

Sensory Awareness Device for Bars

and Restaurants

Megan Heinhold, Evan Lindquist, Carl Wolff

meganjh3@illinois.edu, evanl3@illinois.edu, cwolff2@illinois.edu

Final Report for ECE 445, Senior Design, Spring 2022

TA: Amr Ghoname

May 5, 2022

Project No. 17

ii

Abstract

Sensory disabilities are underrepresented and unrecognized in society. We have successfully

created and implemented a device which allows those with sensory disabilities to understand

the light, sound, and temperature levels of the environment they will be entering without

having to be in the vicinity of the establishment. The device we have created is small, requires

little to no maintenance, and can be installed easily. Currently, there is no similar product to

this, and owing to the simplicity and efficiency of our device, it can be mass produced and easily

integrated into any establishment wishing to make themselves more accessible.

iii

Contents

1. Introduction ... 1

1.1 Block Diagram and Subsystems ... 2

2. Design ... 4

2.1 Power Supply ... 4

2.2 Wi-Fi Module ... 4

2.3 Control Unit ... 4

2.4 Sensor Block .. 4

2.5 Software .. 5

2.6 PCB Design ... 6

3. Design Verification .. 7

3.1 Sensor Characterization and Testing... 7

3.1.1 Photoresistor .. 7

3.1.2 Temperature Sensor ... 7

3.1.3 Microphone .. 8

3.2 Microcontroller and PCB Testing .. 8

3.3 Wi-Fi Chip Testing .. 9

4. Costs ... 10

4.1 Parts ... 10

4.2 Labor .. 11

5. Conclusions.. 12

5.1 Accomplishments .. 12

5.2 Uncertainties ... 12

5.3 Ethical considerations ... 12

5.4 Future work ... 13

References .. 14

Appendix A: Subsystem Schematics ... 15

Appendix B: Requirement and Verification Table .. 17

1

1. Introduction

Many factors play a role when individuals and groups decide where to spend their time

and money. Today, many of these factors relating to locations including bars and restaurants

can be easily found and compared online with services such as Google and Yelp. These services

might include information such as hours, location, ratings, prices, and even busiest hours.

Factors that are left out of these online resources include what makes up the general ambiance

of a location: sound levels, lighting, and room temperature. These factors are dynamic and

constantly changing but play a particularly important role in how much a patron might enjoy

themselves, especially if said patron is affected by a Sensory Processing Disorder or another

condition which makes it easy to become overwhelmed by one’s environment.

Much like the services mentioned above, our solution seeks to provide information

about a location’s current noise, light, and temperature levels to individuals before they arrive

at a location. In addition, our solution will identify conditions that pose specific threats to one’s

health or safety with regards to flashing lights or dangerous sound levels. We accomplished this

goal using a physical device that is installed within a restaurant or bar of interest equipped with

three sensors. These sensors are continuously polled, and each minute the average values are

computed and sent over Wi-Fi to a Google Sheet. These raw sensor values are then converted

into buckets corresponding to understandable levels of light and sound, and actual

temperature, respectively. These understandable levels and values are displayed on a web

application that can be accessed by patrons.

The success of our project was defined by these high-level requirements:

1. The device must be able to be plugged into a standard 110 V wall outlet and fit

within a 10 inch by 10 inch by 2 inch footprint. It should not require maintenance

more than once a month.

2. The device must accurately characterize both ambient levels and safety alerts.

Temperature should be recorded to within +/- 1 degree Fahrenheit. Safety alerts

should be identified for sounds above 110 dB and flashing light frequencies

between 10-12 Hz.

3. The transmission of data to the user must be “real-time,” so collection,

transmission, and interpretation of data cannot take more than 10 minutes.

Safety alerts regarding flashing lights and dangerous sound levels should be

communicated to the web app in no more than 2 minutes.

2

1.1 Block Diagram and Subsystems

Figure 1. Final block diagram.

Figure 1 shows the final version of our block diagram, composed of five subsystems: the

power supply, Wi-Fi module, control unit, sensor block, and high-level software. The entire

system is powered via the power supply, which supplies steady 5 V and 3.3 V levels. The status

LED shows the device owner that it is powered properly. Over the span of a minute, samples

are taken with all three sensors. The microcontroller averages these samples over that minute

in time and sends a packet containing three corresponding variables to the Wi-Fi integrated

circuit. The Wi-Fi module submits an HTTP POST request to a web service called IFTTT, which

then stores the packet as a new line with a timestamp in a Google Sheet. Our front-end web

3

application pulls this most recent data and refines it by identifying safety alerts over the span of

the last ten minutes and sorting raw light and sound levels into our calibrated buckets. This

interpreted information, along with the room temperature, is displayed to the end user.

4

2. Design

All subsystem schematics can be found in Appendix A.

2.1 Power Supply

A key criterion driving many of our design decisions was simplicity for the end users, the

business owner, and patrons. This came into play in our first design decision, which was how to

power our device. Since most of our components use a steady 5 V power, USB to micro-USB

was ideal. This allows the owner of the device to use existing power bricks, such as the ones

used to charge phones, or even the port on a laptop to power the device. The only other

voltage level required for any of our planned components was 3.3 V, and due to the small

difference with regards to the original 5 V we used a low dropout regulator with the

recommended capacitors [1].

2.2 Wi-Fi Module

The Wi-Fi module’s main purpose is to receive data from the control unit and upload

that data to a JSON file over a Wi-Fi network. The Wi-Fi chip we used was the ESP8266 because

of its availability, favorable reviews, and number of guides available on how to use it properly in

projects. To program this chip, we utilize a breadboard setup with the Arduino bootloader as

opposed to programming it directly on the PCB. To program this chip, we utilized a breadboard

setup with the Arduino bootloader as opposed to programming it directly on the PCB. Figure 2

shows the schematic for this module.

2.3 Control Unit

The control unit is primarily comprised of the microcontroller which is an ATMEGA88A

device and a port to connect an external programmer to program the microcontroller. The

necessary features for our microcontroller are programmability using the Arduino IDE, running

on 5 V, several analog I/O pins, the ability for every I/O pin to sink or source approximately 20

mA of current, at least 8 kB of program space (based on approximations of program size), and

the ability to utilize UART communication. The ATMEGA88A was the most cost-efficient,

mainstream microcontroller that met those specifications. The capacitor between the power

pins on the microcontroller and ground are recommended by Microchip, who makes the device

[2].

2.4 Sensor Block

There were many criteria to consider when choosing which sensors to utilize. First, we

wanted the total power consumption to be a minimum, as the device is intended to be left

5

plugged in for extended periods of time. Additionally, we wanted to be able to classify multiple

levels of sound and light. Lastly, we needed these components to be consistent when given an

unchanging environment. Most of the design alternatives came when selecting the type of

sensor to use for light. Photoresistors, photodiodes, and phototransistors would all allow us to

identify changes in light and some basic light levels. However, using a photoresistor allowed us

an analog reading of the light level which was ideal for our purposes. The photoresistor we

chose minimized power consumption.

2.5 Software

An important part of our overall project was to allow the data collected from our

devices to be accessible to the patrons interested in it before they even step foot in a new

location. To make this a reality, we utilized our Wi-Fi module and a web application to display

data in an easily digestible fashion. In our initial proposal, we suggested accomplishing this

using network JSON files. However, due to the unforeseen complexity of directly modifying

such files, and the additional insecurity the files themselves could pose, we transitioned to

using a service called If-This-Then-That (IFTTT). The new flow of data is shown in Figure 3. This

service receives our POST request containing a packet of sensor data and writes it to a Google

Sheet that we have designated. The front-end web application then pulls this data. It places the

light sensor data into one of five buckets: “very dark,” “dark,” “ambient lighting,” “bright,” and

“very bright.” It does the same with the sound data, placing it into one of five buckets: “little

background noise,” “moderate background noise,” “significant background noise or light

music,” “significant background noise or loud music,” and “very loud.” The appropriate levels

along with temperature and a timestamp are all displayed to the user under the location (or

device) name on the web application. An example of how this might look is shown in Figure 4.

Figure 2. Flowchart of data path through software.

6

Figure 3. Screenshot of web application displaying interpreted data.

2.6 PCB Design

Our PCB measures about 3 inches by 4 inches and contains every component necessary

for our device to function. Our original design is extremely similar to the final design, the

differences being part footprint changes, an additional 2-connector pins for testing and backup

plans, an additional through-hole micro-USB for better structural stability, and an additional

capacitor-resistor circuit to increase stability in our temperature sensor. The final design is

shown in Figure 5.

Figure 4. PCB Layout.

7

3. Design Verification

3.1 Sensor Characterization and Testing

All initial tests and characterizations described in the following section were done by

connecting the applicable sensor to an Arduino as well as any necessary passives (resistors,

capacitors). Specific voltage levels were recorded using the Serial Monitor function within the

Arduino IDE.

3.1.1 Photoresistor

To test the photoresistors, we connected a GL5549 photoresistor in series with a 1 MΩ

resistor between the 5 V and GND provided by the Arduino. We connected the node between

the photoresistor and traditional resistor to an analog pin of the Arduino. We then read the

value of that analog pin under different lighting conditions. During a bright day, we illuminated

the photoresistor with a phone flashlight to gauge the resistance under intense light. We then

waited and took another reading during the night in a pitch-black room with an additional cover

over the sensor. The results of these tests and their comparison with the nominal values can be

found in Table 1. In summary, the photoresistor was well within the factory specification.

Table 1. Photoresistor test results.

v_dark (V) dark resistance

(kΩ)

v_light (V) avg light

resistance (kΩ)

nominal x 10000 x 90

measured 0.45 10111 4.5 111

% diff x 1.11% x 23.46%

3.1.2 Temperature Sensor

To test the temperature sensor, we connected the TMP36 sensor’s power and ground

pins to the Arduino’s power and ground and then connected the data pin to an analog pin on

the Arduino. We then set a thermostat to a temperature, placed the device next to it and gave

it a few minutes to reach a steady state. As seen in Table 2, the temperature result was not

adequately accurate. According to the sensor’s datasheet, a small resistor could be added to

the data pin and a capacitor could be added across the power and ground terminals to increase

accuracy, so we took both of those steps and retook the reading with much better accuracy. To

confirm it was working, we again adjusted a group member’s apartment thermostat to a new

8

temperature and took another reading. The temperature sensor reading was within a sufficient

range for our device.

Table 2. Temperature test results.

v_out (V) calculated

temperature (°F)

thermostat

temperature (°F)

% difference

just TMP36 0.69 66.2 71 6.76%

0.66 60.8 68 10.59%

TMP36 +

passives

0.72 71.6 71 0.85%

0.7 68 68 0.00%

3.1.3 Microphone

To test the microphone, we connected the microphone board to the power and ground

of the Arduino, connected the digital output to a digital pin on the Arduino, and connected the

analog output to an analog pin on the Arduino. To test the analog input, we simply had the

Arduino IDE’s Serial Monitor display the analog reading every few milliseconds. We watched

the sensor stay remarkably consistent when there was minimal noise present. We then began

doing activities like talking which created slight changes in the analog reading and then finally

played music and saw large perturbations in the analog reading. We used the Serial Plot

function on Arduino and saw that the result loosely resembled the song’s waveform in an audio

program.

We began calibrating the digital cutoff threshold by using the onboard potentiometer.

To do this, we set the microphone directly next to a phone speaker and played the loudest song

we could think of on repeat. The max sound output from an iPhone is 102 dB, which is right at

the threshold for when sound can cause hearing loss [3]. We turned the potentiometer so that

the digital reading would be a logical low when the song was playing a slightly quieter part or

when there was just background noise and so that the reading would be a logical high during

the loudest parts of the song. Doing this took a long time but resulted in a digital output that

would trigger when the sound energy was above approximately 100 dB.

3.2 Microcontroller and PCB Testing

 The next test was to see if we could program our microcontroller on our soldered PCB.

To accomplish this, we connected the external programmer to the port on the PCB and

connected the network status LED to the microcontroller. We then programmed the

9

microcontroller with a program to blink the LED on and off. We followed this by connecting the

sensors in our sensor block to the PCB and uploaded multiple different test codes that would

illuminate the LED based on the input from each sensor. Each sensor was working flawlessly

with the microcontroller. We were unable to connect the Wi-Fi chip to the PCB at this time due

to an issue with our PCB’s schematic, but we fixed that issue for the second run.

3.3 Wi-Fi Chip Testing

To test the Wi-Fi chip, we first had to figure out how to program it. We combined

information from a few different online tutorials to get a setup that would allow me to program

the ESP8266 using the Arduino IDE and an Arduino board. To test if we could successfully

upload a program to the board, we again created a blinky program and connected an LED to

one of the two GPIO pins on the board which worked well. We then attempted to connect the

board to a Wi-Fi network using the ESP8266 Arduino Library which worked flawlessly.

There were two further tests that needed to be done: one to test if the Wi-Fi chip could

successfully edit a Google Sheet and another to test if the Wi-Fi chip could communicate with

the microcontroller. To test the Wi-Fi connection, we programmed the Wi-Fi chip to upload

dummy data into a test Google Sheet, which it was able to do repeatedly without fail.

To test the serial communication, we first programmed the Wi-Fi chip with a code to

illuminate an LED if the sequence “abcdefghijklmnopqrstuvwxyz” was seen on the serial feed.

Then we serially connected an Arduino to the Wi-Fi chip and programmed it to send some

garbage sequences before sending the desired sequence. Unfortunately, the two devices were

unable to communicate flawlessly. To fix that issue, we had to introduce a logic level converter

to go between the 5 V of the microcontroller and the 3.3 V of the Wi-Fi chip. This allowed the

two devices to communicate without error.

10

4. Costs
We will break down costs and theoretical anticipated costs in the following two

subsections. All costs regarding mass-production are variable with regards to Bulk Purchase

quantity.

4.1 Parts

Table 3. Parts Costs

Part Manufacturer Retail Cost

($)

Bulk Purchase

Cost ($/unit)

Actual Cost ($)

LM1086 – Low

Dropout Voltage

Regulator

TI 0.90 30.30/10 30.30

ATMEGA328p –

Microcontroller

Microchip

Technology

2.73 13.65/5 13.65

LEDs – Power

Block Light

Generic sourced from

leftover parts

sourced from

leftover parts

0

4459s –

Photoresistor

XINGYHENG 0.48 11.99/25 11.99

TMP36s –

Temperature

Sensor

KOOKYE 2.20 10.99/5 10.99

KY-038 –

Microphone

DEVMO 4.66 13.99/3 13.99

ESP8226-12E – Wi-

Fi Module

Esspressif Systems 3.25 12.99/4 12.99

Micro-USB Port –

Power/Micro

Controller Flashing

Generic ~0.80 7.97/10 7.97

Total - 15.02 101.88 101.88

11

4.2 Labor

We estimated worker labor at around $40 per hour to approximate a realistic starting

salary for a recently graduated ECE student with a bachelor’s degree. We have also

approximated this project to take around 5 hours of our time each week, leaving us with a total

worker’s compensation of $500.

Manual labor required to build a fully functioning device will cost around $103.125 for a

3-hour soldering/building process, flashing the device for each establishment’s specific internet

connection, and ensuring functionality.

In total, for each device with the parts we bought, and the time and effort put in to each

one with fair compensation, our total cost comes out to $118.127 per device. This can be

lowered by purchasing more of each part, lowering the worker’s salary, and automating many

processes that would otherwise be tedious for the worker.

12

5. Conclusions

5.1 Accomplishments

We exceeded many of the requirements set for ourselves. Our size requirement was

lowered from a top profile of 100 inches2 to 24 inches2, and our volume was lowered from 200

inches3 to 48 inches3. Our “real-time” transmission requirement was set so that all

measurements and alerts are updated every minute, instead of 10 minutes for measurements

and 2 minutes for alerts. Through stress-testing, we found that our device can send

measurements in increments of 5 seconds if required to, although this would greatly increase

the power consumption of our device. All other requirements (aside from one) were met as

shown in the requirements and verification tables in Appendix B.

5.2 Uncertainties

The single requirement not specifically met requires the device to be reliable, such that

it does not need to be maintained “more than once a month.” During testing, it would have

been extremely difficult to test the durability of each component. As such, we have not verified

the device’s ability to run for one month continuously. However, from the research conducted

when selecting components, we have no reason to believe that anything would fail without

outside interference. We have no moving parts, nothing that is continuously running at

dangerous voltages or currents, and no required maintenance such that human error could

destroy or harm our device. Therefore, we feel confident in asserting that our device can run

for more than a month without maintenance.

5.3 Ethical considerations

Since the purpose of our project seeks to improve accessibility of social gatherings in

restaurants and bars, we have ensured that the development of our project respects all persons

and does not discriminate against anyone especially against those with disabilities that our

project may be useful for as outlined in [6, Principle 1.4] and [5, Sec. II]. Use of our device by

establishments is completely optional, and furthermore continued use of our device and

corresponding app is optional as well. At any time, users of our device and app can discontinue

use, especially if undue harm to their customers or business occurs from the use of our project

[6, Principle 1.2]. To respect privacy and honor confidentiality, our project does not collect any

data that can be traced back to individuals. Our sensors do not transmit audio recordings, only

signals corresponding to audio levels, and our web app does not collect private information [6,

Principle 1.6]. The individual components of our project should pose no serious safety concerns

because we intend to use them all within the manufacturer’s guidelines.

13

5.4 Future work

If given more time, we would make changes to certain parts of our project and add

more. Firstly, we would use more powerful components. Our ESP8266-12E is the second

iteration of our Wi-Fi chip, since it has more RAM and plays nicer with our components. This

also allows us to remove the current microcontroller, and put our program onto the new Wi-Fi

chip, since it is completely integrated. We would also clean up our webpage and add additional

features such as location information (menu, hours, address etc.), and a feedback form to

improve our service at later dates. Finally, we would add music genre identification. Our main

concern regarding music genre identification is with regards to privacy. This should not be a

problem, as it will not be able to identify individuals or collect data that would identify

individuals without their own consent.

14

References

[1] “LM1086 1.50-A Low Dropout Positive Voltage Regulator.” Texas Instruments. April 2015.

[Online]. Available: https://www.ti.com/lit/ds/symlink/lm1086.pdf?HQS=dis-dk-null-

digikeymode-dsf-pf-null-wwe&ts=1648685653577

[2] “ATmega48A/PA/88A/PA/168A/PA/328/P.” Microchip. 2020. [Online]. Available:

https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-

P-DS-DS40002061B.pdf

[3] J. Lapook, When using headphones to listen to music, how loud is too loud for kids?, CBS

News, December 22, 2016. [Online]. Available: https://www.cbsnews.com/news/when-using-

headphones-to-listen-to-music-how-loud-it-too-loud-for-

kids/#:~:text=The%20top%20volume%20on%20an,for%20eight%20hours%20a%20day.

[4] I. Lopez, Program the ESP8266 with the Arduino IDE in 3 simple steps, Ubidots, June 13,

2016. [Online]. Available: https://help.ubidots.com/en/articles/928408-program-the-esp8266-

with-the-arduino-ide-in-3-simple-steps

[5] “IEEE Code of Ethics”. IEEE Website. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html [Accessed Feb. 7, 2022]

[6] “ACM Code of Ethics and Professional Conduct”. Association for Computing Machinery

Website. [Online]. Available: https://www.acm.org/code-of-ethics [Accessed Feb. 7, 2022].

15

Appendix A: Subsystem Schematics

Figure 5. Circuit Power Supply Schematic.

Figure 6. Microcontroller Schematic.

16

Figure 7. Wi-Fi Module

Figure 8. Sensor Block

17

Appendix B: Requirement and Verification Table

Table 4. Power Supply Requirements and Verifications

Requirements Verification Verification

Status (Y/N)

1. The power supply provides

5 V +/- 0.5% from a wall

power adaptor.

1A. Measure the output voltage from the wall

power adaptor using an oscilloscope, ensuring that

the output voltage stays within 0.5% of 5 V.

Y

2. The power supply provides

a 3.3 V +/- 0.5% from a low

dropout regulator driven by

the 5V mentioned above.

2A. Measure the output voltage from the regulator

using an oscilloscope, ensuring that the output

voltage stays within 0.5% of 3.3 V.

Y

3. The power supply can

operate within 0-1 A from the

5 V source and able to

operate within 0-0.1 A from

the 3.3 V source.

3A. For the 5 V source, connect the 5 V line to

multiple resistors together such that the total

resistance of the network is 5 Ω +/- 0.5% but no

resistors are dissipating more power than they can

handle. Measure the voltage network across the

resistive network using an oscilloscope to confirm

it is 5 V+/- 0.5%.

3B. For the 3.3 V source, connect the 3.3 V line to

multiple resistors together such that the total

resistance of the network is 3 Ω +/- 0.5% but no

resistors are dissipating more power than they can

handle. Measure the voltage network across the

resistive network using an oscilloscope to confirm

it is 3.3 V +/- 0.5%.

Y

18

Table 5. Control Unit Requirements and Verifications

Requirements Verification Verification

Status (Y/N)

1. There must be a total of six

GPIO pins that can

appropriately handle signals

between 0 V and 5 V +/- 0.5%

while sinking/sourcing at

least 20 mA +/- 0.5% of

current per pin.

1A. Connect an I/O pin of the MCU to a series

combination of an LED with a forward voltage of

3.2 V +/- 0.1 V and a resistor of 90 Ω +/- 0.5%.

1B. Using an ISP programmer, program the board

with a test program that blinks the LED on and off.

Y

2. The RX pin must be able to

interpret 3.3 V +/- 0.5%

signals (from WiFi chip) as

logical HIGHs.

2A. Use the same LED setup as 1A while also

connecting the WiFi chip to the MCU.

2B. Using an ISP programmer, program the board

with a test program that pings the WiFi chip and

illuminates an LED upon a successful response.

Y

3. There must be an A/D

converter with at least ten

bits of resolution and three

available channels which can

be read sequentially.

3A. Use the same LED setup as 1A while also

connecting the TMP36 to a different I/O pin while

the sensor is in a temperature-controlled

environment.

3B. Using an ISP programmer, program the board

with a program that reads the temperature and

illuminates the LED if the temperature is different

from the initial reading.

3C. After the initial reading is complete, adjust the

temperature of the environment by a small

amount (~1°F) to ensure that the LED illuminates.

Y

19

Table 6. Wi-Fi Module Requirements & Verification

Requirements Verification Verification
Status (Y/N)

1. The chip must be able to
take commands via UART from
an external microcontroller.

1A. Connect the chip to an Arduino (or similar
microcontroller) using a breadboard.
1B. Upload a test program to the Arduino that
attempts to ping the Wi-Fi chip and indicates
using the serial monitor if a response was
received.

Y

2. The RX pin must be able to
handle a 5 V +/- 0.5% signal
(from the microcontroller)
without breaking the chip.

2A. Connect the RX pin to the microcontroller,
using the same program as in Table 2 1A. Verify
that the LED can illuminate, indicating a successful
ping.

Y

3. The chip must be able to
connect to a network and send
4 kB (max size) of data
supplied by the
microcontroller once every ten
minutes +/- thirty seconds.

3A. After completing 2A, use the same hardware
setup but change the software on the MCU using
an ISP programmer to have the WiFi chip connect
to a network and upload a dummy data packet to
a JSON file once every ten minutes.
3B. Verify on a separate computer that the JSON
file is modified once every ten minutes.

Y

20

Table 7. Sensor Block Requirements & Verification

Requirements Verification Verification
Status (Y/N)

1. The output of the
photoresistor must be within 0
V and 5 V +/- 0.5% with a
current of no more than 20
mA +/- 0.5% in various light
levels.

1A. On a breadboard, connect the photoresistor
and a 1 M Ω +/- 0.5% resistor in series. Connect
one lead of the photoresistor to 5 V using an
Arduino (or similar microcontroller) and ground
the circuit.
1B. Connect the second lead of the photoresistor
to an analog I/O pin on the Arduino.
1C. Run a test program on the Arduino that
records the voltage level of this pin.
1D. Use an oscilloscope to measure the current
running through the resistors.
1E. Verify that the voltage stays between 0 - 5 V
+/- 0.5% for different sound levels.

Y

2. The microphone output
must be within 0 V and 5 V +/-
0.5% with a current of no
more than 20 mA +/- 0.5%
depending on sound levels.

2A. Power and ground the microphone chip using
an Arduino (or similar microcontroller) 5 V output.
Connect the analog output of the microphone to
an analog I/O pin on the Arduino.
2B. Run a test program on the Arduino that
records the voltage level of this pin.
2C. Use an oscilloscope to measure the current
running through the microphone.
2D. Verify that the voltage stays between 0 - 5 V
+/- 0.5% for different sound levels.

Y

3. The temperature sensor
output must be within 0 V and
5 V +/- 0.5% with a current of
no more than 20 mA +/- 0.5%
depending on temperature.

3A. Using the same setup as in 2A - 2C, connect
the output of the temperature sensor to the
Arduino and run the same program.
3B. Verify that the voltage stays between 0 - 5 V
+/- 0.5% and current less than 20 mA +/- 0.5% for
different temperature levels.

Y

21

Table 8. Web Application Requirements & Verification

Requirements Verification Verification
Status (Y/N)

1. The C++ program must take
raw input data from 3 sensors
over the span of 10 minutes
and output averaged levels in
terms of temperature, light,
and sound.

1A. Using an ISP programmer, program the
microcontroller with the C++ program.
1B. Connect the outputs of the 3 sensors to the
input pins of the microcontroller.
1C. After 10 minutes, verify that the output values
are reasonable for the environment in terms of
temperature, light, and sound.

Y

2. Data from the
microcontroller must be able
to be transmitted via the WiFi
module to the JSON file.

2A. Write a test program that can update a single
value in a JSON file.
2B. Using an ISP programmer, program the
microcontroller with the test program.
2C. Run the program and verify that the JSON file
is updated.

Y

3. The web application must
display updated data within 1
minute +/- 30 seconds.

3A. Edit the JSON file from which the web
application reads its data.
3B. Refresh the web application. Continue to
refresh the page every 2 seconds. Verify that the
updated changes appear within 1 minute +/- 30
seconds.

Y

