

By

Jack Li

Sumukh Kenkere Vasudeva Murthy

Final Report for ECE 445, Senior Design, Spring 2022

TA: Akshatkumar Sanatbhai Sanghvi

04 May 2022

Project No. 57

Automated Metal Detection Robotics

ii

Abstract

Detecting specific metallic objects is a division of automation that has been seldomly explored. In order

to create such automation to benefit individual customers for efficiency and industries for safety purposes,

we have built a robot using a combination of a metal detector, a microcontroller, ultrasonic sensors, a

raspberry pi and a camera which provides a low-cost solution to aid metallic object detection and

identification. Such robot could ideally navigate a given room in a short span of time with the help of the

pre-programmed microcontroller while simultaneously detecting metallic objects with the sound sensor

and identifying them using the camera. Our results show a promising application that be exploited in the

future to further automate robotics for metal detection purposes and potentially collaborate with other

robotics design for developing multi-functional robotics.

iii

Contents

1. Introduction .. 1

2 Design ... 4

2.1 Design Procedure .. 4

2.2 Modular Design Details ... 5

2.2.1 Peripheral module and Robot module... 6

2.2.2 Circuit Design—PCB Module ... 7

2.2.3 Microcontroller Control Module .. 11

2.2.4 Control System Design—Machine Vision Module ... 13

3. Design Verification .. 15

3.1 Module verification ... 15

3.2 High-level verification ... 16

4. Costs .. 17

4.1 Parts .. 17

4.2 Schedule .. 17

5. Conclusion ... 18

5.1 Accomplishments .. 18

5.2 Uncertainties ... 18

5.3 Ethical considerations ... 19

5.4 Future work ... 19

References .. 20

Appendix A Requirement and Verification Table ... 21

1

1. Introduction
Metal detection has been a prevalent technique that is useful in various areas of application:

individual personnel use this technique to search for lost items like keys; industries can thus probe

important engineering components; there is also on-going attempt to develop metal detection’s

application for spacecrafts and sample cultivation1. But various issues, which may be small or significant,

are associated with each of these applications. For individual use, time consumption is worried by many

potential customers and a more convenient way of searching for lost items may be inquired; for industrial

purposes, safety is a significant concern, and people cannot always enter construction sites themselves to

search for those components as accident happens more frequently on the site; for other space exploration

purposes, how precise the signals can be sent back to Earth, and how would astronauts manipulate these

devices safely should also be considered as the space environment is entirely different.

Therefore, to develop a general-purpose solution to these problems, an automated metal detection

robot is needed for several reasons: firstly, it can search for targets and avoid obstacles automatically,

which minimizes human forces involved, decreasing the amount of time spent on controlling the device;

secondly, as human forces now remain out of sites, safety is enhanced, and people now only need to focus

on analyzing the data once the robot has finished probing procedures; thirdly, it has the potential to be

extended to other robotics, for example, combing several functions of metal detection, radioactive rays

receival and transmission together, which could be very helpful in various research, particularly in space

exploration. Current study has focused on expanding metal detector robotics’ abilities to send data back to

human while controlling the device manually1,2; some other developments include precise control of the

metal detector coil for better detection flexibility in various environments3. However, as automation has

not been developed thoroughly in previous research, we, thus in this report, focus on our work in the

effort to create an automated metal detection robot prototype, which can detect small metal objects with

the ability to avoid obstacles and verify the detected object using pattern recognition. Such project, thus,

needs to have several high-level functionalities to get the above job done.

1. High efficiency. This is a functionality trait very important to customers individually. A higher

efficiency device can reduce the time spent on a particular scheduled task.

2. Safety insurance. This is another high-level functionality that is both crucial to individuals and

industries purposes. We want to make sure that the device does not increase more unnecessary dangers to

users and their surroundings. Therefore, the device needs to avoid obstacles and stop if any measure taken

afterwards would crash itself automatically. Electricity, mechanical parts should be within safety

minimum safety limits (for example, the highest operation voltage should be below at most 30 volts).

3. High precision/accuracy. This functionality features another aspect of automation. Previous

research focuses on data transmission back to human receivers for data verification. To greatly utilize the

full functionality of the device, we expect a model which can do the initial verification step for humans

before they need to engage in again (for our particular metal detection purpose, this would mean that it

can identify the detected object to either be our target object or not with enough accuracy).

Thus, given these 3 high level functionalities, we have the following general structured design

(figure 1), or top-level diagram for the robotics system as our prototype:

2

Figure 1: Block diagram of the overall design. The mechanical system consists of power subsystem and robot car subsystem

and is responsible for the physical movement of the robot. Control system is centered around Microcontroller where it

processes all the sensor signals and generate control signal. Finally, the sensor system consists of distance sensors, sound

sensor coupled with metal detector, and camera, which generate input signals to microcontroller.

This prototype can be summarized into 3 systems, each individually is responsible for

concentrated tasks: mechanical system, control system, and sensor system. The mechanical system

delivers power to the whole robot, including Printed Circuit Board (PCB), Raspberry pi (RP), sensors,

and the motors. It also includes a robot car subsystem, which is the entity (or “body”) of the robot. We

use a simple design for the prototype such that two motors with respectively connected wheels can

perform all the motions necessary for the robot to move, turn around, and avoid the obstacles. The control

system is the “brain” of the robot and is also the interconnection across the whole robot system web. It

receives signals from sensor system, generate control signals, and deliver them to the mechanical system

to drive the car in specific operations. Lastly, we have the sensor system—the “eye” of the robot. We use

distance sensors to detect any potential obstacles, sound sensor coupled with metal detector to detect

presence of metals, and camera for general purpose detection. Initially, we would like to use camera as an

extra “vision” subsystem to tell the robot some specific operations, for example, whether the obstacle

ahead should be avoided or searched (as some obstacles are soft and are actually where most hidden metal

items may reside, we need to go “into” them to do a thorough search instead of avoiding it). But as our

project progresses with unexpected events happened, we have to simplify the function camera can

perform to finish prototyping the project. It ends up functioning as the eye to pattern recognizer, which

tells the system whether the objects detected as metals, are the targets. Therefore, we can see how these

systems are connected: “eye” tells the “brain” the information around, “brain” synthesizes the information

and control the “body” to move.

3

This is a straightforward and simple description of the whole robot’s top-level design and its

systems. In the following report, we will go into depth about our design in chapter 2 and verify them in

chapter 3. Costs are described in chapter 4, with chapter 5 summarizing our whole project. Overall, we

reached a state where nearly all the systems designed work well individually. However, due to time

constraints, we have shortage of parts and lack of parameters modifications to optimize the performance

of this prototype metal detection robot. We will summarize them and list potential improvements to

conclude this project in the end.

4

2 Design

2.1 Design Procedure
The design procedure can be divided into 2 big components:

1. Subsystem technical design and 2. Selecting parts.

Procedure 1 offers the minimum requirements and variables that can be changed for each

subsystem, while procedure 2 provides options and alternatives that satisfy the same requirements

obtained from procedure 1. In this section (2.1), we will introduce the most general and basic design

choices made during the whole design process. For more detailed descriptions, we have broken up all the

subsystems into individual modules and will depict them along with “specific” design alternatives in

section 2.2.

The three systems in our design each has minimum requirements. For mechanical system, with

our two-driving-wheel design, the motors we choose will need to overcome a torque that is set by the total

weight of the system and frictional forces between motors, which is given by:

𝜏 > 𝑘𝑠𝑚𝑔𝑟

Where 𝜏 is the maximum torque that can be provided from the motor, 𝑚 is the total mass of the robot car,

𝑔 is Earth’s gravitational acceleration constant, r is the radius of the driving wheel, and 𝑘𝑠 is some

unknown coefficient of friction existed within the motor-wheel system, for example, non-ideal frontal

wheel inner contact that stops every car’s motion when driving wheel no longer provides power. This

model provides an estimation for the motor torque we need to choose. For mass 5 kg, driving wheel

radius 7 cm, and coefficient of friction between wheel’s contact with the central axis 0.1 (common for

steel-to-steel contact4 with oils, static coefficient of friction), we have the torque minimum value to be

about 3.5 kg∙cm. Another factor which is also essential to mechanical system design is the motion speed,

which is provided by the motor’s Rotations Per Minute (RPM). To achieve a reasonable motion speed, we

expect about 0.5 m/s, which corresponds to

𝑅𝑃𝑀 =
𝑣

2𝜋𝑟
≅ 70

To summarize these design considerations for procedure 1 for mechanical system, we need motor torque

at least 3.5 kg∙cm and RPM about 70. Then upon entering procedure 2, we quickly find a motor with rated

torque 4.5 kg∙cm and RPM 100 which satisfies this minimum requirement well. There is actually an

alternative design for the mechanical system, which is using 2-connected wheels system to drive the robot

(like a tank). But this design needs a stronger motor, which in the end will affect RPM (with the same

power, a higher torque requirement results in a lower RPM), therefore, we choose this design in the end.

Now for the control system, the baseline design is that it needs to have enough input/output ports

(GPIO) to receive all the signals from the sensor system and deliver control signals. To figure out this

baseline, as control system and sensor system are connected closely together, we will describe the

minimum requirements here collectively. For sensor system, we need at least 3 distance sensors (with

each one covering front, left, and right side respectively), and one sound sensor to be bonded to metal

detector for synchronous operation. As most sensors have 4-pin connections with 2 pins delivering

5

interactive signals, plus at least 2 control signals required for the two motors, we need a minimum of 10

GPIO ports for the microcontroller. Considering this minimum requirement with procedure 2, several

options become available immediately: ATmega328 has 23 GPIO ports and is compatible with Arduino

programming interface; STM32F103C8T6 microcontroller has flexible GPIO ports up to 80, and it has

various data input/output types supported. But in the end, we chose RP2040 which is a microcontroller

newly manufactured from Raspberry Pi. The 25 GPIO pins satisfies our minimum requirements, and it

has python compatible Interactive Development Environment (IDE) which is slightly easier than the two

alternatives to program.

Consequently, with RP2040 GPIO voltage range limited to 0-3.3 volts, turning back to sensor

system, we have 2 options for the overall design. Firstly, we can use 5-volt sensors and use multiple

voltage regulators to convert to 3.3 volt; alternatively, we can use 3.3-volt sensors throughout the system

but use a single voltage regulator in the power subsystem. The advantage for the second option is

obvious: it has less components required and is cleaner to be implemented. Although the microcontroller

will have lower efficiency considering that it has maximum performance at 5 volts, we can always

separate the power lines and therefore maintain a good performance.

We, thus, have summarized the design procedures and our most general considerations when

designing the subsystems. In the following section, the subsystems are compacted into modules, and we

will focus on the design details for each module.

2.2 Modular Design Details
Considering the 3 systems we have and their interconnections, we can break the whole project

into 5 modules with 3 hardware modules and 2 software modules:

Hardware modules Software modules

Peripheral module: includes all the

components attached to PCB module

(power sources, sensors, Raspberry

Pi)

Microcontroller control module:

software program used to control all the

signals in the system (manipulate input,

generate output)
Robot module: the robot car entity

with wheels and motors, which is the

end output module

Raspberry Pi machine vision module:

software program used to pattern

recognize detected object
PCB module: provide circuit that

connects the other two modules

Table 1: a summary of all the modules that construct the 3 systems in the project. Hardware modules are the main

electronics and mechanics design components while software modules add automation into the electronics.

Doing this can simplify the whole project’s design and we can individually implement and test each

module (although some modules require the cooperation of other modules to test, including

microcontroller control module and Robot module). In the following, we will give detailed descriptions

for each of these 5 modules, with an emphasis on PCB, microcontroller control, and machine vision

module.

6

2.2.1 Peripheral module and Robot module

The peripheral module and robot module are all external modules which attach to PCB module.

Robot module overall is designed by us with the help of the machine shop and can be illustrated in figure

2.

Figure 2: Physical diagram illustrating the robot module. In this figure, PCB module and part of Peripheral module (sound

sensor, distance sensor, and Raspberry Pi) are also shown to be interconnected with robot module, thus, demonstrating how

this project’s final placements for all the components are.

Dimensions are not drawn to scale. The design features a fixed metal detector stretching out from the

robot car’s main body forward close to ground for detection purposes. Sound sensor is placed near the

metal detector such that it will not trigger metal detector’s detection (as sound sensor is also metal) while

keeping a reasonable distance to be sensitive enough to collect sound from metal detector. Distance

sensors, depending on the design purposes, are mostly placed in the front, left, and right side of the robot

to gain a thorough vision of its surroundings. If the robot can move backwards, then an extra one can be

placed at the back side, but in our design, we recoil from such placements which will be discussed in

more detail for the reason in section 2.2.2. PCB module is placed around the center for easy connections

through wires to the other modules. Lastly, although not shown directly, motors are fixed with the wheels

at the backside of the car to drive the car’s motion. As discussed in section 2.1, we chose 2-wheel driving

design because it can accomplish the desired motion operations while reducing power required. More

details about the car’s operations will be discussed in section 2.2.2 and 2.2.3.

Peripheral module is relatively more straightforward. These are the components directly

associated with PCB and can be summarized in the following table.

Components function and parameters

12-volt

battery

provide power to PCB to drive motors

4.8-volt

battery

provide power to PCB to drive microcontroller and sensors. In the PCB module,

we will see an extra voltage regulator used to convert it to 3.3-volt source.

ultrasonic

sensor

Part number US-100, working voltage range from 2.4 volt to 5.5 volt

sound sensor KY-037 sound sensor, working voltage range 3.3 to 5 volt

7

Table 2: a summary of the most essential components with their values and functions for Peripheral module.

As we in the end adapt to 3.3-volt power system for all the electronics (section 2.1), we choose sensors

such that they can comfortably work at 3.3 volt without affecting the performance, and thus, US-100 and

KY-037 sensors are perfect to be implemented. Working distance range is also an important parameter

when designing this module. We need to ensure that distance sensor can have sensitivity at least around

10-20 cm where robot car needs to respond and stop. But this design decision is actually a parameter that

hasn’t been optimized throughout the project, and therefore is pending to change. With a fully working

model, combined with distance sensors, several trials of testing need to be done to ensure that the braking

distance is long enough, and unfortunately, we in the end of the project does not have enough time to

optimize this parameter. We will discuss more in Chapter 5 conclusions.

2.2.2 Circuit Design—PCB Module

PCB module consists of the PCB only, which is the central circuit we have to connect everything.

It essentially has functions related to all 3 systems, including providing power (mechanical system),

receiving and interpreting signals (sensor system), and generating control signals for various operations

(control system). Figure 3 shows the comprehensive design details of the circuit schematic.

Figure 3: Circuit schematic of the whole PCB module. It has been divided into 4 submodules: power, which connects to the

power supplies in Peripheral module; microcontroller, which connects to sensors in Peripheral module, programed by

microcontroller control module, and deliver 2 control signals to the next submodule; motor control line, which is a

submodule centralized around 2 power switches to convert control signals to real, physical power provided to motors;

button, which consists of control signals used to interrupt/initiate/start the whole PCB module.

Power submodule typically uses a simple 2-pin connector to connect external 12-volt power

source to the system which is used to drive motors. Another 2-pin connector is coupled with 3.3-volt

voltage regulator to provide power to sensors and microcontroller. There are not many design alternatives

for this submodule, as in the end, only AMS1117-3.3 voltage regulator is available online and can be

ordered. But since it delivers current between 0 and 1 ampere5 and maximum current capacity (1A) is

8

much larger than the working current of the microcontroller (about 90 mA6 in working mode), the

regulator would work well with our system theoretically.

Button submodule is the only human force needed for this robot to move. As we have mentioned

in the introduction chapter, our goal is to “automate” the metal detection robot. The only button is used to

start/stop the car along with an optional reset button to re-initiate the system in case the microcontroller is

stuck in an infinite loop. All other operations are performed automatically with the use of the following

submodules.

Microcontroller submodule is built to connect all components in Sensor system and Mechanical

system (or in terms of modules, the Peripheral module and Robot module). To summarize this

submodule, it is easier to show all its pin connections in the following table:

Pin function and parameters

Input GPIO 0-1 Send trigger and receive echo signals from ultrasonic sensor 2

GPIO 2-3 Send trigger and receive echo signals from ultrasonic sensor 1

GPIO 7-8 Send trigger signal to Raspberry Pi by setting it high and receive

Raspberry Pi return signal (high/low)

GPIO 16 Receive digital output signal from sound sensor

GPIO 19-20 Send trigger and receive echo signals from ultrasonic sensor 3

GPIO 21-22 Back up port for the fourth ultrasonic sensor

GPIO 13 Receive signal from button. When low, initiating the system

output GPIO 11-12 Send two control signals to motor control line submodule to control

the motion of the robot car
Vsys 1.8~5.5 volt. In our setup, we use 3.3 volt generally for

microcontroller power.
GND All ground pins should be grounded for proper operation.

Table 3: a summary of the microcontroller submodule with pin assignment.

For this hardware configuration, we only list the main connections, parameters, and basic operations.

Detailed operations the microcontroller can perform is introduced in section 2.2.3 for software side’s

descriptions. Typically, this is the minimum design choices we made: monitor at least 3 distance sensors

for forward, lefthand, righthand direction information; monitor one sound sensor’s digital output value for

metal detection purposes; send 2 control signals with each responsible for one side of the motors. Overall,

the heart of the design is to figure out how those 2 control signals can be interpreted by the PCB and

generate physical power for the motors, and this is how our next submodule—motor control line—works.

Motor control line submodule relies on the design of power switch and is the heart of our PCB

module design. In the simplest description, it contains a power input pin, an output pin, and an enable pin

to control the power flow from input to output. Minimum requirements we need to consider is working

voltage (with our 12-volt motor, at least 12 volts should be allowed) and maximum allowed current (our

motor works at 1 ampere rated current, therefore at least 1 ampere for 𝐼𝑚𝑎𝑥). Under this condition, a lot of

power switches are satisfactory: TPS22810 manufactured by Texas Instrument, STELPD01 manufactured

by STMicroelectronics, and the one we use in our final setup SiP32419 which has wide range of working

voltage from 0 to 28 volt and controlled maximum current by using a resistor. Although in our final setup,

two power switches are used individually to control each motor, there are actually several design

9

alternatives we had for this submodule. Initially, we wanted to achieve a maximum number of operations

the robot car can perform, and we had 4 control signals (2 for each motor), as can be shown in figure 4

along with the table for operation summary.

Figure 4: Original design of Power control line submodule. Each motor is controlled by 2 signals instead of 1 which we used

later.

operation motor control

left 1

motor control left 2 motor control right 1 motor control right

2

Forward 1 0 1 0

Backward 0 1 0 1

Turn left 0 0 1 0

Turn right 1 0 0 0

rotate left 0 1 1 0

rotate right 1 0 0 1

stop 0 0 0 0

Table 4: Operations the robot car can perform ideally with the original design. By changing the various control signals to be

high or low, we can perform a total of 7 operations which are ideal to control our robot to move in various ways under

different environmental conditions.

But there is a severe issue with this design which we figured out later. Although initially we wanted to

control the polarity of the motor (run in forward/backward direction) by using control signals such that

when one terminal of the connector is connected to power (power switch on) while the other terminal is

connected to ground via “a resistor” (power switch close), it turns out that this is equivalent to a voltage

divider circuit with the “motor”. Doing this will result in a large amount of power loss if using a small

resistor (typically should only be about a few ohms), or it will stop the motion at all because the voltage is

divided to be only a few decimals of volts to motor.

Upon figuring this out, there is still more design alternative, which may ideally fix this issue once

and for all while keeping the same number of operations to perform. The problem in essence is that we

need to get the connectors freely connected to either ground or 12 V power supply. But to do this, this

would mean both 12-volt source and Ground will share the same power line, how can we possibly do

that? The answer is hidden within the number of power switches used. If we can connect the two lines

(power and ground) in parallel, with one line connecting to the output of the first power switch with 12

volts at the input, while the other line connecting to the “input” of another power switch with the output

10

connecting to ground, then we can theoretically create a bi-directional power line for the connector, and

thus, can control the motor to rotate in both forward and backward directions, which can be illustrated in

figure 5 using 4 power switches for “each motor”.

Figure 5: Design alternative of Power control line submodule. Each motor is controlled by 4 signals, and we need a total of 8

control signals (power switches) to accomplish all the operation desired for the robot car.

operation motor control left 1 motor control left

2

motor control left 3 motor control left 4

Forward 1 0 1 0

Backward 0 1 0 1

stop 0 1 1 0

Table 5: Operations a “single motor” can perform with the four control signals under this design alternative. When signal 1

and 3 are high and the rest low, connector port 1 is connected to 12-volt power supply and port 2 is connected to ground

with no bias resistor. To run the motor in reverse direction, we just reverse the role in each terminal by setting signal 2 and 4

high instead. Lastly, to stop the motor, both terminals are connected to ground via control signals 2 and 3 setting to high.

This is the ideal design that we can potentially have and would maximize the performance of our robot

car to accomplish all the operations as shown in table 4. But unfortunately, due to shortage of time and

components, we were not able to implement this design. Considering the complexity associated, and that

new PCB order would not arrive in time in case minor error happens, we have to abandon this design

alternative for logistical reasons. It would be an interesting next step to do to advance our project.

Therefore, in the end, we used the design as shown in figure 3 for initial testification. But overall, such

design is able to demonstrate the potential of implementing the more complicated design alternative, as

will be described in chapter 3, these power switches can pass the verification and successfully drive the

motors. The simplified design also has enough operations for the robot car to complete the tasks we

expect, although it now relies more on the control program to avoid obstacles, which we will discuss in

the next section.

11

2.2.3 Microcontroller Control Module

This is the central software module used to run the whole robot using the microcontroller. Design

has several considerations: (a) How to move the robot to gain maximum detection range? (b) How to

ensure safety in case the robot is close to obstacles? (c) How to increase efficiency and prevent robot from

repeating things constantly?

To begin with, we use the firmware called MicroPython to program the device, which is a Python

IDE specifically designed for microcontroller. Now generally, in order to answer the design questions

above, a state machine is designed to evaluate the robot’s operations.

Figure 6: State machine illustrating the central design of microcontroller control module. Operation state 0 and 3 are

considered “stop state”, as during these two states, the robot itself will not move. Operation state 1 is considered “safe

state”, during which, the robot will periodically perform tasks associated with some “sub-states” (go straight/turn left/turn

right, etc.). Lastly, during operation state 2, the robot needs to react to some events (close to obstacles/walls) to ensure

safety.

The wait state is an infinite loop which can only be interrupted by signal from button. When trapped

within the loop, the robot car will not do anything (motor is stopped) until human user engages to press

the button and pull the button pin to active low. Then, the machine enters state 1 (normal state). During

this state, robot will perform tasks based on the sub-state machine.

Figure 7: sub-state machine used in operation state 1. Binary state is a special variable which records the “previous” (turn

left/turn right) operation performed in operation state 2: if turned left, binary state = 0.

Sub-state 1 (go straight)

Sub-state 2 (turn left by a circle)

Sub-state 3 (turn right by a circle)

Binary state = 1

Binary state = 0

12

And here we have answered question (a) and (c). The substates 2 and 3 let the robot go around itself by a

full circle to thoroughly search its surroundings (go straight, turn around by a circle, and then repeat),

which is one way to optimize solution to question (a). The ideal way is actually “rotating by a circle”

which requires one motor to be forward while the other to be backward. But as mentioned, in the end, the

motor control line submodule is simplified, which now has some slight disadvantages. To answer

question (c), the trick is hidden within the variable “binary state”. Binary state is high when the previous

operation performed in operation state “2” is “turn right” and low the other way around. This essentially

records the information of the robot’s route taken and is also used in operation state 2 to decide whether

to turn left or right to avoid obstacles ahead.

Figure 8: An illustration of how binary state works in the module. In principle, the car will only turn left when binary state is 1

and turn right the other way around, regardless of if it is in operation state 1 or 2. As shown in the figure, binary state also

changes upon “turning left/right” to become “0/1”.

Thus, in this way, we can make sure that the robot car will not easily repeat the route it has already taken

and increase the efficiency of detection.

To answer question (b), the answers are all contained in operation 2 design. Operation 2 can only

be entered when 2 cases happen: 1. There is obstacle ahead and need to avoid. 2. The two sides of the car

are too close to walls nearby. For case 1, upon entering operation 2, the car will either turn left or right by

half a circle depending on the binary state as shown in figure 8. For case 2, depending on which side has

larger free space left, the car will move further outwards towards that direction. Finally, regardless of

operation state 1 or 2, if the car gets too close to an object (<20 cm), the system will be back to state 0,

and stops the car to ensure safety. Therefore, these design details can actually attempt to optimize the

solutions to all the questions we have raised initially during design process.

Lastly, operation state 3 is only used when metal is detected, at which point, the system will begin

monitoring signals from the machine vision module. That module will use a camera to see if the detected

object is the correct object and send respective high/low signals to microcontroller. If verified, system is

back to state 0 waiting to perform the next operation; if not, system is pushed to state 1 and continue to

search for another object.

Turn right in operation 2 because previous binary state = 0

13

2.2.4 Control System Design—Machine Vision Module

The Machine vision module is built using a raspberry Pi and the Arducam Camera which is

plugged into the raspberry pi. Overall, the modules use a combination of image and signal processing.

The Raspberry Pi device and the Arducam are on permanently in an idle state and are activated

upon receiving a signal from the raspberry Pi. This is a signal of a logic ‘1’ which is equivalent to a

voltage spike of 3.3 volts to the GPIO pin of the raspberry Pi. This signal wakes the Pi from the idle state

and initiates the finite state machine (FSM) to process and identify the image. The finite state machine is

illustrated in figure 9 which will help simplify how the states run to produce a justifiable output.

Figure 9: The Finite state machine behind the Functioning of the machine vision module.

Each sequence in the finite state machine is explained in detail as shown below.

1. The Raspberry Pi (Pi) receives a digital signal of ‘1’ on GPIO pin 05 or pin ‘29’ on the Pi and this

signal is stored into a local register which the code reads at a frequency of 1s. We have chosen

‘1s’ due to account for the processing delays in the previous modules and the ability of the

raspberry pi to conserve power by reducing the clocking speed.

2. After a value of ‘1’ has been confirmed by the python script, the script initiates the section of the

code that directs the Arducam to capture an image and store it on the local directory on board the

SD card.

3. The stored image is then accessed by the machine learning section of the code which takes the

image captured as an input, resizes the image into a convenient size of (608,608,3) which stands

for the dimensions of the image which is 608 pixels × 608 pixels × 3 color channels (RGB).

4. The image taken is set up to be run on the pi by invoking a section of code to initiate processing

of the image along with identifying the object located in the image. A bounded box containing the

recognized image is stored in a separate directory which contains all detected objects. In the case

14

that the image is the image contains the object which we are looking for, the program continues to

step ‘6’.

5. This step pertains to the case that the object detected is not the object we are looking for. In this

case, the object’s image is still stored locally on the Pi with the exception that the pi sends a

signal back to the Control subsystem with a digital ‘0’ or a 0V output which is the same as no

signal being sent. As mentioned before, the Finite state machine of the microcontroller control

module waits for a period of 40 s for an input of a digital ‘1’ or 3.3V input from GPIO pin ‘12’

before continuing to look for metals. In this case, we send a logic ‘0’ which means that in the

period of 40s that the microcontroller waits for a signal, there is no input and the FSM of the

microcontroller registers that the required object has not been confirmed. In this case, the robot

continues to look for objects and the pi is suspended into an idle state and waits for the next

interrupt from the microcontroller. Upon receiving the input of ‘1’ again, steps 1-4 repeat until

the python script confirms the required object has been detected. In this case, the final stages of

the Machine vision Module are initiated.

6. When the required object let’s say a fork is detected, the raspberry Pi immediately logs the time

and sends a digital ‘1’ or a 3.3 V output to the microcontroller which acts as an interrupt signal

confirming the detection of the required object. Then, the raspberry pi goes into a sleep mode for

a period that can be customized for example, we intended to use a period of 40 s to ensure that no

signals were sent to the microcontroller to prevent random interrupts.

15

3. Design Verification
In chapter 2, we have presented all the design procedures and details. Note that some design

requirements have been explicitly stated already, therefore, in this chapter, some repetitions may be

observed. Overall, we would like to divide this chapter into 2 sections: module verification and high-level

verification. Module verification provides requirements, verification procedures, and results for each

important component in each module. Most of them are summarized directly in appendix A and

interested readers can directly go to the appendix and see the standard verifications we have performed.

High-level verification is, on the other hand, more qualitative, and given our restriction of time, it is not

fully verified. But we will still discuss requirements and verification procedures that may be performed.

3.1 Module verification
We have seen in chapter 2 that the whole system can be divided into 5 modules: Peripheral, PCB,

Robot, microcontroller control, and machine vision module. Among these 5 modules, only part of

Peripheral and PCB modules can be verified independent of the other modules. The other modules,

especially Robot and microcontroller control modules, need to be verified together with PCB module at

least. In the following, we will describe standard requirements and verifications for the two independent

modules primarily.

Let us consider a question firstly: if we want our system to work, what do we need? The answer

can be simplified to: (a) electrical parameters are within normal limits (b) system does what we want. The

former one is quantitative, while the latter one depends on “what we want”. Following this, we now begin

with Peripheral module: powers and sensors. From (a), it requires these Peripherals to have “expected”

working voltage (and current in some special cases). Depending on the situations, tolerances for the

working voltage can differ. Typically, we want the power source to fluctuate within 0.5 to 1 volt for non-

voltage-regulated device, and sensor’s working voltage can fluctuate as long as their physical output is

within the range endurable by the microcontroller, in this case, smaller than 3.3 volt and higher than 1.8

volt (the high voltage level interpretation). To verify these, detailed procedures are provided in the

appendix as mentioned, and the results can be neatly summarized in table 6.

Part to verify Technical Result (working voltage)

PCB battery (4.8 v) 4.79 volt to 5.02 volt

motor battery (12 v) 12.9 volt when stabilized

sound sensor 2.7 volt at 𝑉𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 pin when tested with 3.3-volt power

supply

ultrasonic sensor N/A

Table 6: technical result for Peripheral module

As we can see, all the voltage results are within respective tolerance range. Ultrasonic sensor is hard to

measure on the other hand. We are interested in its echo pin voltage, but it is a pulse signal, which cannot

be directly measured with multimeter even if we could continuously trigger this pulse signal. An

oscillator may be a good option to see its signal but again, since it is not periodic, it is very hard to control

the measurement. Alternatively, we use requirement (b) to evaluate this component. The ultrasonic sensor

measures distance, and we can directly provide programs to it and see the measured distance in numbers.

Or more importantly, we can set important threshold numbers (in our case, 20 cm and 50 cm) in distance,

and see if an external signal can change (for example, in section 2.2.3, we should observe the state transit

16

from 1 to 0 or 2 at the respective distance). Our result in the end shows that the state indeed transits near

the boundaries, which is indicated by the braking of the motors when the distance between the sensor and

obstacle is less than 20 cm. Such qualitative result is enough to show ultrasonic sensor’s performance, as

in the end, we only care about these threshold distance values, and how the system responds to values

provided from the distance sensor.

Similarly, from requirement (a), we can propose electrical requirements for PCB module, where

the most important parts are voltage regulator and power switch. Results are shown in table 7 with details

in appendix.

Part to verify Technical Result (working voltage)

Voltage regulator

(3.3 v)

3.27 volt when stabilized

Power switch 12.9 volt at output when switch is close; 0.6 volt when switch is open.

Table 7: technical result for PCB module

The other parts of PCB functions are tested with the combination of microcontroller control module

(software) and robot module for requirement postulated from (b). These verifications are actually high-

level verification and would be better to be discussed in section 3.2 for simplicity and clarity.

3.2 High-level verification
As our project is more practical rather than numerical (data analysis, measurement-based), most

of the high-level verifications and requirements would be less quantitative. But indeed, some parameters

are crucial to the high-level design performance, and we would like to introduce these requirements and

propose how we can verify them. Given requirement (b) to verify the rest of PCB, microcontroller

control, and robot modules, we need verifications achieved in several aspects: 1. The modules work

together: when pressing button, robot starts to move; when distance sensor detects close obstacles, the

robot stops; when metal detector coupled with sensor detects metal, the robot stops and enters state 3

(section 2.2.3). 2. Algorithm in microcontroller control module works in various environments (quantified

by the overall time measured for the robot to search for an object). 3. Detection accuracy is good

(quantified by the machine vision module, and typically a “good” accuracy is 80%, meaning that 80% of

the verified objects are the targets).

For these 3 high-level requirements, we have verified the first one qualitatively which is the basic

indicator of our working prototype. Peripheral module sends data (button trigger, distance, sound) to the

PCB module controlled by microcontroller control module to generate control signals for motors, which

drive the robot module. In the first verification, these 4 modules’ cooperation and operations are

demonstrated. Unfortunately, due to lack of time, the rest 2 verifications are not done. Verification 2

needs a totally working model and is very essential to optimizing parameters related to safety (when

should the robot stop) and efficiency/accuracy (how often should the robot car rotate by a full circle to

search the area more thoroughly). Measuring the time taken to search for the target will be a meaningful

verification to accomplish. Lastly, verification 3 depends on both the machine vision module itself and

the position of the camera, and since this module does not work in the end, further verification is needed

to thoroughly test this high-level requirement.

17

4. Costs

4.1 Parts
This section estimates the total costs we spend on building this project (parts costs), excluding

costs related to machine shop.

Part Manufacturer Bulk Purchase
Cost ($) per piece

Actual Cost ($) (incurred by
our group)

Raspberry Pico Raspberry Pi foundation 4.50 19

Raspberry Pi 4B Raspberry Pi foundation 120 179

San Disc 64 Gb micro-SD
card

San Disc 14 14

Arducam OV5647 Arducam 9.99 9.99

US-100 distance sensor Adafruit 14.38 43.14

KY-037 sound sensor Joy-it 5.98 5.98

NiMH Receiver Battery Limskey 10.89 10.89

Metal detector Allsun 30.73 30.73

ML5-12 - 12 Volt Battery Mighty max 15.99 15.99

DC 12 Volt motor Greartisan DC 16.34 16.34

Total 345.06
Table 8: Parts Costs

4.2 Schedule
This section lists the schedule of this project production in weekly basis starting from February 28th

week Jack Sumukh

28-Feb Finished design documentation with design review.

Will start project beginning next week.

Researched ethical considerations and ideas

on how to implement product

7-Mar Finished circuit schematic design. Researched Possible components that would

permit functionality

14-Mar Finished first round PCB design, ordered parts Worked with Jack on creating the FSM to

run the robot

21-Mar Machine shop communication Worked with machine shop on product

design and positioning

28-Mar Microcontroller programming initiated, edited and

ordered second round PCB due to issues in the first

round

Researched using Eigenfaces algorithm and

attempted modifying existing methods to

suit metal detection

4-Apr Finished microcontroller programming Worked on completing Eigenfaces

algorithm and testing it- this approach was

not successful

11-Apr Soldered microcontroller, connectors, resistors onto

PCB, initial test with button passed

Researched yolo algorithm and its

implementation

18-Apr Soldered power switch, integrated with

microcontroller code, and obtained a working model

of the project's hardware and main software

Attempted to configure Raspberry Pi to

function on basic code, tested it and

completed tolerance analysis

25-Apr-

22

Final test before demonstration. First PCB fries,

proceeded to solder the second PCB

Coded the machine vision algorithm using

YOLO
Table 9: Schedule of the main project development

18

5. Conclusion

5.1 Accomplishments
In this project, we have succeeded in getting nearly all the modules (and thus, subsystems)

working. The peripheral module provides expected inputs to the PCB module, including powers (3.27

volt into electronics circuit, and 12.9 volt into power line) along with sensor signals. PCB module works

well with the help of microcontroller control module to interpret these signals (high/low signal from

sound sensor and translating pulse signal from ultrasonic sensor to distance) and generate control signals

for the motors in robot module. Overall, these systems work together to control the motion of the robot

car, stopping when obstacles get close (we designed 20 cm as threshold) and entering metal verification

mode when sound sensor detects high volume sound from the metal detector (metal found, threshold is

adjusted based on the sound of the metal detector). Such final functionality demonstrates the potential to

fully implement the robot system for use in metal detection purposes.

5.2 Uncertainties
Along with the design, several unsatisfactory results present. Firstly, due to the limitation of parts

and time, the final product has not been optimized in terms of a few parameters: (a) number of cycles

(period of time) the robot needs to perform an operation. (b) minimum impact distance, which is the

distance required for robot to safely stop without crashing into obstacles. These parameters are essential

to both the safety and efficiency of the robot. Given the length of the car (0.5 meter), speed of the car 𝑣 =

𝑅𝑃𝑆 ∗ 2𝜋𝑟 ≈ 80𝑐𝑚/𝑠 , it requires about 3.75 seconds in total to turn around by a full circle. Therefore,

we in the end have set number of cycles to be 15. With each cycle 0.25 seconds, 15 × 0.25 =

3.75 secondss are needed to perform a given operation (turn left/right/go straight). But in real time, the

speed may be smaller, and some other factors may affect the result, we need physical experiments to

confirm the cycle numbers for the robot to properly avoid obstacles while searching an area efficiently.

Secondly, as mentioned in section 2.2.2, we had an unsatisfactory power switch design due to

shortage of time. Although overall, it works well in terms of controlling motors to run in single direction,

we could use the 4-power-switch design to extend the functions such that the robot car has more well-

controlled operations (going backwards, rotate, and so forth). This enables the car to perform more

complicated tasks which adapt to various environments during operation (for example, going backwards

when encountering obstacles). Some power parameters design may also be improved, including the

output voltage when power switch is off. Ideally it should be 0 volt, but our circuit design has a leakage

voltage of 0.6 volt. This may either be due to the switch itself, or the non-ideal PCB design (spacing

between components is too small which may cause linkage voltage and current). To reduce unnecessary

power lost, the voltage near the switch output should ideally be smaller than 0.1 volt.

Another aspect is related to the machine vision module, where when attempting to deploy the

same code that has been designed on computer onto the raspberry Pi, we were unable to get the system to

function due to the nature of the operating system on board the Raspberry Pi. The files needed to run the

code needs a modification of compiler on board which is difficult to do due to backend files used in a

darknet. This disables the working model of our machine vision module to be practical. But we believe

with some more detailed research into the design of implementation of the darknet program behind the

Yolo algorithm as mentioned in section 2.2.4, we would be able to fix the issue and successfully deploy

Yolo onto Raspberry Pi.

19

5.3 Ethical considerations
To illustrate the safety and various aspects important to customers, a few considerations would be

highlighted. To begin with, the system is reliant on Lithium-ion batteries, the IEEE code 1725-202110

deals with how to properly use such batteries and we have followed the specifications with our design by

securing the batteries at the back side the robot car and preventing them from damage and posing risks.

Secondly, after rigorous testing, we conclude that if the product is used in a closed room with a

levelled ground, the risk of damaging the robot by regular usage is minimal due to the nature of the

wheels we have chosen (front wheels are small backed up by large back wheels). To avoid potential

hazards, the battery itself has to be disposed of after 200 cycles of recharge as per the user manual of the

manufacturer. In the case that an accidental hazard occurs, the general guidelines outlined in IEEE code

involving the safe disposal of rechargeable lithium waste must be followed.

Thirdly, the field of vision of the camera and the data stored are totally accessible to the consumer

and we support any additional steps taken by the end user to protect their privacy by allowing the

consumer to control modify and or delete the image data stored on the robot which complies with the

guidelines outlined in section 7.8.I-1 of IEEE’s guidelines outlining the rights of end users.

Lastly, the members of the group are committed to holding the IEEE code of ethics outlined in

section 7.8.III to follow the code and hold the standards of being engineers.

5.4 Future work
In summary, given the uncertainties we had during our project design and implementation, 3

potential future works can be done to move our project further to a higher standard.

1. As have discussed, our power switch design in PCB module can be extended to perform a

much more comprehensive set of operations using a total of 8 power switches for the 2 motors. Such

design can enable the robot car to freely move in forward, backward directions and can also rotate while

staying at the same coordinate in space.

2. We only have prototyped a metal detector robot with automation functions. Research has been

done before to design robot arms and metal detectors to have more degrees of freedom. In case the robot

needs to search a complicated environment, say narrow road, compact construction site, or outer space

exploration, we may need to expand the robot arm to move more freely and even change its shape.

3. The machine vision module is still very simple. The robot currently cannot decide which

obstacle to avoid, and which to search. As many metal objects are hidden below certain obstacles, we

need the robot to be capable of making the correct choice, maximizing safety while keeping the detection

more accessible.

Therefore, these are the main future works we can do to advance our project. With a generally

working model created, we believe our prototype of the metal detection robotics can indicate a promising

future, where such techniques and construction processes can be utilized to create much more advanced

automated robots for different purposes and push boundaries of these technologies for a better world for

human beings to live in.

20

References

[1] H. M. Ishak, H. A. Kadir, Lim Chain Fat and Mohd Helmy Abd Wahab, "Autonomous metal

detector robot with monitoring system," 2008 International Symposium on Information Technology,

2008, pp. 1-7, doi: 10.1109/ITSIM.2008.4631876

[2] Bin Parsusah, Mujiarto & Sambas, Aceng & Haerudin, Irpan. (2021). Design of Arduino-Based

Metal Detector Robot. Solid State Technology. 63. 12401-12411.

[3] Masunaga, Seiji, and Kenzo Nonami. “Controlled Metal Detector Mounted on Mine Detection

Robot.” International Journal of Advanced Robotic Systems, (June

2007). https://doi.org/10.5772/5692.

[4] "Fastener Design Manual," NASA Reference Publication 1228, 1990.

[5] AMS1117-3.3, 1A low dropout voltage regulator, datasheet, Advanced Monolithic Systems,

available at:

 https://pdf1.alldatasheet.com/datasheet-pdf/view/205691/ADMOS/AMS1117-3.3.html

[6] Raspberry Pi Pico datasheet, 2020 Raspberry Pi (Trading) Ltd, available at:

 https://components101.com/sites/default/files/2021-01/Raspberry-Pi-Pico-Microcontroller-

Datasheet.pdf

[7] Hollemans, M. (2017, May 20). Real-time object detection with YOLO. Machine Think. Retrieved

May 2, 2022, from https://machinethink.net/blog/object-detection-with-yolo/

[8] “Firefighter fatalities in the United States,” U.S. Fire Administration, 07-Apr-2022. [Online].

Available: https://www.usfa.fema.gov/data/statistics/ff_fatality_reports.html. [Accessed: 03-May-

2022].

[9] 1725-2011 - IEEE standard for rechargeable batteries for cellular telephones - redline. IEEE Xplore.

(2021, August 23). Retrieved May 3, 2022, from https://ieeexplore.ieee.org/document/6046070

[10] “IEEE code of Ethics,” IEEE. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 03-May-2022].

[11] M. Turk and A. Pentland, “Eigenfaces for recognition,” MIT directpress, 18-May-2021. [Online].

Available at: https://www.face-rec.org/algorithms/PCA/jcn.pdf. [Accessed: 03-May-2022].

https://doi.org/10.5772/5692
https://machinethink.net/blog/object-detection-with-yolo/

21

Appendix A Requirement and Verification Table

Table 10 System Requirements and Verifications—Peripheral module

Part requirement Verification Procedure Results

batteries 𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑=
𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑖𝑑𝑒𝑎𝑙 ± 𝑥,
for 0 ≤ 𝑥 ≤ 1
volt.

Tolerance is 1 volt
specifically
considering the
motor’s tolerance
voltage at 13.5
volt.

Connect batteries to a
breadboard or PCB and use
multimeter to measure the
voltage reading across the PCB
system (positive to one
connector’s positive port, and
ground to GND port).

PCB battery (4.8 v) shows 4.79 volt in
stable reading. Occasionally measures
5 volts approximately when directly
measure the positive and ground
leads.

Motor battery source (12 v) shows 12.9
volt which is slightly higher than the
ideal threshold value but is fine with
motor (which has tolerance voltage
around 1.5 volt).

Sound sensor 1.8 𝑣𝑜𝑙𝑡
≤ 𝑉𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡

≤ 3.3 𝑣𝑜𝑙𝑡

This 1.5 tolerance
voltage range is
chosen to match
microcontroller’s
high-level voltage.

Connect sound sensor to PCB, or
power pin to a 3.3-volt source
(and properly grounded), slightly
rotate the potentiometer on the
sensor clockwise to increase
sensitivity until 2 LEDs are turned
on, measure the voltage of the
digital output pin with a
multimeter.

The multimeter reads about 2.7 volt,
which is enough to trigger an active
high once it is connected to
microcontroller

Ultrasonic
sensor

Distance
sensitivity is at
least 20 cm.

Such tolerance
distance is chosen
to ensure the safe
operation of the
robot car. Future
data may support
changes to this
tolerance.

This is a little tricky to verify
because it can only be properly
verified once it is connected to
either PCB or other
microcontrollers/developing
board. Once pins are connected,
send a 50 microseconds pulse
signal in its trigger pin, and
collect the distance information
with echo pin. Either display the
distance measured by using
“print” statement in the program
or use external connected device
to indicate a “stop” operation
when the distance measured is
below 20 cm

We use the second method to
qualitatively show that the distance
sensitivity is below 20 cm by stopping
the car’s motion with hand covering
the distance sensor at distance about
20 cm. This is done with PCB and
sensor connected. Motors will
continuously run unless the distance
sensor measures any distance below
20 cm.

22

Table 11: System Requirements and Verifications—PCB module

Part requirement Verification Procedure Results

voltage
regulator

𝑉𝑜𝑢𝑡𝑝𝑢𝑡= 3.3 𝑣𝑜𝑙𝑡 ± 𝑥, for

0 ≤ 𝑥 ≤ 0.1 volt.

Tolerance is 0.1 volt
because of the sound
sensor, which has a lower
working voltage at 3.3
volt. Tolerance is pending
to change if sound sensor
cannot generate enough
digital signal voltage.

Like battery verification, a
multimeter is used to measure
the voltage. But now we need
to solder the voltage regulator
into PCB firstly and apply PCB
power source for measurement
(connect positive lead to the
𝑉𝑜𝑢𝑡 pin on the regulator
directly or touch the power
port of one of the connectors;
negative lead should be
grounded into the PCB).

𝑉𝑜𝑢𝑡𝑝𝑢𝑡 = 3.27~3.29 𝑣𝑜𝑙𝑡

Thus, the voltage is ideal for the
PCB system given the 0.01~0.03
voltage fluctuation.

power switch 𝑉𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 0.9𝑉𝑖𝑛 once

switch is on, and
𝑉𝑜𝑢𝑡𝑝𝑢𝑡 ≤ 1 𝑣𝑜𝑙𝑡 when it

is off

Tolerance is chosen to be
larger than 90% of 𝑉𝑖𝑛
because our power switch
can only operate if 𝑉𝑜𝑢𝑡
has sufficient voltage
(90%)

Solder the component onto
PCB firstly. Apply motor power
source (or any other testing
voltage source) to the input of
power switch. Use an external
3.3-volt power source with
ground common-grounded into
the PCB and positive lead
touching the enable pin on the
power switch. Measure the
switch output voltage with
multimeter.

When positive lead touches the
enable pin on the power switch

𝑉𝑜𝑢𝑝𝑢𝑡 = 12.8 𝑣𝑜𝑙𝑡~12.9 𝑣𝑜𝑙𝑡

which is within the minimum
input voltage.
When enable pin is grounded,

𝑉𝑜𝑢𝑝𝑢𝑡 ≈ 0.6 𝑣𝑜𝑙𝑡

This is due to some linkage
voltage that will not be enough
to drive the motor, therefore is
tolerable.

Other signals 𝑉𝑠𝑖𝑔𝑛𝑎𝑙 ≥ 𝑉𝑙𝑒𝑣𝑒𝑙

Or
𝑉𝑠𝑖𝑔𝑛𝑎𝑙 < 𝑉𝑙𝑒𝑣𝑒𝑙

for controlled signals in
the module

This is a general debugging
verification step, use
multimeter to measure
output/input pins to see if the
signal voltage is within the
high/low level voltage limit.
Typically, 𝑉𝑙𝑒𝑣𝑒𝑙 = 1.8 volt.

For debugging purposes, signals
not matched to its appropriate
levels will be investigated for
short/open circuit cases.

23

Table 12 High-level Requirements and Verifications

Verification
number

requirement Verification Procedure Results

1 The modules work together

comprehensively. pressing

the button push the system

to state 1 (motors running);

objects to distance sensor <

50 cm, push the system to

state 2 (one motor will stop

rotating); objects to

distance sensor < 20 cm,

push the system to state 0

(all motor stops); metal

detector alarms push the

system to state 3 (motor

stops for 40 seconds,

waiting for object

verification).

Place the constructed

robot on a platform

where the wheels can

freely rotate. Press

button, see if the wheels

rotate; then cover

ultrasonic sensors with

hand at 20 cm/50 cm

critical distance, see if

the motors change their

operations based on the

requirement. Lastly, use

a metal object to trigger

sound sensor, see if the

machine stops for the

correct time interval

The verifications satisfy

the requirements.

2 Robot is able to search

within a room for a hidden

object within 5 minutes

Start the robot at any

place. Place a key on the

ground with 2 cases

(covered and uncovered),

then wait for the robot to

search for the object.

Not verified. Systems are

not entirely integrated.

Still lack one power

switch, lack of

parameters optimized

3 Objects verification

accuracy is higher than

80%

Run the robot and

manually place objects

close to where the robot

will move and detect.

See if the object is

identified for 10 trials

with different objects. If

at least 8 trials are

identified, then the

verification is good.

Not verified. Machine

vision module has not

been thoroughly

implemented, thus, will

not be tested.

