regime is 560 mA. We also set our system to output a low battery signal at 3.3V. In

practice this occurred at approximately 3.35V. The output of our 5V rail was set by two feedback

resistors. We observed that our 5V rail was at approximately 4.98V under light load. This satisfied our

requirements. These deviations are also expected as we had to compute the various resistors used for

the feedback and low battery network. The relevant equations are included below. A specific challenge

was that exact values could not be obtained so rounding was used, this contributed to our 5V rail not

being 5V but our system was tolerant to this.

𝑅7 = 𝑅9 ∗ (
𝑉𝑂

𝑉𝐹𝐵
− 1) = 180𝑘Ω ∗ (

𝑉𝑂

500𝑚𝑉
− 1) (1)

𝑅1 = 𝑅2 ∗ (
𝑉𝐵𝐴𝑇

𝑉𝐿𝐵𝐼−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
− 1) = 390𝑘Ω ∗ (

𝑉𝐵𝐴𝑇

500𝑚𝑉
− 1) (2)

A 3.3V rail is maintained by the NCP1117 3.3V low drop-out regulator. This device was chosen

for lower power ICs. It maintained a rail at approximately 3.28V - 3.32V depending on the status of the

5V that feeds it. The board was designed on a split power plane system on the second inner copper layer

to assist in routing.

2.1.5 Server Subsystem

 The server subsystem was written in the Flask framework using python. It also utilized a MySQL

database to hold past readings. The server received data from the device and uploaded an internal

representation as well as graphs automatically. The server was able to hold more than eight hours of

recorded data which was collected in one sitting. The server was able to display the data in a graphical

format. The plots were generated using matplotlib in python. They were then exported to an image and

displayed using HTML and CSS. The server also successfully triggered the alarm on our device which

validated several of our requirements. While the requirements were met for our server subsystem,

there are a few improvements that would be useful for our project. Firstly, we are using a static

template instead of a dynamic webpage. This means that our website needs to be refreshed to update

the content. This was mitigated by auto-refreshing every 59 seconds, but that is inelegant. Our server

used approximately 100kB of storage space to record approximately 8 hours of data. This reflects the

use of additional fields for our database versus proposal specifications.

2.1.6 Layout

 We designed our board with a compact layout. Our board was built on a PCB, including a split

power plane and a ground plane. The board dimensions were 85mm by 85mm. A central cut out was

added to the second revision of our PCB to aid in WIFI signal integrity. Our board also feature a

8

controlled impedance differential trace for the USB data lines which was carefully routed to assure

signal integrity.

Figure 4 - Carbon Control PCB Layout and Render

3. Design Verification

3.1 Sensor Subsystem

 The first order of testing used to verify the integrity of these subsystems involved using a digital

multimeter (DMM) to measure that the sensor was receiving the proper voltage (3.3V) and drawing a

reasonable amount of current. The DMM was also used to check for short circuits using the continuity

setting. Once this was verified, we tested the performance of the sensors to make sure we could use

them for our device. These tests were performed on both our prototype and final PCBs. For the CO2

sensor we devised a simple test to ascertain whether the sensor was working or not. To create a local

hotspot of gas concentration one of our team members would exhale on the sensor. Since exhalation is

a source of CO2, the gas’s concentration spiked. After causing a local spike in CO2 levels, the gas was

then allowed to diffuse. This allowed us to then monitor whether the response time was sufficiently low.

The figure below shows the CO2 concentration over a five-minute period. We can estimate that the

response time, the time it takes for concentration to change by more than 25%, will be vastly under two

minutes. Based on this graph, we can estimate the response time to be around nine seconds.

9

To verify the PIR sensor was working properly, we used a DMM to probe the output of the sensor. When

there was motion detected, the output pin was high, if there was no motion, the output pin was low.

3.2 MCU Subsystem

Many of the MCU requirements are verified through the overall function of our project. The

MCU can send POST requests with our data to our server, the is verified by the graph displayed on our

server, which is populated by our MCU through POST requests. We also verified that our MCU was

reading the sensor properly by causing a local bolus of CO2 to spike the sensor reading and verifying the

increase was reported to our server. This verified that MCU was able to read the sensor. In response to

the bolus, the alarm sounded with a tone of frequency 440Hz, above our required minimum of 80Hz.

This verified the MCU’s ability to produce a sound output. To test the timing abilities of our device, we

programmed the device to make a transmission every 5000 milliseconds. The transmission included the

current time of transmission and so we were able to validate the performance of our device by

comparing the delta between them. The transmissions had a period of 5002 – 5010 ms which suggests

that the average millisecond tick was within 1% of a millisecond, well in compliance with our 50% target.

The final requirements involved the ability to classify CO2 into three distinct zones. This was verified by

testing in a low CO2 environment such that the readings are classified in a “green” zone. We confirmed

that the LED is green and then breathed onto the sensor causing the LED to show both “yellow” and

“red” zone warnings.

3.3 Alarm Subsystem

 Alarm verification was performed along with the MCU and sensor subsystem verifications. The

team first checked for short circuits and the correct voltage supplied (5V) using the DMM. The alarm

subsection was able to produce a 440 Hz tone, and this was successfully outputted to the speaker. We

tested the speakers by playing pre-recorded sound from a .wav file, and by generating the sine wave to

play the tone. The LEDs were tested to output various colors, and these tests were broadly successful.

The LED can be seen working below.

Figure 6 - Alarm Subsystem LEDs

10

3.4 Server Subsystem

 The server subsystem requirements were also verified rigorously. Our device can post data to

the server. This is verified not only during regular operation, when our device is uploading readings from

the sensor. To test the server’s ability to POST we had it trigger an alarm on the device via POST request,

this was successful. Our server’s ability to hold long term data was verified by continuously collecting 6

hours of data during the day of our demo. This is more than our 20-minute requirement. The total file

size grew to over 147KB as we were recording additional data. During our demo, we also showed our

server refreshing every 10 seconds. This time between refreshes is user configurable so any time under

60 seconds would satisfy our requirements. The time between refreshes was verified using console logs.

Finally, to compute the ACH, we selected two data points on the curve that produced a valid ACH and

compared it to our system’s estimate. Since our system applies a formula directly, there was no error

satisfying our requirement.

Figure 7 - Carbon Control Server Test

3.5 Power Subsystem

 Since the power subsystem serves as the bedrock for this project, this section was tested and

verified thoroughly. The board was connected to a power supply in the lab and the 3.3V and 5V outputs

were probed with a DMM. Our boost converter and regulator consistently output a stable voltage of

approximately 5V (4.98V) and 3.3V (3.32V) respectively.

11

Figure 8 - Power Rail Voltages

 A second set of tests was to verify that charge status LEDs were displaying yellow and green for

charging and charged. We measured the battery voltage using the DMM in the lab, and when the

battery was below 4.1V yellow LED was lit, when the battery was charged the green LED was lit. Yellow

and Green LEDs can be seen respectively below.

Figure 9 - Charge Status LED

A final test was to verify whether the battery life was indeed capable of lasting for eight hours. We set

up Carbon Control in the lab (with a fully charged battery) and connected a DMM to it to monitor

battery life. We then left the device for approximately eight hours. The battery voltages are measured

below. At 3.75V, our battery voltage is still able to be boosted to 5V and stepped down to 3.3V allowing

for normal operation. Both measurements are taken under load.

Figure 10 - Battery Discharging

12

4. Costs
To determine the cost of this project we need to add the total cost of all the parts as well as the cost of

our labor.

4.1 Parts

Table 1: Parts Costs

Part Manufacturer Retail Cost ($) Bulk Purchase
Cost ($) /Unit

Actual Cost ($)

MCU Expressif 3.9 3.9 3.9

CO2 Sensor Sensirion 52.18 52.18 52.18

PIR Sensor Panasonic 28.29 21.745 28.29

Amplifier Adafruit 2.84 2.84 2.84

RGB LED Adafruit 7.95 7.16 7.95

Boost Converter Texas instruments 0.61 0.525 0.61

Voltage Regulator STM Microelectronics 0.77 0.633 0.77

USB charging IC Microchip 0.69 0.52 0.69

USB to Serial Bridge Silicon Labs 2.66 0.88 2.66

Resistors [28 units] Various 4.6 0.62 4.6

Capacitors [30 units] Various 14.15 1.25 14.15

Total 118.64 92.253 118.64
Table 1 - Part Costs

4.2 Labor
All three of the members of this group are in electrical engineering, and according to the latest

data available to us from the ECE department (2020), the average salary was $79,714

USD/year [13]. Assuming we work a standard 40 hours/week in a 52-week year, with no

overtime pay, our hourly wage corresponds to 38.32 USD/hr. We worked on this project for an

average of 10 hours each week for 10 weeks of the semester. That is a total of 100 hours.

Using the formula given to us:

 38.32 [
𝑈𝑆𝐷

ℎ𝑟
] ∗ 2.5 ∗ 100[ℎ𝑟𝑠] = 9580 [

𝑈𝑆𝐷

𝑝𝑒𝑟𝑠𝑜𝑛
] => 9580 [

𝑈𝑆𝐷

𝑝𝑒𝑟𝑠𝑜𝑛
] ∗ 3 = $28,740

To get the total cost we sum the parts and the labor to get a cost of $28,858.64.

13

5. Conclusion

5.1 Accomplishments

Some of the achievements unique to our project were firstly being able to demonstrate the

utility of a product like our device in a real-life setting. We were able to notice how high the CO2

concentrations were inside the ECE building and this was a surprising find. Another achievement was to

design a unique method to alarm individuals of the CO2 concentration that we designed. The alarm was

designed to be unique to not be confused with other alarms like that for a fire. The alarm also issues

warnings in stages to help mitigate the issue before reaching a critical point.

5.3 Ethical considerations

To ensure no electrical hazard was encountered we were careful when utilizing the electrical

test equipment, as needed, and whenever we were present in the lab. During the drilling of our

enclosure, we wore safety glasses and used a clamp to mount the device safely to a desk. During

soldering we were careful to be in an attentive state of mind while using the solder iron and the reflow

oven. A potential safety issue pertaining to individuals using our device could be in our device’s alarm.

We isolated its testing to prevent confusion and unnecessary panic that could ensue if it were to be

sounded without warning. The sound was designed to be unique enough to not be confused with other

potential alarms like fire safety. The device is electrically isolated to reduce electrical hazards. To

conform to the IEEE code of ethics (1.1),[14] this project made improvements on the existing

infrastructure, and results from the project have been handled fairly and openly to not cause harm

during implementation. Data privacy regarding the room occupancy is important and has been

safeguarded, to comply with the ACM’s codes of privacy (1.6) and security (2.9) [15].

5.4 Future work

The future works include trying to make the device more compact. This would include designing a

smaller PCB to be placed in a smaller enclosure. The device would also have to be more lightweight. We

also plan to develop novel methods to make multiple devices communicate with each other and share

data intelligently to make the background CO2 levels more accurate along with a CO2 density map in our

web server for each room we place the CO2 devices in.

14

References
[1] Wisconsin department of health services, “Carbon dioxide guidelines” [Online] Available:

https://www.dhs.wisconsin.gov/chemical/carbondioxide.htm

[2] Minnesota department of health, “Carbon dioxide guidelines” [Online] Available:

https://www.health.state.mn.us/communities/environment/air/toxins/co2.html

[3] Joseph Allen, Jack Spengler, Emily Jones, Jose Cedeno- Laurent, “Guide to measuring ventilation rates

in schools,” Harvard T.H Chan School of Public Health [Online] Available:

https://schools.forhealth.org/wp-content/uploads/sites/19/2020/08/Harvard-Healthy-Buildings-

program-How-to-assess-classroom-ventilation-08-28-2020.pdf [Accessed : August 2020]

[4] “Microcontroller unit ESP32-WROVER-E datasheet”, Adafruit [Online] Available:

espressif.com/sites/default/files/documentation/esp32-wrover-e_esp32-wrover-ie_datasheet_en.pdf

[5] “CO2 Sensor unit SCD41-D-R2 datasheet”, Sensirion.com [Online]

Available: https://sensirion.com/media/documents/C4B87CE6/61652F80/Sensirion_CO2_Sensors_SC

D4x_Datasheet.pdf

[6]” PIR Sensor EKMB1204112 datasheet”, media.digikey.com [Online], Available:

https://media.digikey.com/pdf/Data%20Sheets/Panasonic%20Sensors%20PDFs/EKMB_MC_AMN2_3

_Rev_Sep_2012.pdf

[7] “Amplifier MAX98357A datasheet”, Adafruit.com [Online] Available: https://cdn-

shop.adafruit.com/product-files/3006/MAX98357A-MAX98357B.pdf

[8] “RGB LED ADAFRUIT FLORA”, Adafruit.com [Online] Available :

https://www.adafruit.com/product/1260#technical-details

[9] “Boost converter TPS613222ADBV datasheet”, Texas instruments

[Online]Available:https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=http%2

53A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps61322

[10] “Voltage regulator LD1117V33 datasheet”, STMicroelectronics. [Online]Available:

https://www.mouser.com/datasheet/2/389/cd00000544-1795431.pdf

[11] “USB charging IC MCP73831T-2ACI/OT datasheet”, Microchip. [Online]Available:

https://ww1.microchip.com/downloads/en/DeviceDoc/MCP73831-Family-Data-Sheet-

DS20001984H.pdf

https://www.dhs.wisconsin.gov/chemical/carbondioxide.htm
https://www.health.state.mn.us/communities/environment/air/toxins/co2.html
https://schools.forhealth.org/wp-content/uploads/sites/19/2020/08/Harvard-Healthy-Buildings-program-How-to-assess-classroom-ventilation-08-28-2020.pdf
https://schools.forhealth.org/wp-content/uploads/sites/19/2020/08/Harvard-Healthy-Buildings-program-How-to-assess-classroom-ventilation-08-28-2020.pdf
https://sensirion.com/media/documents/C4B87CE6/61652F80/Sensirion_CO2_Sensors_SCD4x_Datasheet.pdf
https://sensirion.com/media/documents/C4B87CE6/61652F80/Sensirion_CO2_Sensors_SCD4x_Datasheet.pdf
https://cdn-shop.adafruit.com/product-files/3006/MAX98357A-MAX98357B.pdf
https://cdn-shop.adafruit.com/product-files/3006/MAX98357A-MAX98357B.pdf
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=http%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps61322
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=http%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps61322
https://www.mouser.com/datasheet/2/389/cd00000544-1795431.pdf
https://www.mouser.com/ProductDetail/Microchip-Technology/MCP73831T-2ACI-OT?qs=sGAEpiMZZMsVgcksf1EMUm%2FVN%252BXSYao%2F

15

[12] “USB to Serial Bridge CP2104-F03-GMR datasheet”, SiliconLabs. [Online]Available:

https://www.silabs.com/documents/public/data-sheets/cp2104.pdf

[13] “Illini success survey 2020-21 ”, UIUC BOX. [Online] Available:

https://uofi.app.box.com/s/aoply09y5kf6i36es8v3bl758n2lfl08

[14] “IEEE Code of Ethics” IEEE [Online] Available:

https://www.ieee.org/about/corporate/governance/p7-8.html

[15] “ACM (Association for Computing Machinery) Code of Ethics” ACM [Online] Available:

https://www.acm.org/code-of-ethics

https://www.mouser.com/ProductDetail/Silicon-Labs/CP2104-F03-GMR?qs=sGAEpiMZZMsWXMzpKpZSZb%252BoY9fUx9Rp6QcgWEgC8eE%3D
https://uofi.app.box.com/s/aoply09y5kf6i36es8v3bl758n2lfl08
https://www.ieee.org/about/corporate/governance/p7-8.html

16

Appendix A Requirement and Verification Table

1. Power Subsystem

Requirements Verification Verification

Status (Y/N)

1. The device will maintain a low

voltage power rail (3.3v +/- 0.3v)

and a high voltage power rail

(5v +/- 0.3v), when powered by

an input voltage between 3.5v

to 4.2v.

2. The device will power on its

power status LED red while the

battery is charging, until the

battery reaches its maximum

voltage, 4.1v +/- 0.15v.

3. The device’s green power

LED will be turned on after the

1A. Connect the battery input terminals to a

lab-based power supply. Connect a

multimeter to the output of the 3.3v supply

rail.

1B. Set the output voltage of the power

supply to 6.90v +/- 0.05v and turn on the

output.

1C. Verify that the regulator output voltage is

between 3v and 3.6v. Increase the power

supply voltage by 0.1v increments until output

voltage is 7.50v +/- 0.05v, confirming that the

rail voltage is between 3v and 3.6v at each

increment.

1D. Repeat the procedure for the 5v supply

rail, verifying that the rail voltage is between

4.7v and 5.3v.

2A. Attach multimeter probes to the terminals

of a battery with voltage <3.95v. Initiate

charging by plugging in usb power.

2B. Verify that the device’s status LED is red

while the device’s terminal voltage is below

4.1v +/- 0.15v. For this test to fail, the battery

would need to exceed 4.25v and the LED

continues to be red, alternatively, it would

need to turn off the red LED while the battery

voltage is below 3.95v.

3A. Attach multimeter probes to the terminals

Yes

Yes

Yes

17

battery is finished charging, i.e.,

battery voltage is 4.1v +/- 0.15v.

4. The device can operate for 8

hours on a single battery

charge.

of a battery with voltage <3.95v and green

power status LED is off. Initiate charging by

plugging in USB power.

3B. Monitor the device until the green power

LED is on. Ensure that the battery voltage is

between 3.95v and 4.25v when this occurs.

4A. Power on a fully charged device and

begin a stopwatch.

 4B. Trigger a local alarm through breath

4C. After the alarm has been active for 2

minutes (either through speaker tone or LED

indication), remove the alarm stimulant by

ventilating the area with a fan.

4D. Monitor the device every 30 minutes to

ensure that the device is still powered on until

it is not powered on, or eight hours have

elapsed, whichever occurs first.

Yes

2. Sensor Subsystem

Requirements Verification Verification

Status (Y/N)

1. The device must be able to detect

a human body in motion (0.8 - 1.5

m/s), within two meters of the device.

2. The CO2 sensor will have a

response time of two minutes or less.

The response time is defined as a

1A. Configure the MCU to print

“motion identified” to the command line

if the PIR sensor is activated.

1B. Walk in an arc around the device

such that the distance to the device is

approximately two meters. The

distance will be measured by

measuring tape.

1C. Verify that motion was detected by

inspecting the command line.

2A. The device will be configured to

report the CO2 concentration every five

seconds to the command line.

2B. A baseline concentration will be

Yes

Yes

18

greater than 25% change in

concentration.

taken as an average concentration

2C. A team member will breathe onto

the sensor.

2D. The amount of deviation after

breathing onto the sensor will be noted

and the deviation should occur from

the starting value by 25% or more.

2F. We will verify that the time taken

for the deviation is less than or equal

to two minutes.

3. MCU

Requirements Verification Verification

Status (Y/N)

1.The MCU shall send a POST

request to a web server through

WIFI.

2. The MCU shall receive a

POST request from the web

server through WIFI.

1A. Configure the web server to have an

endpoint that can accept POST requests,

which displays incoming request payloads.

1B. Program the MCU to make a POST

request with a known message up to 25

characters. Execute the program.

1C. Verify the received data is what was

transmitted on the server.

2A. Configure the web server to send data

through a POST request payload.

2B. Program the MCU to receive a POST

request and print the payload to the

command line. Execute the program.

2C. Verify the received data is what was

transmitted from the server.

Yes

Yes

19

3. The MCU shall read the CO2

sensor readings over an I2C

bus.

4. The MCU shall be able to

transmit a sine wave tone with a

frequency above 80Hz over I2S

for at least 15 seconds.

5. The MCU shall maintain a

timer with millisecond ticks (+/-

0.5ms).

6. The MCU shall classify the

current CO2 concentration into

either low, medium, or alarm,

based on user presets from the

server.

3. Configure the MCU to read the sensor

value and print the value read. Verify that a

value between 400 and 5000ppm is read.

4A. The MCU will be programmed to play a

sine wave tone with a frequency above 80Hz

over its I2S bus.

4B. An oscilloscope will have its probes on

the positive and negative terminals of the

speaker output.

4C. Verify that a sinusoidal wave is visible on

the oscilloscope for at least 15 seconds.

5A. The MCU will have a timer initiated with 1

millisecond increments and set to run for 105

iterations. As the program is triggered to run

(within 2 seconds), a secondary timer will be

initiated on a stopwatch.

5B. Verify that the elapsed time is within 50-

150 seconds +/- 2 seconds. The additional

increment accounts for synchronization

errors.

6A. The MCU will be set to monitor CO2

concentration. The MCU will print current

concentration and current classification (low,

medium, or alarm).

Yes

Yes

Yes

Yes

20

4. Alarm Subsystem

Requirements Verification Verification

Status (Y/N)

1. The alarm system shall

be able to emit Red, Yellow,

and Green light from its

LED.

2. The alarm system shall

be able to emit a tone from

its speaker for at least 15

seconds.

1A. The MCU will be programmed to turn the

LED to Red, Yellow, and Green in sequence.

Each color should be held for 20 seconds.

Verify that all colors are visible and solid in

appearance.

2A. The MCU will be programmed to send a

tone to the amplifier.

2B. The speaker will be plugged into the

amplifier output. Verify that a tone can be

heard for at least 15 seconds.

Yes

Yes

5. Server Subsystem

Requirements Verification Verification

Status (Y/N)

1. The server must maintain

an endpoint that the device

can POST to that it is in a local

alarm condition.

2. The server can make POST

requests to the MCU with a

data payload.

1A. Configure the server to receive POST

requests and display the output.

1B. Transmit a local alarm condition from the

MCU.

1C. Verify that the server displays the local

alarm condition.

2A. Configure the MCU to have an endpoint

that can receive POST requests. The request

contents should be printed.

2B. Program the server to make a POST

request with a data payload.

2C. Verify that the request is printed by the

MCU to the serial port.

Yes

Yes

21

3. The server can store at

least 30 KB of data in its

database.

4. The server will be able to

update the web interface

within 60 seconds of receiving

updated data.

5. When one device has a

local alarm, the server will

activate a global alarm in all

devices that are tagged to be

in the same room.

6. The server’s web UI can

display at least 20 minutes of

historical CO2 data from each

device in a room.

7. The server will compute the

ACH to within 30%.

3A. Create a text file (.txt) with a 30 KB size

or greater.

3B. Save the contents of the text file to an

entry in the database.

3C. Retrieve the entry and verify that the

entry is complete.

4A. Configure the server to display the time of

the last inbound request and current time

difference.

4B. Run the Carbon Control device until it

makes an outbound transmission.

4C. Verify that the difference is less than or

equal to 60 seconds.

5A. Configure the server such that two

devices are tagged in the same room.

5B. Trigger an alarm in one device with

breath.

5C. Ensure that the other device also triggers

with only the speaker, but not the LED,

active.

6A. Configure two devices to be in the same

room on the server. Power up the devices.

6B. Run the devices for 30 minutes to permit

at least 20 minutes of data to be uploaded to

the server.

6C. Verify that the server can display the

recorded data on a plot.

7A. View the computed ACH on the server’s

web UI.

7B. The ACH will be manually computed

using the historical data graph on the web UI.

The ACH = -1 * ln (C1/C0)/(t1- t0). The points

used will correspond to the first point of

noticeable decay and an arbitrary final point

Yes

Yes

Yes

Yes

Yes

22

during the decay.

7C. The manually computed ACH will be

compared.

Appendix B Circuit Schematic

23

Appendix C Carbon Control ESP32 Code

/*

 Carbon Control ESP32 Program to integrate CO2 sensor, PIR sensor, Speaker/LED Output

 and communication with webserver.

 4/25/2022

*/

#include <Arduino.h>

#include <SensirionI2CScd4x.h>

#include <Wire.h>

#include <Adafruit_NeoPixel.h>

#include <ArduinoJson.h>

#include <WiFi.h>

#include <HTTPClient.h>

#include "AudioTools.h"

#include "time.h"

// Constants

#define LED_PIN 12

#define LED_COUNT 1

#define PIR_PIN 14

// global variables

24

Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);

SensirionI2CScd4x scd4x;

uint32_t red = strip.Color(255, 0, 0);

uint32_t green = strip.Color(0, 255, 0);

uint32_t yellow = strip.Color(255, 150, 0);

uint32_t cur_color = strip.Color(0, 0, 0);

float co2, temp, humid;

//audio consts

uint16_t sample_rate=88200;

uint8_t channels = 2; // The stream will have 2 channels

SineWaveGenerator<int16_t> sineWave(7000); // subclass of SoundGenerator with max

amplitude of 32000

GeneratedSoundStream<int16_t> sound(sineWave); // Stream generated from sine wave

I2SStream out;

StreamCopy copier(out, sound);

//PIR globals

int pirState = LOW;

int pirVal = 0;

//WiFi network Information

const char* ssid = "M4";

const char* password = "12345678";

unsigned long lastTime = 0;

unsigned long timerDelay = 5000;

//date-time

const char* ntpServer = "pool.ntp.org";

const long gmtOffset_sec = 0;

const int daylightOffset_sec = 0;

bool globalAlarm;

//setup

void setup() {

 pinMode(PIR_PIN, INPUT); // declare sensor as input

 Serial.begin(115200);

 while (!Serial) {

 delay(100);

25

 }

 //AudioLogger::instance().begin(Serial, AudioLogger::Info);

 Wire.begin();

 uint16_t error;

 char errorMessage[256];

 scd4x.begin(Wire);

 strip.begin(); // INITIALIZE NeoPixel strip object (REQUIRED)

 strip.show(); // Turn OFF all pixels ASAP

 strip.setBrightness(100); // Set BRIGHTNESS to about 1/5 (max = 255)

 // stop potentially previously started measurement

 error = scd4x.stopPeriodicMeasurement();

 if (error) {

 Serial.print("Failed to execute");

 errorToString(error, errorMessage, 256);

 Serial.println(errorMessage);

 }

 // Start Measurement

 error = scd4x.startPeriodicMeasurement();

 if (error) {

 Serial.print("Failed to execute");

 errorToString(error, errorMessage, 256);

 Serial.println(errorMessage);

 }

 Serial.println("First Measurement");

 cur_color = green;

 //start I2S

 Serial.println("Initializing I2S Bus");

 auto config = out.defaultConfig(TX_MODE);

 config.sample_rate = sample_rate;

 config.channels = channels;

 config.bits_per_sample = 16;

 config.pin_bck = 26;

 config.pin_ws = 25;

 config.pin_data = 33;

26

 out.begin(config);

 // Setup sine wave

 sineWave.begin(channels, sample_rate, 440.0);

 //setup WiFi Connectivity

 WiFi.begin(ssid, password);

 while(WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.print("Connected to WiFi network with IP Address: ");

 Serial.println(WiFi.localIP());

 //Serial.println("Timer set to 5 seconds (timerDelay variable), it will take 5 seconds before

publishing the first reading.");

 configTime(gmtOffset_sec, daylightOffset_sec, ntpServer);

}

/* Function polls the sensor and if the sensor has new data,

 * it returns a pointer to that data. If the sensor is not ready,

 * or there is an error, it returns a nullptr.

 * @return length 3 float array with co2 value in ppm, temperature in celsius, and humidity in %.

 */

int getData(float* ret){

 uint16_t error;

 char errorMessage[256];

 uint16_t co2 = 0;

 float temperature = 0.0f;

 float humidity = 0.0f;

 bool isDataReady = false;

 // check if the sensor is ready to be measured

 error = scd4x.getDataReadyFlag(isDataReady);

 // error handling

 if (error) {

 Serial.print("Error trying to execute 1 readMeasurement(): ");

27

 errorToString(error, errorMessage, 256);

 Serial.println(errorMessage);

 return -1;

 }

 // is sensor ready to be polled

 if (!isDataReady) {

 ret = NULL;

 return -1;

 }

 // get the data and store in three variables

 // handle appropriate errors

 //Serial.print("is data ready? ");

 //Serial.println(isDataReady);

 error = scd4x.readMeasurement(co2, temperature, humidity);

 Serial.println(co2);

 if (error) {

 Serial.print("Error trying to execute readMeasurement(): ");

 errorToString(error, errorMessage, 256);

 Serial.println(errorMessage);

 } else if (co2 == 0.0) {

 Serial.println("Invalid sample detected, skipping.");

 } else {

 ret[0] = (float) co2;

 ret[1] = (float) temperature;

 ret[2] = (float) humidity;

 return 0;

 }

}

bool process_data(float* data){

 //Serial.print("data is null? :");

 //Serial.println(data == NULL);

 bool sound;

 if(data != NULL){

 co2 = data[0];

 //Serial.println(co2);

 //Serial.println(co2);

 if(co2 < 1000){

 cur_color = green;

 sound = false;

 }

 else if(co2 >= 1000.0 && co2 < 1300.0){

28

 cur_color = yellow;

 sound = false;

 }

 else if(co2 >= 1300.0 && co2 < 1400){

 cur_color = red;

 sound = false;

 }

 else if(co2 >= 1400.0){

 cur_color = red;

 sound = true;

 }

 }

 setColor(cur_color, 100, 0);

 return sound;

}

void loop() {

 delay(100);

 float data[3];

 int retVal = getData(data);

 //pirSensor

 pirVal = digitalRead(PIR_PIN);

 if (pirVal == HIGH) { // check if the input is HIGH

 if (pirState == LOW) {

 Serial.println("Motion detected!");

 pirState = HIGH;

 }

 } else {

 //digitalWrite(ledPin, LOW); // turn LED OFF

 if (pirState == HIGH){

 Serial.println("Motion ended!");

 pirState = LOW;

 }

 }

 if (retVal == 0){

 bool localSound = process_data(data);

 //want to now send data to the webserver

 if(WiFi.status() == WL_CONNECTED) {

 HTTPClient http;

29

 http.begin("http://192.168.178.54:8090/update");

 http.addHeader("Content-Type", "application/json");

 StaticJsonDocument<200> doc;

 //send readings to the sensor

 //doc["sensor"] = "co2";

 doc["time"] = getTime();

 doc["co2"] = data[0];

 doc["temp"] = data[1];

 doc["humid"] = data[2];

 doc["occupancy"] = pirState;

 //doc["occupancy"] = false;

 doc["sensor_id"] = 1;

 doc["room_id"] = "ECEB 1002";

 String requestBody;

 serializeJson(doc, requestBody);

 int httpResponseCode = http.POST(requestBody);

 // //check httpResponseCode

 // if(httpResponseCode>0){

 // Serial.println(httpResponseCode);

 // } else {

 // Serial.println("Error on sending POST");

 // }

 HTTPClient http2;

 http2.begin("http://192.168.178.54:8090/alarm_check");

 http2.addHeader("Content-Type", "application/json");

 int httpResponseCode2 = http2.GET();

 String payload = http2.getString();

 StaticJsonDocument<200> doc2;

 const char* json {payload.c_str()};

 DeserializationError error = deserializeJson(doc2, json);

 if (error) {

 Serial.print(F("deserializeJson() failed: "));

 Serial.println(error.f_str());

 return;

 }

30

 //Serial.println(payload);

 globalAlarm = doc2["alarm"];

 Serial.print("global alarm: ");

 Serial.println(globalAlarm);

 http2.end();

 http.end(); //Free resources

 } else {

 Serial.println("Error in WiFi connection");

 }

 //check to play audio

 if (localSound || globalAlarm) {

 for(int i = 0; i < 550; i++){

 copier.copy();

 }

 }

 }

}

void setColor(uint32_t color, int wait, int led) {

 // For each pixel in strip...

 strip.setPixelColor(led, color); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 delay(wait); // Pause for a moment

}

//function to generate the current date/time

unsigned long getTime() {

 time_t now;

 struct tm timeinfo;

 if (!getLocalTime(&timeinfo)) {

 //Serial.println("Failed to obtain time");

 return(0);

 }

 time(&now);

 //Serial.println(now);

 return now;

}

31

Appendix D Carbon Control Server Code

from distutils.util import strtobool

import requests

import base64

import io

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

from matplotlib.dates import DateFormatter

from matplotlib.figure import Figure

from flask import Flask, render_template, url_for, request, redirect

from flask_sqlalchemy import SQLAlchemy

from datetime import datetime

from werkzeug.utils import redirect

import json

import matplotlib

import numpy as np

matplotlib.use('Agg')

def string_to_bool(string):

 return bool(strtobool(str(string)))

launch app

app = Flask(__name__)

associate database

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///test.db'

create database

db = SQLAlchemy(app)

global global_alarm

global_alarm = False

class data(db.Model):

 '''Database Schema'''

 # ID is integer, serves as primary key, unique id per reading

 id = db.Column(db.Integer, primary_key=True)

 # CO2 reading is an integer representing CO2 value

 co2 = db.Column(db.Integer, unique=False, nullable=False)

32

 # Occupancy (integer for now, maybe bool)

 occupancy = db.Column(db.Boolean, unique=False, nullable=False)

 # Time as a datetime python onject

 time = db.Column(db.DateTime, nullable=False)

 # Sensor ID

 sensor_id = db.Column(db.Integer, unique=False, nullable=False)

 # room_id

 room_id = db.Column(db.Integer, unique=False, nullable=False)

 # temp and humidity

 temp = db.Column(db.Float, unique=False, nullable=False)

 humid = db.Column(db.Float, unique=False, nullable=False)

 def __repr__(self):

 return 'CO2 was %d with %d occupancy' % (self.co2, self.occupancy)

@app.route('/update', methods=['POST'])

def update():

 if request.method == 'POST':

 # parse data

 jsonData = request.data.decode('utf-8')

 jsonData = json.loads(jsonData)

 # extract values from JSON

 co2 = jsonData["co2"]

 occupancy = string_to_bool(jsonData["occupancy"])

 time = jsonData["time"]

 sensor_id = jsonData["sensor_id"]

 room_id = jsonData["room_id"]

 temp = round(float(jsonData["temp"]), 2)

 humid = round(float(jsonData["humid"]), 2)

 # careful with the format string

 dt_object = datetime.fromtimestamp(time)

 # make new entry

 new_data = data(co2=co2, occupancy=occupancy, time=dt_object,

 sensor_id=sensor_id, room_id=room_id, temp=temp, humid=humid)

 try:

 # try to add to database

 db.session.add(new_data)

 db.session.commit()

33

 return index()

 except BaseException as e:

 print(e)

 return "error!"

@app.route('/sendAlarm', methods=['POST', 'GET'])

def trigger_alarm():

 if request.method == 'POST':

 global global_alarm

 global_alarm = not global_alarm

 print(global_alarm)

 return redirect('/')

@app.route('/alarm_check', methods=['GET'])

def alarm_check():

 return {"alarm": global_alarm}

@app.route('/', methods=['GET', 'POST'])

def index():

 graph_data = data.query.order_by(data.time).with_entities(

 data.time, data.co2).all()

 graph_data = list(zip(*graph_data))

 dates = graph_data[0]

 co2 = graph_data[1]

 img = io.BytesIO()

 fig = Figure(figsize=(round(16 * 0.7), round(9 * 0.7)))

 ax = fig.subplots()

 h_fmt = DateFormatter("%H:%M:%S")

 ax.xaxis.set_major_formatter(h_fmt)

 ax.plot(dates, co2)

 ax.set_title("CO_2 Concentrations over time")

 ax.set_xlabel("Time")

 ax.set_ylabel("CO_2 Concentrations (PPM)")

 fig.tight_layout()

 fig.savefig(img, format="png")

 im = base64.b64encode(img.getbuffer()).decode("ascii")

 img_string = im

 ach_img = computeACH()

34

 tasks = data.query.order_by(data.time).all()

 return render_template("index.html", tasks=tasks, img_string=img_string, ach_im=ach_img)

@app.route('/ach', methods=['GET'])

def computeACH():

 graph_data = data.query.order_by(data.time).with_entities(

 data.time, data.co2, data.occupancy).all()

 graph_data = list(zip(*graph_data))

 dates = np.array(graph_data[0])

 co2 = np.array(graph_data[1])

 occu = np.array(graph_data[2])

 t = 5

 N = len(dates)

 ach = [0.0]

 occ = [0.0]

 out_str = ""

 # ach calculation for all windows of length t

 for i in range(2, N):

 if i - t < 0:

 c_start = co2[0]

 c_end = co2[i]

 d_start = dates[0]

 d_end = dates[i]

 avg_occ = np.mean(occu[0: i])

 else:

 c_start = co2[i - t]

 c_end = co2[i]

 d_start = dates[i - t]

 d_end = dates[i]

 avg_occ = np.mean(occu[i - t: i])

 delta_t = d_end - d_start

 delta_t_seconds = delta_t.total_seconds()

 delta_t_hours = delta_t_seconds / 3600.0

 co2Ratio = c_end / c_start

 if co2Ratio >= 0.8 or avg_occ > 0.9:

 cur_ach = ach[-1]

 else:

35

 # ach = (-1 * ln(c1/c0) / t1 - t0

 cur_ach = -1 * np.log(c_end / c_start) / delta_t_hours

 # out_str = out_str + "<p>" + str(cur_ach) + "</p>"

 ach.append(cur_ach)

 occ.append(avg_occ)

 img = io.BytesIO()

 fig = Figure(figsize=(round(16 * 0.7), round(9 * 0.7)))

 ax = fig.subplots()

 h_fmt = DateFormatter("%H:%M:%S")

 ax.xaxis.set_major_formatter(h_fmt)

 ax.plot(dates[1:], ach)

 ax.set_title("ACH over time")

 ax.set_xlabel("Time")

 ax.set_ylabel("ACH (1/H)")

 fig.tight_layout()

 fig.savefig(img, format="png")

 im = base64.b64encode(img.getbuffer()).decode("ascii")

 img_string = im

 return img_string

 # tasks = data.query.order_by(data.time).all()

 # return render_template("index.html", tasks=tasks, img_string=img_string)

if __name__ == "__main__":

 app.run(host='0.0.0.0', port=8090, debug=True)

 # print("recieved data from ESP32", jsonData)

 # # # get the JSON

 # print(json)

 # tasks = data.query.order_by(data.time).all()

 # return render_template("index.html", tasks=tasks)

