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Abstract

This final report describes the motivation and design behind our solar-powered traffic light project. Our

solar-powered traffic light system aims to reduce energy consumption, reduce light pollution, and ensure the

safety of bikers/pedestrians. Our overall project was a success as we managed to meet all the previous goals

mentioned despite some setbacks. We built a model version of our traffic light system with a single set of

traffic lights. The scope of our project was limited by financial constraints and the engineering capabilities

of the machine shop.
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1 Introduction

1.1 Problem

Traffic lights are integral to our society, despite their relative lack of innovation over the years. The most

significant change has been the switch from incandescent bulbs to LEDs in an attempt to reduce the power

consumption of this necessary device. However, this has also led to an increase of light pollution due to the

cooler, more intense light emitted by LEDs. They can cause extreme glare and pose a danger to drivers

at night. Additionally, the issue of bicyclists and vehicles sharing the road can create many awkward or

dangerous situations due to the lack of separation.

1.2 Solution

We propose a solar-powered traffic light system that will reduce light pollution and solve the issues of

drivers and bicyclists sharing the intersection. Solar power will operate the system to minimize utility power

used during the day. Connection to the grid is necessary for operation at night or when solar conditions

are suboptimal. At night, pulse-width modulation (PWM) circuitry will dim the LED modules. This not

only reduces light pollution, but also lowers utility consumption at night. In the case of adverse weather

conditions, the system should not dim the lights to ensure proper visibility. Pedestrians and cyclists can

alert the system of their presence by pressing a button and cross the intersection once their respective lights

signal to do so.

1.3 High Level Requirements

• In order to limit light pollution and reduce consumption of utility power, the light modules must use

PWM to operate with less power when it is sufficiently dark outside (assuming clear weather). We

estimate our entire system to use approximately 22 watts of power, compared to a regular traffic light

system with 3 LED bulbs which uses about 45 watts of power [1]. Should the power saved over an

expected lifespan of about 20 years be greater than the initial cost of this system (and the other two

requirements are met), we can conclude that this system is a success.

• The system must be able to switch between solar and utility power without causing a power failure.

This is especially important when switching to utility power at night.

• The system must be able to efficiently adjust the light patterns and lengths of operation to increase

the efficiency of traffic. Bicyclists and pedestrians can press one of two buttons to trigger the bicycle

and walk signs for them to safely cross the intersection. Assuming a walking pace of 3 miles an hour

and a lane width of 20 feet [2], the walk signal must be on for a minimum of 15 seconds to ensure

everyone crosses.
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2 Design

The overall design is shown in the block diagram in Figure 1. We have four subsystems: power, sensing,

control, and traffic light. The sensing and control systems are responsible for detecting external input and

changing the brightness and state of the traffic lights (by sending signals to the traffic light subsystem), as

well as switching between grid and solar power. The power subsystem contains various converters to power

the entire system, in addition to a switching network to switch between the two power sources.

Originally, we had a 3.3 V buck converter to power the humidity sensor, a power monitor in our sensing

subsystem, and our 5 V buck was powered by the output of the switching network rather than the AC/DC

converter. Our control and the majority of our sensing subsystem now runs on grid power to ensure that

switching power sources does not impact our control flow and cause unwanted behavior. Additionally, we

saved money and increased simplicity by discarding the 3.3 V buck. Finally, we had issues with the power

monitor and went with a backup plan instead.

Figure 1: Block diagram

2.1 Power Subsystem

The power subsystem has a solar input and grid input and is able to switch between the two based on the

amount of available light detected by the photoresistor. All other subsystems are powered by either the 5 V

or 24 V output of this one. Refer to Appendices C.2 - C.4 to view the initial and final PCB designs of this

subsystem.
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2.1.1 Solar Panel

We designed the power subsystem around the solar panel located in lab, which has a nominal operating

voltage of 18 V and maximum output power of 100 W. This is more than enough for our device, so we

planned to partially cover the panel while operating it.

2.1.2 Power Converters

The power converter directly downstream of the solar panel must convert the nominal 18 V to 24 V. To

accomplish this DC/DC conversion and provide a highly regulated voltage level, we chose a single-ended

primary-inductor converter (SEPIC). The SEPIC topology requires a greater part count than other DC/DC

converters, which is the trade-off of its higher efficiency and regulation. This conversion is given by the

input-output relationship in Equation 1, where D is the duty cycle of the converter’s MOSFET, Vin is the

input voltage, and Vout is the output voltage. A generalized SEPIC schematic, which our design follows, can

be seen in Figure 2. A wide input range of 12 to 25 V is selected to ensure that all currents remain within

the limitations of our components and PCB. Upon selecting a SEPIC controller, a simulation can be viewed

in Figure 3. All parts are included in the schematic in Figure 4. Refer to Appendix C.1 to view the SEPIC

design calculations. It is important to note that this converter is designed around a worst-case scenario

power consumption of approximately 40 W, which is sufficient for our device’s operation in all cases.

Vout = Vin
D

1−D
(1)

Figure 2: SEPIC topology diagram [3]
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Figure 3: SEPIC simulation waveforms - 24 V output (green), primary inductor current (red), and secondary
inductor current (blue)

Figure 4: SEPIC simulation schematic

While the SEPIC converter regulates the DC solar output, AC/DC conversion is required to provide 24 VDC

from the wall voltage of 120 VAC. We decided to purchase an AC/DC converter, as it was inexpensive and

not the focus of the overall design. Thus, this component does not warrant much discussion other than the

power rating far exceeding the need of our traffic light modules.

In order to power the MCU of our design, we selected an isolated 24 V to 5 V DC/DC converter. This

component, like the AC/DC converter, is inexpensive and does not warrant extensive discussion. Isolation

was desired to ensure that the power rails are unable to negatively impact the digital domain via switching

noise.

The final power converter in the power subsystem requires some design, but is not as complex as the design

of the SEPIC converter. Its purpose is to convert the 24 V level down to 5 V, which is not isolated and
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will provide power to the MOSFETs of the traffic light subsystem. The circuit diagram is provided by the

controller’s datasheet, which is located in Figure 5. Thus, no additional discussion is necessary. The PCB

implementation of this converter is located in Appendix C.4.

Figure 5: LM2575 step-down converter [4]

2.1.3 Switching Network

The switching network is a vital aspect of the overall design, as it must be able to autonomously switch

between the solar and grid sources based on inputs from the MCU. Additionally, it must switch sufficiently

fast such that there is no drop in voltage or interruption in operation while doing so. One significant detail is

the need to provide reverse protection within the switching network. Without a method to impede the flow

of current between the sources, it is possible for current to surge during a fault scenario. Upon considering

these general requirements, it became clear that the optimal solution is to use four MOSFETs, with two

in opposite orientation for each source. The intrinsic body diodes of each pair of MOSFETs will prevent

current from flowing when their respective MOSFETs are off. In order to drive these switches, we utilize

a quad high-side gate driver, which is required given that the sources of each MOSFET are not connected

to ground. The inputs of the gate driver are connected to the MCU and are operated in complementary

fashion, based on which source is chosen. On the output of the switching network we have bulk capacitance

in order to ensure the voltage does not dip too much while we switch. Figure 6 shows these features in our

final implementation.
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Figure 6: Switching network schematic

2.2 Sensing Subsystem

The sensing subsystem includes two buttons, a photoresistor, a humidity sensor, and an infrared sensor.

The buttons determine if there are bikes or pedestrians waiting to cross the street. Realistically, the wires

carrying the button signals would be 20+ feet long, so a 24 V signal is used to reduce noise interference

from voltage drops and ensure signal integrity. An opto-isolator circuit is used to transmit the 24 V signal

to the microcontroller. The photoresistor is responsible for detecting the presence of sunlight and sending a

signal to the MCU. Its resistance can range from a few hundred ohms in a bright environment to over one

mega ohm in complete darkness. A simple voltage divider circuit will be used to correlate the light level to

voltage level. The humidity sensor is used to detect adverse weather conditions and turn off the PWM light

dimming if it is on. This ensures proper visibility of the traffic lights. The infrared sensor is used to detect

vehicles and send a signal to the microcontroller. Connections to each of these sensors are located on the

MCU and power boards, which are available in Appendices B.1 and C.3, respectively.

2.3 Control Subsystem

The control subsystem receives data from our various sensors and changes the state and brightness of our

lights and switches between our two input power sources.
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2.3.1 Control Flow

Figure 7: MCU control flow

Figure 7 shows a high level overview of the control sequence programmed onto our microcontroller. There are

two additional things to note about control sequence. First, in any delay state when the microcontroller polls

the photoresistor, it sends a signal to the switching network to switch between solar and grid power sources

when a brightness threshold value is reached. Second, while in the green delay state, the light immediately

switches to yellow if a biker/pedestrian interrupt is triggered by a button press. A full copy of our code is

located in Appendix B.2.

2.3.2 Microcontroller

We chose to use the ATmega328P microcontroller for our project. This choice was made due to our familiarity

with its operation and sufficient capabilities. We programmed it using the ArduinoISP and a separate

Arduino Mega as the programmer. We modified some of the pin mappings from the original ArduinoISP

code provided to configure it for programming the ATmega328P. Later in the testing process we also needed

a workaround to receive serial data from the microcontroller, through our Arduino programmer, and back to

our laptop’s USB serial monitor. This was mainly used for debugging purposes when we were working with

our sensors and tuning the threshold values. Overall, our microcontroller performed everything necessary

without any major complications.

2.4 Traffic Light Subsystem

Our traffic lights are powered by 24 V and our bike light by 120 VAC. We sourced our traffic lights by

contacting a traffic light manufacturing company called Leotek. They provided us with a sample of each
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colored light as well as a bike light. Since these lights are LEDs, we initially thought that we would need a

current limiting resistor in order to protect them. However, when we took them apart, we discovered that

there was existing internal circuitry. This meant that we could power the lights from 24 V directly. While

connected to 24 V, the red, yellow, and green light modules consume 4.4, 4.5, and 4.6 W, respectively [5].

Additionally, the AC bike light consumes 6.0 W [6].

The traffic light subsystem dims the lights via PWM signals from the microcontroller. It also has a relay

to allow the 120 VAC bike light to switch on and off. This system uses optoisolators in order to isolate

the noisy power rails from the sensitive control signals. Figure 8 shows an example of the isolation circuit.

Labels MCU L1 and MCU L2 are input signals to control the red and yellow lights, respectively. Labels L1

and L2 are connected to the gate of the MOSFETs that provide 24 V to the two lights. GND1 is the MCU’s

ground and GND is the noisy ground. In the case that our optoisolators do not work, we also have optional

jumpers that directly connect the gate of the MOSFETs to the MCU’s PWM pins. This circumvents the

optoisolators but still allows us to control the lights. Originally, the design had our N-channel MOSFETs

on the high side, but that caused switching problems as the gates were improperly biased. Moving the

MOSFETs to the low side fixed the problem. Refer to Appendix D Figures 28 to 31 for the initial and final

traffic light schematics and PCBs.

Figure 8: Traffic light optoisolator
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3 Design Verification

In this section, we examine and discuss the tests performed on our various subsystems. We provide qualitative

and quantitative data to verify the functionality of our project. See Appendix A for all of our requirements

and verification tables.

3.1 Power Subsystem

3.1.1 Solar Panel

Table 4 in Appendix A states that the solar panel must provide at least 40 W and generate 18 V ± 5%

when loaded. We were able to verify these requirements simply by measuring the output voltage with a

multimeter on a bright and sunny day.

3.1.2 Power Converters

In order to test our power converters, we used a DC power supply and an electronic load. When testing

our input voltage ranges, we adjusted the power supply output voltage. We set the electronic load current

to test our converters’ output current capabilities and output voltage drop. The SEPIC converter was able

to maintain a specified output voltage of 24 V ± 5% when the input voltage was varied from 12 V to 32 V

as shown in Figure 9. When holding the input voltage at 18 V and adjusting the load current from 0 A to

1.6 A, the output voltage still remained within bounds. Figure 10 displays the results of the test. However,

when we tried to pull 1.7 A, the maximum current we specified, our converter started buzzing. We suspected

that this was due to inductor core saturation. We did not want to risk damaging our components, so we did

not gather data for that point.

Figure 9: Sweeping SEPIC input voltage at 0.5 A
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Figure 10: Sweeping SEPIC load current at 18 V

We bought our 120 VAC to 24 VDC converter rather than designing our own, since it was both cheaper and

simpler. We were unable to obtain an AC power supply, so we could not test the converter by varying the

input from 108 VAC to 132 VAC. Figure 11 shows the output voltage vs load current characteristic of the

converter at a somewhat constant 118.7 VAC input. Once again, our converter was well within specifications.

Figure 11: AC to DC converter characteristic

Finally, we have our 24 V to 5 V buck converter. This component worked perfectly as it maintained a correct

range of output voltages based on varying input voltages and load current as shown in Figure 12

10



Figure 12: Sweeping 5 V buck voltage and current

3.1.3 Switching Network

As stated before, this part of our design must switch quickly in order to limit the output voltage drop. Prior

to performing and verifying the requirements located in Appendix A, we performed intermediate tests by

using two outputs of a waveform generator, two outputs of a bench-top power supply, and a multimeter. The

waveform generator simulates two perfectly out-of-phase control signals with 50% duty cycle and frequency

of 120 Hz. The power supply provides two 24 V signals, which simulate the solar and grid sources. The mul-

timeter provides a method to measure the voltage at the output of the switching network. Upon connecting

the system in this way, we realized that we had some significant issues with our design. After cutting a trace

and soldering a jumper wire to correctly connect two pins of the gate driver (LT1161 pins 11 and 13 [7]), the

output voltage on the multimeter no longer dipped below 24 V ± 5 %, thus confirming we had a functional

switching network prior to performing our full verification. The results of this full verification can be seen

in Figure 13, in which the 24 V output does not dip upon switching between sources.
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Figure 13: Switching network test - 24 V output (yellow), gate of grid control (green), and gate of solar
control (blue)

3.2 Sensing Subsystem

Our photoresistor was able to measure a full range of values in dim and bright lighting conditions. This was

verified while debugging and monitoring serial output data. Our humidity sensor, likewise, measured a full

range of values in different operating conditions.

Through experimentation we found our infrared sensor did not measure distances beyond 8.2 ft accurately.

The following figure shows the output voltage characteristics for the infrared sensor. We believe the inaccu-

racy in our sensor was due to the small voltage differential for distances beyond 8.2 ft, or approximately 250

cm. In hindsight, we should have tested the infrared sensor more rigorously with an oscilloscope to verify

this.
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Figure 14: Output voltage characteristics for IR sensor [8]

Our power monitor did not work. We tried using an I2C scanner to discover the power monitor’s address,

but we were unable to receive an acknowledge signal from it. We further inspected the I2C signal through

an oscilloscope to see if the optoisolators were transmitting the signals properly. Figure 15 shows the output

signal directly from the Arduino Mega board. Figure 16 shows the signals that the power monitor received.

We thought the slew rate of the optoisolators was the limiting factor, as the power monitor’s datasheet

specified a 1.5 kHz maximum data rate [9]. However, when we limited the I2C frequency to 500 Hz and 1000

Hz, the output signal remained similarly incorrect.

Figure 15: SCL (green) and SDA (yellow) from Arduino Mega
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Figure 16: SCL (green) and SDA (yellow) from output of optoisolator

After this test, we tried to bypass the optoisolators and connect to the data and clock pins directly from the

microcontroller. The power monitor we were using had a split data line: SDAI and SDAO inverted. We used

a Schmitt trigger inverter to invert the inverted SDAO to, in theory, make it a regular SDAO line. However,

when connecting SDAI and SDAO together, we were still unable to communicate with the IC. While we do

not know what exactly caused our issues, we speculate that we could have overheated the IC while soldering

it, the optoisolator slew rate was incompatible with our data transfer frequency, or the inverted SDAO line

did not output a correct signal. We decided to go with our backup plan of using the photoresistor to measure

brightness and switch sources based on that.

3.3 Control Subsystem

Our control system consisted of our MCU board, which is available in Appendix B.1. The board itself worked

entirely as expected from our original design. In later stages, while programming the microcontroller and

debugging, it was necessary to receive serial data and verify and tune all our sensors properly. We soldered

wires onto the RX and TX pins to accomplish this.

3.4 Traffic Light Subsystem

Once the issues with the high side MOSFETs were fixed, the traffic light PCB worked as expected. Through

visual inspection, we were able to verify the traffic lights did not flicker under normal operation or when

switching sources. Figure 27 in Appendix D shows the traffic light at over 150 feet away. It was positioned

by the ECE OpenLab and the picture was taken next to the window by the Senior Design Lab.

Figure 17 displays the AC current draw at two different PWM duty cycles. The average power drawn is

around 16.7 W at 100% PWM and around 10.7 W at 20% PWM.
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Figure 17: Current draw at 100% (blue) and 20% (orange) PWM duty cycles
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4 Costs

4.1 Labor

Our team consists of two electrical engineering majors and one computer engineering major. From the 2019-

2020 annual Illini Success Report, electrical engineers make an average of $76,129 and computer engineers

make an average of $99,145 [10]. We worked approximately 10 hours per week this semester for 9 weeks.

This will total 90 hours. We will also multiply by a 2.5x overhead cost. The cost of our labor is shown

in Table 1. The machine shop worked on our project for approximately 20 hours. According to the UIUC

machine shop website, the average cost for construction is $38.17 an hour plus materials [11]. Machine shop

costs total $763.40. Parts cost sum to $123.44, as shown in Table 2.

The total cost of our project is $29,167.

Table 1: Labor costs

Name Bowen Xiao Richard Przybek Colin Tarkowski
Rate $38.06 $49.57 $38.06
Hours worked 90 90 90
Total Cost $8,563.50 $11,153.25 $8,563.50

4.2 Parts

Following is a table of all the parts required for the project and their associated costs.

Table 2: Selected components and cost

Component Part # Quantity Unit Price Total Price
5 V Buck IC LM2575D2T-5R4G 1 $2.84 $2.84

Schottky Diode VS-30WQ04FNTR-M3 1 $0.68 $0.68
300 µH Inductor HCTI-330-5.2 1 $2.99 $2.99
140 W Resistor TEH140M33R0FE 1 $15.20 $15.20

AC/DC Converter LM100-23B24 1 $17.44 $17.44
Power Monitor LTC4151IMS-1 1 $8.40 $8.40
Optoisolator MOCD207M 2 $1.30 $2.60
Sense Resistor ERJ-3BWFR020V 1 $0.45 $0.45
Pushbutton GPTS203211B 2 $1.71 $3.42
Photoresistor 161 1 $0.95 $0.95

Humidity Sensor DHT20 1 $6.50 $6.50
IR Sensor GP2Y0A710K0F 1 $21.21 $21.21
MCU ATMEGA328-PU 1 $2.58 $2.58

Coupled Inductor PF0553.153NLT 1 $2.54 $2.54
MOSFET FDS5670 1 $1.82 $1.82

14 mΩ Sense Resistor WSL2512R0140FTB 1 $2.21 $2.21
Schottky Diode SBRT10U60D1-13 1 $0.97 $0.97
SEPIC Controller LT3757AIMSE 1 $6.69 $6.69

MOSFET FDD8453LZ 4 $1.51 $6.04
Quad High-Side Gate Driver LT1161IN 1 $9.91 $9.91
Resistors and Capacitors N/A N/A N/A $8.00

Total Cost $123.44
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5 Conclusion

5.1 Accomplishments

We successfully met all three of our high level requirements. The lights dim through PWM and use less

power as a result. Using average values from Figure 17 and assuming a day consists of 12 hours of sunlight,

12 hours of darkness, and ideal conditions, our traffic light uses 385 Wh of grid power per day compared to

an average traffic light, which uses 1.08 kWh of grid power per day [1]. Our design consumes approximately

one-third of the average power. Our system is also able to switch between grid and solar power without

causing a power failure. Finally, our buttons respond to biker and pedestrian input, and our traffic light

timings can be adjusted to give them ample time to cross the road.

5.2 Uncertainties

While we deem our project a success and were able to verify the vast majority of our requirements, the

most uncertain part of our project was the power monitor. Despite trying numerous ways to debug the

component, we could not communicate via I2C and cannot pinpoint the issue with complete confidence. We

were able to switch power sources based on the light detected by the photoresistor, but that is an inaccurate

way of doing so. Having a power monitor would allow us to precisely sense when sufficient power is available

from the solar panel. In this scenario, we could run on solar power for as long as possible and only switch

to grid when we know the solar output will be insufficient.

5.3 Ethical Considerations

Our team did our best to adhere to the IEEE Code of Ethics. Since we designed a product for use in

traffic, we ensured “the safety, health, and welfare of the public” and to “disclose promptly factors that

might endanger the public or the environment” [12]. Our design choices are made clear through our design

document and this final report.

Since our design is a scale model of a real traffic light system, we did not adhere to the building codes within

the city of Champaign and our traffic light will not be put to use for real traffic. We should be able to

meet relevant requirements, laid out in the city of Champaign Traffic Signal Standards, for our scale model.

Although, any requirements with timing and light can be met as our traffic light is configurable and can be

reprogrammed to set brightness levels and timing of the lights [13].

For the purposes of prototyping and due to our limited budget we were only able make a single traffic light.

We did not concern ourselves with the control required for multiple switching traffic lights, as we are unable

to demonstrate this functionality with only one light. For our design to be expanded safely to a four-way

intersection, a more robust timing control system would need to be incorporated in the future. As previously

mentioned, our traffic lights are configurable so the timing levels for bikers and pedestrians can be set in

order to “avoid harm” as stated in 1.2 of ACM Code of Ethics [14]. Our biker and pedestrians buttons are

also properly grounded and insulated to ensure users do not get shocked.

Visibility, vehicle detector position, and minimum green time are some of the parameters that we experi-

mented with in this project and are configurable. We welcome any criticism about adhering to IEEE Code

of Ethics I.5: “to seek, accept, and offer honest criticism of technical work...” [12].
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5.4 Future Work

Our project ended up more limited in scope than we had hoped, due to financial and machine shop constraints.

In terms of future work we can do three things. First, water proof the enclosure so it can operate in any

weather conditions. Second, we can expand our system to four traffic lights and develop a more robust timing

system. Finally, we can select a new power monitor in order to make our system more robust, predictable,

and efficient in all conditions.
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Appendix A Requirement and Verification Tables

Table 3: General Requirements

Requirements Verification Verification Status

The system enclosure must be

rainproof, up to about 3.5 inches

monthly - the average precipitation

based on the 1981 to 2010 averaging

period [15].

1. We can simulate this by

assuming our enclosure area to

be 1ft x 3ft x 1ft and spraying

approximately 2 gallons of water

on it.

No (outside of

machine shop’s

capabilities)

Table 4: Solar Panel Requirements

Requirements Verification Verification Status

The solar panel must provide a

minimum of 40 W.

1. Use two multimeters and connect

one in series with a power

resistor and one in parallel across

the power resistor to measure

current and voltage, respectively.

2. Multiply current and voltage

readings to get power output,

which should be 40 W ± 20% on

a cloudless and sunny day.

Yes

In full sunlight, the panel must

generate 18 V±5% when loaded.

1. Program microcontroller with

unit test that turns on two light

modules at 100% duty cycle.

2. Use a multimeter to take a

voltage reading across the solar

panel terminals and verify it is

within 17.1 V and 18.9 V.

Yes
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Table 5: Power Converter Requirements

Requirements Verification Verification Status

The SEPIC converter at the solar

output must provide 24 V ± 5% at up

to 1.7 A output current for 12 V ≤
Vin≤ 32 V.

1. Use an oscilloscope and a

multimeter to check that the

output is 24 V ± 5% and up to

1.7 A, respectively. Sweep the

input voltage between 12 V and

32 V with the DC power supply

at the work station.

Yes

The AC-DC converter at the grid

output must convert 120 V ± 10% to

24 V ± 5% at up to 2 A output

current.

1. Use power supply to vary the

input from 108 VAC to 132 VAC

and use a multimeter to ensure

output remains within desired

bounds.

Yes

The 24 V to 5 V converter must

provide 5 V ± 5% at up to 500 mA

output current.

1. Use DC power supply to vary

the input from 21.6 V to 26.4 V

and use a multimeter to ensure

output remains within desired

bounds.

Yes

The 24 V to 3.3 V converter must

provide 3.3 V ± 5% at up to 500 mA

output current.

1. Use DC power supply to vary

the input from 21.6 V to 26.4 V

and use a multimeter to ensure

output remains within desired

bounds

Yes
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Table 6: Switching Network Requirements

Requirements Verification Verification Status

Switching between the two sources

must not interrupt normal operations.

1. Program the microcontroller to

switch between power sources

every 10 seconds and a counter.

2. Use an oscilloscope to verify that

the 24 V, 5 V, and 3.3 V rails

remain within tolerance levels.

3. Visually monitor lights and

ensure no flickering occurs.

4. Check to make sure counter does

not reset after any switches. If it

does, the microcontroller

temporarily lost power due to

the switching.

Yes

Switching transients must not exceed

2.4 V.

1. Measure output voltage using an

oscilloscope to ensure that it

stays within 10% of 24 V every

time the input switches.

Yes

Switching time must not exceed 20 ms. 1. Connect an oscilloscope to the

gates of each pair of MOSFETs

in the switching network to

ensure the one pair turns on

within 20 ms of the other pair

turning off.

Yes
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Table 7: Sensing Requirements

Requirements Verification Verification Status

1. The power monitor must be

accurate to ±5% of the actual

wattage.

2. The power resistor must not

exceed the rated operating

temperature of 25°C (at 140 W)

while dissipating power [16].

1. Use two multimeters and connect

one in series to the power

resistor and one in parallel across

the power resistor to measure

current and voltage, respectively.

Multiply values to compute

power and ensure the power

monitor reading is within 5%.

2. Use a laser thermometer to check

temperature of the resistor. If

the temperature is above 25°C
under full load, attach a passive

heat sink to prevent overheating.

No (we were unable to

communicate with the

power monitor via i2c)

1. The buttons must not shock

anyone who touches it.

2. The signal must be transmitted

across the opto-isolator within 1

ms.

1. Use an multimeter to ensure the

enclosures and buttons

themselves are properly

grounded. Visually inspect all

wires for proper insulation and

exposed copper.

2. Use an oscilloscope and connect

a probe to the button and

another to the opto-isolator

output pin. The time between

the button press and

opto-isolator output time must

be below 1 ms.

Yes

The photoresistor must be able to

differentiate between various light

intensities.

1. Measure output voltage when

the system is exposed to the sun,

complete darkness, and a dimly

lit room.

Yes
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The IR sensor must be able to detect

the presence of a vehicle from a

distance of 10 ft to 18 ft.

1. Position the sensor 10 ft and 18

ft (maximum range) away from a

vehicle and measure

corresponding output voltages.

2. Compare the voltage levels and

establish a lower and upper

boundary.

3. Program the microcontroller

with a test program to indicate

if the voltage is within the

boundary (i.e. car detected).

No (Our IR sensor is

accurate within the

range 1/2 - 8.2 ft)
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Table 8: Control System Requirements

Requirements Verification Verification Status

Microcontroller must respond to

button interrupts within 5 ms. Note

that this requirement is different than

the signal reaching the microcontroller

within 1 ms.

1. Program a unit test that toggles

a GPIO pin when a button

interrupt is received. The traffic

light FSM must be running

when pressing button.

2. Use an oscilloscope and connect

a probe to the button and

another to the microcontroller

GPIO pin. The time between

the button press and

microcontroller GPIO toggle

time must be below 5 ms.

Yes

Microcontroller takes sensor feedback

and responds with appropriate control

signals (PWM and switching power

sources).

1. Perform experiment in a room

with dimmable lights. Program

microcontroller to change PWM

duty cycle linearly based on light

intensity. Use an oscilloscope on

the PWM pin and dim the lights.

The duty cycle should decrease

from what it was initially

2. Hook up an oscilloscope to the

gate of one MOSFET from each

pair of MOSFETs in the

switching network. Ensure that

the solar panel powers the

system (power output above 20

W). The MOSFET gate of the

solar power portion should be

high and of the grid portion

should be low. Cover the solar

panel with a cloth such that the

power output drops to below 20

W and verify that the MOSFET

gate of the solar portion is low

and the grid portion is high.

Yes
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Table 9: Traffic Light Requirements

Requirements Verification Verification Status

1. The LEDs must be visible from

150 ft for drivers to see them in

bright conditions. Most modern

traffic lights are 400-1000 lumens

so we aim to be in this range [?

].

2. The LEDs should have multiple

dimming levels (i.e. 40%, 60%,

80%, and 100% of full

brightness), achieved by

changing the PWM duty cycle to

corresponding percentages.

3. The PWM frequency must be

above 80 Hz, the maximum

flicker frequency that is visible

to the human eye [17].

1. Stand 150 ft away and see if the

lights are visible. Use a light

meter to measure lumen output

and ensure it is within 400-1000

lumens.

2. Use an oscilloscope to ensure the

PWM duty cycle is within 5% of

expected percentage. Use light

meter to correlate 100% duty

cycle to maximum brightness.

Measure lumen output with a

light meter at multiple levels and

ensure they are within 5% of

expected brightness level.

3. Use an oscilloscope to verify that

the PWM circuit oscillates at a

minimum of 80 Hz.

Yes
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Appendix B Control Subsystem

B.1 MCU Board Design

Figure 18: MCU board schematic
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Figure 19: MCU board layout
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B.2 Microcontroller Code

#include <SharpIR.h>

#include <DHT20.h>

#include <util/delay.h>

#define PHOTO_PIN A0

#define IR_PIN A1

#define SOLAR_PIN 2

#define GRID_PIN 3

#define RED_LED_PIN 5

#define YELLOW_LED_PIN 9

#define GREEN_LED_PIN 6

#define WALK_LED_PIN 10

#define BIKE_INT_PIN 8

#define IR_SENSOR_MODEL 100500

const int ir_distance = 200;

int light_val;

int solar_val;

int brightness = 255;

unsigned long time_now;

int ir_val;

float humidity_val;

DHT20 dht;

SharpIR irSensor = SharpIR(IR_PIN,IR_SENSOR_MODEL);

volatile bool gotInterrupt = false;

const unsigned long red_delay = 10000; //90000, 1:30 min

const unsigned long green_delay = 7000;

const unsigned long green_default_delay = 3000;

const unsigned long yellow_delay = 3000;

ISR (PCINT0_vect)

{

gotInterrupt = true;

}

void RedLight(){

analogWrite(RED_LED_PIN, brightness);

ir_val = irSensor.distance();

time_now = millis();

bool bike_light_flag = true;
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while(ir_val > ir_distance){

ir_val = irSensor.distance();

// String ir_str = "~IR Distance: ";

// Serial.println(ir_str+ir_val+" cm");

if(millis()-time_now > red_delay/10 && bike_light_flag){

analogWrite(WALK_LED_PIN, 255);

bike_light_flag = false;

}

solar_val = analogRead(PHOTO_PIN);

if(solar_val > 950){

// Switch to solar

digitalWrite(SOLAR_PIN, HIGH);

digitalWrite(GRID_PIN, 0);

}

else{

// Switch to grid

digitalWrite(SOLAR_PIN, 0);

digitalWrite(GRID_PIN, HIGH);

}

}

int bike_flicker = 8;

unsigned long int time_now2;

bool flicker_flag = true;

while(millis() - time_now < red_delay){

if(millis()-time_now > red_delay/10 && bike_light_flag){

analogWrite(WALK_LED_PIN, 255);

bike_light_flag = false;

}

solar_val = analogRead(PHOTO_PIN);

// String solar_str = "~Solar: ";

// Serial.println(solar_str + solar_val);

if(solar_val > 950){

// Switch to solar

digitalWrite(SOLAR_PIN, HIGH);

digitalWrite(GRID_PIN, 0);

}

else{

// Switch to grid

digitalWrite(SOLAR_PIN, 0);

digitalWrite(GRID_PIN, HIGH);

}
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if(millis()-time_now > red_delay*2/3 && flicker_flag){

time_now2 = millis();

flicker_flag = false;

}

if(millis()-time_now > red_delay*2/3){

if(millis()-time_now2 > (red_delay/3)/8){

bike_flicker--;

time_now2 = millis();

}

if(bike_flicker%2 == 0 || bike_flicker == 1){

analogWrite(WALK_LED_PIN, 0);

}

else{

analogWrite(WALK_LED_PIN, 255);

}

}

}

if(flicker_flag){

time_now = millis();

time_now2 = time_now;

flicker_flag = false;

while(millis() - time_now < red_delay/3){

if(millis()-time_now2 > (red_delay/3)/8){

bike_flicker--;

time_now2 = millis();

}

if(bike_flicker%2 == 0 || bike_flicker == 1){

analogWrite(WALK_LED_PIN, 0);

}

else{

analogWrite(WALK_LED_PIN, 255);

}

solar_val = analogRead(PHOTO_PIN);

if(solar_val > 950){

// Switch to solar

digitalWrite(SOLAR_PIN, HIGH);

digitalWrite(GRID_PIN, 0);

}

else{

// Switch to grid
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digitalWrite(SOLAR_PIN, 0);

digitalWrite(GRID_PIN, HIGH);

}

}

}

analogWrite(RED_LED_PIN, 0);

analogWrite(WALK_LED_PIN, 0);

}

void YellowLight(){

analogWrite(YELLOW_LED_PIN, brightness);

//READ PHOTORESISTOR

light_val = map(analogRead(PHOTO_PIN), 0, 1023, 0, 255);

//--------------testing photoresistor-------------------

// if(light_val > 130){

// analogWrite(10, 255);

// }

// else{

// analogWrite(10, 0);

// }

//--------------------------------------------------------

//Take humidity reading

int humidity_sensor_status = dht.read();

switch (humidity_sensor_status)

{

case DHT20_OK:

humidity_val = dht.getHumidity();

break;

default:

humidity_val = 100;

break;

}

//------------------testing humidity sensor-------------

// if(humidity_val > 60){

// analogWrite(10, 255);

// }

// else{

// analogWrite(10, 0);

// }
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// delay(500);

//-------------------------------------------------------

brightness = min(light_val+20, 255);

if(humidity_val > 80) brightness = 255;

// String bright = "~Brightness: ";

// Serial.println(bright+brightness);

// String humidity_str = "~Humidity: ";

// Serial.println(humidity_str+humidity_val);

time_now = millis();

while(millis() - time_now < yellow_delay){

solar_val = analogRead(PHOTO_PIN);

if(solar_val > 950){

// Switch to solar

digitalWrite(SOLAR_PIN, HIGH);

digitalWrite(GRID_PIN, 0);

}

else{

// Switch to grid

digitalWrite(SOLAR_PIN, 0);

digitalWrite(GRID_PIN, HIGH);

}

}

analogWrite(YELLOW_LED_PIN, 0);

}

void GreenLight(){

PCMSK0 |= B00000001; //mask interrupts on pin 14: PCINT0

analogWrite(GREEN_LED_PIN, brightness);

//Default green delay

time_now = millis();

while(millis() - time_now < green_default_delay){

solar_val = analogRead(PHOTO_PIN);

if(solar_val > 950){

// Switch to solar

digitalWrite(SOLAR_PIN, HIGH);

digitalWrite(GRID_PIN, 0);

}
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else{

// Switch to grid

digitalWrite(SOLAR_PIN, 0);

digitalWrite(GRID_PIN, HIGH);

}

}

time_now = millis();

while(millis() - time_now < green_delay && !gotInterrupt){

solar_val = analogRead(PHOTO_PIN);

if(solar_val > 950){

// Switch to solar

digitalWrite(SOLAR_PIN, HIGH);

digitalWrite(GRID_PIN, 0);

}

else{

// Switch to grid

digitalWrite(SOLAR_PIN, 0);

digitalWrite(GRID_PIN, HIGH);

}

}

analogWrite(GREEN_LED_PIN, 0);

PCMSK0 &= B00000000; //unmask interrupts

}

void setup() {

Serial.begin(19200);

dht.begin();

pinMode(WALK_LED_PIN, OUTPUT);

pinMode(RED_LED_PIN, OUTPUT);

pinMode(YELLOW_LED_PIN, OUTPUT);

pinMode(GREEN_LED_PIN, OUTPUT);

pinMode(SOLAR_PIN, OUTPUT);

pinMode(GRID_PIN, OUTPUT);

analogWrite(WALK_LED_PIN, 0);

analogWrite(RED_LED_PIN, 0);

analogWrite(YELLOW_LED_PIN, 0);

analogWrite(GREEN_LED_PIN, 0);

digitalWrite(SOLAR_PIN, 0);
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digitalWrite(GRID_PIN, HIGH);

light_val = map(analogRead(PHOTO_PIN), 0, 1023, 0, 255);

PCICR |= B00000001; //Enable interrupts on port B (PCINT0-PCINT7)

PCMSK0 &= B00000000; //unmask interrupts on all pins

}

void loop() {

gotInterrupt = false;

RedLight();

GreenLight();

YellowLight();

}
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Appendix C Power Subsystem

C.1 SEPIC Design Calculations

Figure 20: SEPIC calculations
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C.2 Initial Power Board Design
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Figure 21: Initial power board schematic
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Figure 22: Initial power board layout
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C.3 Final Power Board Design
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Figure 23: Final power board schematic
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Figure 24: Final power board layout

40



C.4 Buck Board Design

GND

C2
330uF

+5V

1
2

3

D1
D_Schottky_AKA

VIN 1

OUTPUT 2

GND_1 3

FEEDBACK 4

~{ON}/OFF 5GND_26

IC1
LM2575D2T-5R4G

GND

+24V

H4
MountingHole

GND

GND

1
2

J1
24 V In

+5V

H3
MountingHole

GND

H1
MountingHole

H2
MountingHole

+24V

GND

C1
100uF

L1
330uH

1
2

J2
5 V Out

+5V
+24V

TP4
GND

TP3
GND

GND
TP2
5 V

GND

TP1
24 V

Test Points

Input and Output Connectors

Mounting Holes

24 V to 5 V Buck

Figure 25: Buck board schematic
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Figure 26: Buck board layout
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Appendix D Traffic Light Subsystem

D.1 Traffic Light at 150+ ft

Figure 27: Traffic light from 150+ ft away
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D.2 Initial Traffic Light Board Design
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Figure 28: Initial traffic light board schematic
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Figure 29: Initial traffic light board layout
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D.3 Final Traffic Light Board Design
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Figure 30: Final traffic light board schematic
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Figure 31: Final traffic light board layout
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