
 Universal PoE Stepper Motor Driver for Argonne
 National Lab

 Armando Rodea
 Bryan Logan Monk

 Putra Derindra Firmansyah

 Final Report for ECE 445, Senior Design, Spring 2022
 TA: Evan Widloski

 May 2022
 Group 28

	Abstract	

 The universal power over ethernet (PoE) stepper driver is a small, accurate and low cost stepper motor
 driver that tackles problems with current drivers at Argonne National Lab. Combining PoE circuitry with
 a microcontroller and high accuracy stepper motor drivers, a user will be able to connect our device to a
 PoE network switch and use a single cable for both powering and communicating with a stepper motor.
 This report will delve into the design of the project, verify it, outline the costs and discuss future work to
 be done on the project.

 2

	Contents	
 1. Introduction 4

 1.1 Problem and Solution Overview 4

 2 Design 7

 2.1 Ethernet Subsystem 7

 2.1.1 Ethernet Subsystem Design Procedure 7

 2.1.2 Ethernet Subsystem Design Details 7

 2.2 Power Subsystem 10

 2.2.1 Power Subsystem Design Procedure 10

 2.2.2 Power Subsystem Design Details 10

 2.3 Motor Control Subsystem 12

 2.3.1 Motor Control Design Procedure 12

 2.3.2 Motor Control Design Details 12

 2.4 MCU 15

 2.4.1 MCU Design Procedure 15

 2.4.2 MCU Design Details 15

 3. Design Verification 16

 3.1 Ethernet Verification 16

 3.2 Power System Verification 17

 3.3 Motor Control Verification 18

 4. Costs 19

 4.1 Parts 19

 4.2 Labor 19

 4.3 Schedule 19

 5. Conclusion 20

 5.1 Accomplishments 20

 5.2 Uncertainties 20

 5.3 Ethical considerations 20

 5.4 Future work 20

 References 22

 Appendix A: Requirement and Verification Table 23

 Appendix B: Parts List 25

 Appendix C: Schedule 31

 Appendix D: Full Schematics 33

 Appendix E: PCB Layout 36

 3

	1.	Introduction	

	1.1	Problem	and	Solution	Overview	
 At Argonne National Laboratory the Advanced Photon Source houses a synchrotron beamline where
 scientists conduct various x-ray diffraction experiments. Numerous stepper motors are used for precise
 alignment and automation during experiments. Currently, the drivers that are used are bulky and
 expensive. Each driver needs a dedicated slot, and in many sections of the beamline, these slots are
 already filled, making it difficult to add more drivers. Hence, a compact, scalable driver would be ideal,
 but current market solutions require a power supply for each driver in addition to wiring for serial
 communications. This is not an optimal solution as the number of motors increases.

 This project aims to make use of already installed power over ethernet (PoE) network switches at
 Argonne to both communicate with a stepper driver and power it. Such a solution would allow for neat
 cabling and saving of space. In our solution, an ethernet cable connects to our device from a PoE network
 switch and a circuit will separate the power and data transmitted. Furthermore, there will be a motor
 control system that interfaces with the microcontroller unit (MCU). This will then generate current pulses
 to control the motor. In order to power the MCU and the motor control system, there is a power
 subsystem that steps down 48 V from the network switch into 12 V for the motors and 3.3 V for all the
 integrated circuits (ICs) on the board. This module will be universal to most stepper motors with different
 current requirements while being relatively low cost.

	1.2	High-level	Requirements	
 In order to create a universal PoE stepper motor driver, it requires features such as requesting the
 necessary power from the network switch, separating ethernet data and power, stepping down high
 voltage to a usable level for the motors and ICs, and lastly circuitry and logic to control stepper motors
 accurately. The list below contains the three high-level requirements needed in order to make such a
 device.

 1. The driver must be compatible with any bipolar stepper motor with a requirement of 3 A per
 phase or lower. This requirement is necessary since there are a wide range of stepper motors used
 at Argonne with different sizes and current requirements. Being able to power motors with a
 rating of up to 3 A per phase covers the vast majority of stepper motors used.

 2. The driver must be able to control and step down the 47.5-48.5 V PoE++ power delivery to
 11.5-12.5 V and 3.0-3.6 V to create up to 6 A of usable power for the motors. 3.3 V is the
 required voltage for the IC chips on the board. This is necessary because the proper PoE
 negotiation must happen so that power is supplied to the device, and the stepper motors require a
 12 V supply with up to 3 A per phase for each motor.

 3. The driver must have reliable transmission of data over ethernet and interpret the commands into
 STEP/DIR pulses to drive the motor; reliable meaning that it does not overheat and so does not
 reach over 125 ° C as to not heat the TMC2660 stepper driver chip. As Argonne uses stepper
 drivers for important alignment and automation purposes, it is important to ensure that it may
 continuously function. The TMC2660 chip has a maximum operating temperature rating of 125°
 C. [1]

 4

	1.3	Design	Overview	

 Fig. 1: Block diagram of universal PoE stepper driver.

 The universal PoE stepper driver consists of three subsystems as illustrated in Fig. 1. The ethernet
 subsystem accepts an ethernet cable from a PoE network switch through an RJ45 port. The RJ45 port
 interfaces with the transformer through AC and DC signals for data and power, respectively. The
 transformer sends 48 V to the diode bridge controller for it to be rectified to account for polarity in
 different pins going into the power delivery (PD) controller in the power subsystem. The transformer also
 communicates with the ethernet PHY chip to send and receive data which then goes into the MCU.

 The power subsystem is responsible for powering all integrated circuits (ICs) on the board as well as
 powering the motor. To do that, the power subsystem must accept 48 V and convert it into 3.3 V which
 powers all the ICs, and 12 V which is used to power the motor.

 The motor control subsystem contains the logic and circuitry to drive the motor and stop the motor using
 limit switches. The motion controller first receives SPI commands from the MCU for various commands.
 It then produces the corresponding step and direction pulses which go into the stepper driver IC. The
 stepper driver IC then produces a current to move the motor accordingly. Additionally, the motion
 controller receives on or off signals from the limit switches which stops the stepper motor if a boundary is
 reached.

 5

	2	Design	

	2.1	Ethernet	Subsystem	

	2.1.1	Ethernet	Subsystem	Design	Procedure	
 For the ethernet subsystem, we heavily referenced the Analog Devices DC2911A development board for
 our PoE circuitry [3]. This features both the LT4293 PD controller and the LT4321 diode bridge
 controller. It can provide both the PoE+ and PoE++ standards for which there are network switches
 installed at Argonne. We were also already in possession of this board from Argonne, which is why we
 used this as a starting point for our design.

 For our ethernet PHY, we used the Texas Instruments DP83848. Because of the parts shortage, all
 standard 10/100 Base-T ethernet PHYs were out of stock. For this reason, we needed to desolder a PHY
 from some external source, and the Waveshare DP83848 development board was the best candidate since
 this chip had seemingly widespread support and it was relatively cheap. Additionally, examples were
 using this chip with our exact MCU, the STM32F407. However, an alternative to this would be the
 Microchip LAN8742. This is commonly integrated on STM32 development boards with ethernet
 connectivity, and we would have started with one of these development platforms if we went this route.

	2.1.2	Ethernet	Subsystem	Design	Details	
 This subsystem is responsible for receiving both power and data from the PoE network switch, also called
 the PSE. The ethernet data signals are AC, with the Rx pair between pins 1 and 2 while the Tx pins are
 between 3 and 6. The power is 48 VDC, which can be on different pins depending on which PoE standard
 is being used. In our case, we are using two standards: PoE+ (25.5 W) and PoE++ (51 W). PoE+ operates
 in mode A, while PoE++ operates in mode B. Mode A has positive DC voltage on the Rx data lines (pins
 1 and 2), and GND on the Tx lines (pins 3 and 6). In mode B, the normally unused pins are used for
 power, with positive voltage on pins 4 and 5 and GND on pins 7 and 8.

 After the power and data come in through the RJ45 port, a transformer allows the AC ethernet signals to
 pass through while the DC power does not. The power is taken from the transformer center taps, which
 are the POE_CT signals seen on Fig. 2.

 6

 Fig. 2: Ethernet transformer circuit schematic.

 To account for the power being on different pins, A “diode” bridge is needed to rectify the power. While a
 passive rectifying bridge with actual diodes can be used, a more efficient method is to use MOSFETs. In
 this case, each center tap signal is connected between the source and drain of two MOSFETs. A controller
 IC (Analog Devices LT4321) detects which signals correspond to positive and negative voltage and drives
 the gates of the MOSFETs to connect positive voltage to the VPORTP rail and negative voltage to the
 VPORTN rail.

 Fig. 3: Diode bridge circuit schematic

 Before power can be supplied to the device, a negotiation must occur between the PSE and the PD
 (powered device). For this, we used the Analog Devices LT4293.

 7

 Fig. 4: PD controller schematic.

 For a negotiation to occur, the PSE first applies two voltages between 2.7V and 10.1V, measuring the
 current response to verify a characteristic 25 kΩ resistance that demonstrates a PD is present. This is the
 DETECT voltage shown in Fig. 5. After this test, the first classification voltage is sent between 14.5V and
 20.5V. The PSE measures the signature current, and depending on the reading, more classification
 voltages can be sent. More cycles correspond to more power being allowed to the PD. for PoE++, a max
 of three classification voltages can be sent, as seen in Fig. 5.

 Fig. 5: Class 3 PoE negotiation diagram.

 On the data side, the Tx and Rx pairs that are coupled through the transformer connect to the ethernet
 PHY. PHY stands for physical layer transceiver, and this is where the AC ethernet signals are interpreted
 into a digital interface that can communicate with the MCU. We used the DP83848 PHY which is a
 standard 10/100 Mb/s ethernet PHY. As seen in Fig. 6, the Tx and Rx pairs connect to the top left of the
 IC. RMII, which stands for reduced MII, is the protocol used to communicate with MCU. These pins can
 be seen on the right side of the schematic, including TXD0, TXD1, TXEN, TXD0, RXD1, CRS_DV,
 MDC, and MDIO. Finally, RMII requires a 50 MHz oscillator shared between the PHY and the MCU
 which can be seen in the bottom right of Fig. 6.

 8

 Fig. 6: DP83848 ethernet PHY schematic.

 As far as PCB layout for this subsystem, we followed the same general design as the DC2911A board.
 However, this board was 6 layers, while ours was only 2, so many adjustments were made to complete the
 routing. The full PCB layout can be referenced in Appendix E. The DC2911A simply had an RJ45 port
 for output data, so on our board we routed the data pairs directly to the DP83848 PHY. It is important that
 these traces are approximately the same length to match impedance. Additionally, the PHY has outputs
 for status LEDs on the RJ45 port that signify data transfer, which we added.

	2.2	Power	Subsystem	

	2.2.1	Power	Subsystem	Design	Procedure	
 For our power subsystem, we used the E48SC12010NRFA for our 12 V DC/DC converter, which is
 capable of providing 120 W (10 A) of power. This provides the 12 V supply for the motors, and we
 needed enough current to provide a max of 3 A per motor phase, or 6 A total. The 12 V is stepped down
 to 3.3 V to power the ICs, and for this we used a simple linear regulator, the NCP1117, which can provide
 up to 1 A. A potential alternative to this was a switching buck converter, but we determined that we did
 not need this extra efficiency, and we did not want to introduce extra noise into our circuit that might
 interfere with current sensing by the motor drivers.

	2.2.2	Power	Subsystem	Design	Details	
 This subsystem is rather simple in design. First, the outputs from the PoE circuitry are VOUT+, VOUT-,
 and PWRGD. VOUT+ is positive PoE voltage, while VOUT- is ground. PWRGD serves as an enable pin
 for the power supply, recommended for the most reliable operation. These outputs connect to the Vin+,

 9

 Vin-, and ON/OFF pins of the 12 V DC/DC converter, respectively. +12 V is then provided between the
 Vout+ and Vout- pins. For standard 12V operation, the E48SC12010 datasheet instructs connecting the
 Sense+ pin to Vout+ and Sense- to Vout- [2]. The TRIM pin is left unconnected.

 As mentioned above, the 12 V is only used for powering the motors, and must be stepped down to 3.3 V
 to power the ICs. Our 3.3 V regulator is a simple linear regulator. The input 12 V is connected between
 the VI and GND pins, and the output is between VO and GND. 10 uF capacitors are needed on the input
 and output pins, and we also added a status LED to show power.

 Fig. 7: Power subsystem schematic.

 For the layout of this subsystem we initially thought about putting the 12 V converter on our main board,
 however, its large size made it difficult to fit while keeping our board compact. As a result, we decided to
 have a separate PCB for power shown in Fig. 8. This connects to our main board through jumper wires.

 Fig. 8: Power board PCB layout.

 10

	2.3	Motor	Control	Subsystem	

	2.3.1	Motor	Control	Design	Procedure	
 We used two main ICs for the motor control subsystem: the TMC429 and the TMC2660. These are made
 by the German company Trinamic Motion Control, which specializes in laboratory automation. They are
 known for their precision and reliability, and their drivers are used frequently at Argonne. Once we knew
 we wanted to use Trinamic drivers, there were a few options for the configuration we used. We had the
 option between a stepper motor gate driver plus external power MOSFETs or a driver that had integrated
 MOSFETs. This is a trade-off between simplicity and power. We opted for the latter option to simplify the
 board layout while maintaining a reasonable amount of power. The TMC2660 is Trinamic's most
 powerful driver IC, with a maximum of 2.8 A of current per motor phase. This is more than enough for
 most steppers at Argonne.

 Given that our driver would control the stepper motors that are used for alignment and automation for the
 synchrotron beamline where x-ray diffraction experiments are conducted we also aimed to have precise
 drivers. With this in mind, we also chose the stepper driver that allowed for the needed accuracy with the
 ability for 256 microsteps. For maximum accuracy, Trinamic advises that these drivers are coupled with a
 motion controller IC. In the case of the TMC26x series, the TMC429 is recommended. The purpose of
 this chip is to offload critical calculations and look up tables from the MCU and make interfacing with the
 driver IC easier and more reliable. Rather than sending STEP/DIR pulses directly to the driver, the MCU
 can write parameters such as position and velocity through SPI and not have to worry about timing.

	2.3.2	Motor	Control	Design	Details	
 Both of the motor control chips require SPI for the initialization of certain parameters. During operation,
 though, The MCU only sends SPI commands to the TMC429, which in turn sends STEP/DIR signals to
 the TMC2660. Step and direction (STEP/DIR) is the standard digital interface for stepper motor drivers.
 First, the value of DIR indicates whether the motor should move clockwise or counterclockwise. The
 positive edge of STEP tells the driver to move the motor one unit in the direction specified by DIR. The
 unit is determined by the driver IC and can either be a full step, half step, or microstep. In our case, the
 TMC2660 is configured for max resolution, which is 256 microsteps per full step. Therefore, one STEP
 pulse moves the motor by 1 microstep, which is

 1 𝑓𝑢𝑙𝑙𝑠𝑡𝑒𝑝
 256 𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑒𝑝𝑠 * 1 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

 200 𝑓𝑢𝑙𝑙𝑠𝑡𝑒𝑝𝑠 * 360° = 0 . 00703125°

 The SPI and STEP/DIR inputs can be seen on the bottom left of the TMC2660 schematic symbol in Fig.
 9. Next, there are power inputs for each motor phase, VSA and VSB, as seen on the top of the symbol. As
 specified in the TMC2660 datasheet [1], There should be both electrolytic and ceramic capacitors on
 these inputs, as well as a 220 nF cap between VHS and 12 V, and a 470 uF cap between 5VOUT and
 GND. On the right side of the symbol in Fig. 9 are the motor outputs. Since there are two coils, there are 4
 connections total: OA1 and OA2 for coil A and OB1 and OB2 for coil B. Each of these connections has 4
 pins on the TMC2660 due to large current output. On the left side of the symbol are the current sensing
 resistors. The full motor current runs through these resistors, and the driver measures the voltage across
 them and limits the current if it measures a high enough voltage.

 11

 Fig. 9: Motor control subsystem schematic.

 The TMC429 is rather simple in terms of external circuitry. In addition to the SPI inputs, it has STEP/DIR
 outputs, a clock input, and three reference switch inputs. The reference switches are used as emergency
 stop switches to stop the motor if they are pulled to ground. The TMC429 can drive up to 3 motors,
 however since we are only driving 1, we configured REF1 to be the left stop switch and REF3 to be the
 right stop switch. In other words, if the motor is moving counterclockwise and REF1 is activated, the
 motor will be stopped. Conversely if the motor is moving clockwise and REF3 is activated, the motor will
 also be stopped.

 Since there is a considerable amount of current traveling to the motor, the PCB layout required particular
 attention. We created 4 large planes on the bottom layer of the board corresponding to each motor coil
 output, with several vias transporting this current to each plane. Then, thick traces connected these planes
 to the motor connector.

 Fig. 10: TMC2660 PCB layout.

 12

 The commands sent from the microcontroller communicate through SPI commands with datagrams of
 32-bits. In Fig. 9 the aforementioned communication can be noted with the SPI inputs on both the chips.

 Using the TMC429 datasheet [4] it can be seen that the most significant bits hold a 4-bit register value
 and a read/write bit. In order to move the motor certain registers must be chosen and certain bits in the
 lower 24 bits must be configured to alter the register contents. A high level flow of this process is
 presented in Fig. 11 below.

 Fig. 11: Flow chart of motor control code.

 For example, register zero (4’b0000) controls the target position with its lower 24 bits. To get it to move
 to a target position a 24-bit value representing the position must be sent. This command is sent through
 the HAL library command.

 𝐻𝐴𝐿 _ 𝑆𝑃𝐼 _ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒 (& ℎ𝑠𝑝𝑖 1 , 𝐷𝐴𝑇𝐴 _ 𝑆𝐸𝑁𝑇 , 𝐷𝐴𝑇𝐴 _ 𝑅𝐸𝐶𝐼𝐸𝑉𝐸𝐷 , 𝑁𝑈𝑀 _ 𝐵𝑌𝑇𝐸𝑆 _ 𝑊𝑅𝐼𝑇𝐸 , 𝑇𝐼𝑀𝐸𝑂𝑈𝑇);

 Where hspi1 is the SPI handler that is used to refer to the TMC429 and the 32 bits are sent in
 DATA_SENT. In this case, DATA_RECIEVED is not important as it was marked as a "write" command;

 13

 however, for register reads this is where the output will be stored. NUM_BYTES_WRITE is
 self-explanatory and is the amount of time it waits for data to be sent and received before 𝑇𝐼𝑀𝐸𝑂𝑈𝑇
 continuing program execution.

 With all this in mind, we decided to create a couple of functions that would accomplish tasks such as
 setting the positions, getting the position, setting the velocity, getting the velocity, and changing the
 current scaling that determines how much current the motor is driven with. These functions would then
 pair nicely when receiving external commands from ethernet.

	2.4	MCU	

	2.4.1	MCU	Design	Procedure	
 The MCU is not its own subsystem but straddles the ethernet and motor control subsystems. Its job is to
 receive/transmit the ethernet data via the RMII interface from the PHY, interpreting this data into motor
 controls to send through SPI.

 We decided to use an STM32F407 for our MCU, due to its built-in ethernet MAC and ample processing
 power. Additionally, we first thought we might use a motor control API provided by Trinamic, which was
 targeted for ARM processors. Another potential option could be the Microchip PIC18 series, some of
 which have a built-in Ethernet MAC and PHY. This would decrease design complexity, but would come
 at the cost of reduced processing power and peripheral support.

	2.4.2	MCU	Design	Details	
 For the circuitry surrounding the MCU, we first allocated pins for the RMII input. Next, we had two SPI
 outputs for the two motor control ICs. GPIOs were used for the CS pins in each SPI channel. Both
 Trinamic ICs require a clock input, and to keep the layout simpler, we decided to have 16 MHz PWM
 outputs from the MCU rather than an external oscillator. We also added an 8 MHz crystal for the MCU to
 ensure accurate timing, some status LEDs, and a UART interface for debugging purposes. Finally, our
 method of programming was an SWD interface, which requires two signals: SWCLK and SWDIO, in
 addition to 3.3V and GND.

 14

	3.	Design	Veri�ication	
 The high-level requirements for the project have all been achieved except for ethernet data transmission.
 We were able to run multiple different stepper motors with a requirement of 3 A or lower, able to step
 down PoE voltage so that it powers the rest of the board, and ensured that there was no overheating. To
 break down the projects, there are requirements and verifications we have to achieve and conduct as can
 be seen in appendix A. The results are further discussed in this section.

	3.1	Ethernet	Veri�ication	

 Table 1: Ethernet subsystem output voltage.

 Voltage Measured (V)

 54.3172

 54.3171

 54.3171

 54.3171

 54.3171

 The first ethernet subsystem requirement is that it must be able to output 47.5 - 48.5 VDC. In order to
 verify this requirement, we used the GS110TUP PoE network switch that is connected to the RJ45 port on
 our board. Table 1 illustrates the value measured on the output of the ethernet subsystem and it averages
 54.3171 V. This requirement is partially achieved because, for the purposes of this project, this fulfills the
 minimum required voltage for the design to operate. The measured voltage is higher than the
 requirements because of the voltage supplied by the PoE network switch. On the network switch’s
 datasheet [5], it states that it uses a 54 V and 4.7 A power supply hence the measured voltage. From initial
 research, we thought that PoE only transmitted at 48 V but in actuality, it is within a range of 48 - 57 V.
 [6]. It is important to note that this poses no issue for our device, as the voltage we measured is still
 within the range of the DC/DC converter maximum input voltage. However, as this is still outside of the
 requirement, we conclude that this requirement is partially achieved.

 The second requirement in the ethernet subsystem is that it must be able to receive TCP packets
 accurately through the RJ45 port into the MCU. We were unable to get the ethernet software working
 hence this requirement was not achieved. While developing the software, we saw that the LEDs were
 blinking on the ports hence, it signifies that data were transmitting. However, as the packet transmission
 was investigated, we did not see any of which went to the development board’s MAC address hence, we
 were unable to connect to it. We believe that CPU memory barriers for ethernet were not properly
 configured. After further research, we found that ethernet uses DMA (Direct Memory Access) in order to
 reduce CPU utilization. Ethernet uses memory descriptors to identify which parts of memory can be used
 for DMA but in STM32’s generated code, descriptor memory is not necessarily configured as the

 15

 ethernet’s device memory. Hence, ethernet fails when trying to read within the memory barrier because
 the STM32 has not set the OWN bit there to signify that it can be read by this specific peripheral.

	3.2	Power	System	Veri�ication	

 Table 2: Voltage and current output from 12 V DC/DC converter with a load of 2 Ω.

 Voltage Measured (V) Current Measured (A)

 12.001 5.783

 12.002 5.776

 12.003 5.785

 12.007 5.784

 12.011 5.777

 The first requirement discussed is that the power subsystem must be able to receive a 47.5-48.5 VDC and
 output 11.5-12.5 V with a current of 5.5-6.5 A. In order to verify this requirement, we used a DL83021A
 electronic load in constant resistance mode at 2 Ω so that we could measure the appropriate current and
 voltage. To power up the power module, we used a DP831 programmable DC power supply at 48 V and 2
 A. Table 2 shows the results that were obtained after 5 trials, averaging to 12.005 V and 5.781 A. Hence,
 it concludes that the design achieves the requirement.

 Table 3: Voltage output of 3.3V linear regulator.

 Voltage Measured (V)

 3.301

 3.301

 3.302

 3.300

 3.301

 The second requirement in the power subsystem is that the power subsystem must be able to receive a
 47.5-48.5 VDC and output 3.0-3.6 V. In order to verify this requirement, we again used the DP831
 programmable DC power supply at 48 V and 2 A. We also used a multimeter to measure the voltages of
 the 3.3 V output headers of the power board. The result can be seen in Table 3 which averages to a
 reading of 3.301 V. Hence, this requirement has been achieved.

 16

	3.3	Motor	Control	Veri�ication	
 The first requirement tested is that the motor control subsystem must be able to accept SPI commands
 from MCU and convert the commands to step/dir pulses that are accurate enough for
 microstepping 256 microsteps per full step. Testing the Motor Control Subsystem was performed by
 sending specific SPI commands from the microcontroller to the TMC429 and displaying the returned
 information using UART to a serial monitor. For example, a target position of 52800 was set to the motor
 to move a full rotation. The reason this number corresponds to a full rotation is because the TMC2660 is
 configured to a resolution of 256 microsteps per full step, and there are 200 full steps in a full motor
 rotation so 256*200 = 52800 microsteps per rotation. We verified visually that the motor shaft did in fact
 move a full rotation, and the position was then read back on the serial monitor and verified to see if the set
 position was the current actual position.

 Another requirement we had was to provide 3 A to the motor without exceeding 125 ° C. Unfortunately,
 we were only able to get an infrared thermometer meant to measure human temperature and at one point
 we exceeded the temperature limit. The limit only allowed us to measure up to 43 ° C. With this in mind,
 we plotted the data shown below with Fig. 12 and assuming linearity we used the best fit line equation to
 estimate the temperature at 3 A and arrived at the result of 73.4 ° C. This temperature is well below our
 target of 125 ° C.

 Given the fact we are assuming linearity and using an equation that may not show the full picture, we can
 only partially verify this subsystem. Moreover, we tested this on multiple different motors and they
 showed similar results; however, none are rated for 3A so even if we had the ability to accurately
 measure the temperature we would still feel unsafe in providing a current that our motors were not
 intended for.

 Fig. 12: Plot of the current against the measured temperature of the TMC2660.

 17

	4.	Costs	

	4.1	Parts	
 The total cost of parts totals to $146.84. For a complete list of parts refer to Appendix B.

	4.2	Labor	
 To estimate the labor costs, it would be important to note how much an ECE graduate from University of
 Illinois at Urbana-Champaign earns on average. An electrical engineering graduate earns $79,129 per
 year and a computer engineering graduate earns an average of $99,145 per year [7]. Averaging between
 these two majors results in $89,137 per year which roughly translates to $44/hr with the assumption of 40
 hour work weeks and 50 working weeks per year. It has been observed that this project takes 150 hours to
 complete therefore, the labor cost can be calculated using the following formula and presented by Table 4
 below:

 2 . 5 * 150 ℎ𝑟 * $44/ ℎ𝑟 * 3 𝑝𝑒𝑜𝑝𝑙𝑒 = $49 , 500

 Table 4: Estimated labor costs.

 Name Hourly Rate Total Hours
 Expense
 Multiplier

 Total
 Cost/Person

 Armando $44.00 150.00 2.50 $16,500.00

 Bryan $44.00 150.00 2.50 $16,500.00

 Putra $44.00 150.00 2.50 $16,500.00

 Labor Total $49,500.00

 Adding the costs for labor and parts, it can be estimated that the total cost for this project is:
 $49,646.84

	4.3	Schedule	
 Refer to appendix C for the schedule.

 18

	5.	Conclusion	

	5.1	Accomplishments	
 In the end, we were able to test and verify all of the subsystems except for ethernet communication. To
 specify we were able to get the PoE circuitry to work as it was able to output 54V, signifying that the
 proper PoE negotiation had taken place. This worked for both PoE+ and PoE++ standards. Moreover, we
 were then able to successfully step down the 48v received from PoE into 12V and 3.3V usable for the
 motor and ICs. We were able to get all the ICs involved in motor control to communicate with each other
 as the microcontroller was able to send commands to the motion controller which were interpreted into
 step directions pulses that were used to drive the motors.

	5.2	Uncertainties	
 Overall we have ideas as to why the ethernet subsystem did not work as intended. The ideas have been
 touched on before but we are still unsure as to exactly which of those if any is the solution to our problem.
 Possible ways to fix this will be discussed in the future work section below.

 As a result of this system, we were not able to work through the full integration of the software. This
 means that we are still uncertain about the steps we would need to do to get it working on the SPEC
 system that Argonne, our end users, currently use.

	5.3	Ethical	considerations	
 To ensure safety and to be in accordance with IEEE Code of Ethics #9 [8], we must be sure to avoid
 injuries. Our project has two potential hazards one of them being the high voltages used and the other
 being the heat of various components, especially on our power board. To mitigate the risks of working
 with high voltages for our end-user we have an enclosure so the power pins are not directly exposed. An
 additional precaution we have taken is insulating for potentially dangerous components.

	5.4	Future	work	
 Moving forward with the project it would be pertinent to first address the only part that was not able to
 work - ethernet. To get this system working it would be best to address the issues that we had while
 working on it. Seeing as two PHY chips were shorted and we believe the cause to be transient voltages on
 the Tx/Rx lines, we would include some TVS diodes on the PHY data inputs. Moreover, we would use a
 different PHY that is also included on an STM32 dev board. Once that is tested and is proven to work, we
 could move those same components with the working software onto our custom board. Going forward, it
 would be ideal to integrate our device with the SPEC control software that is currently being used at
 Argonne. This is proprietary software used specifically for synchrotron beamline control. From a design
 and usability standpoint, we would also switch to a 4-layer PCB design to increase ease of routing, signal
 integrity, and optimized heat management. Additionally, instead of connecting our power board to our
 main board through jumper wires, we would add stackable headers so that the power board could fit
 neatly into a socket. This would also result in better current conduction. To increase performance of the
 motor control subsystem, we would add a dedicated 16 MHz oscillator for both the TMC429 and
 TMC2660 clock inputs. Due to high amounts of noise that resulted from the PWM outputs from the
 MCU, we were forced to use the internal clock for the TMC2660, which is not recommended. Finally, to
 allow for even higher power motors and a generally more robust design, we would use one of the
 Trinamic gate driver ICs such as the TMC262 coupled with external MOSFETs.

 19

	References	

 [1] Trinamic, “TMC2660C datasheet - trinamic.com” 024-Feb-2022. [Online]. Available:
 https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2660C_datasheet_rev1.03
 .pdf.

 [2] “DC2911A PoE Development Board Schematic,” Analog Devices . [Online]. Available:
 https://www.analog.com/media/en/technical-documentation/eval-board-schematic/DC2911A1-SCH.
 pdf.

 [3] “Delphi Series E48SC12010 Datasheet,” Delta Electronics. [Online]. Available:
 https://filecenter.deltaww.com/products/download/01/0102/datasheet/DS_E48SC12010.pdf.

 [4] Trinamic, “TMC429 datasheet - trinamic,” 03-Mar-2022. [Online]. Available:
 https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC429_datasheet_Rev2.05.p
 df.

 [5] “GS110TUP - 10-Port Gigabit ethernet ULTRA60 poe++ smart desktop switch with 1 SFP and 1
 copper uplink,” NETGEAR. [Online]. Available:
 https://www.netgear.com/support/product/GS110TUP.aspx.

 [6] “Power over ethernet (poe) explained,” POE Explained - Understanding and using Power over
 Ethernet. [Online]. Available:
 https://www.veracityglobal.com/resources/articles-and-white-papers/poe-explained-part-2.aspx.

 [7] T. G. C. of E. Communications, “Salary Averages,” ece.illinois.edu.
 https://ece.illinois.edu/admissions/why-ece/salary-averages

 [8] “IEEE code of Ethics,” IEEE. [Online]. Available:
 https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 04-May-2022].

 [9] DP83848C/I/VYB/YB PHYTER™ QFP Single Port 10/100 Mb/s Ethernet Physical Layer
 Transceiver Datasheet- Ti . https://www.ti.com/lit/ds/symlink/dp83848c.pdf?ts=1645736599241.

 20

	Appendix	A:	Requirement	and	Veri�ication	Table	

 Ethernet Subsystem Requirements and Verification Table

 Requirement Verification Verification status

 The ethernet subsystem must
 be able to receive TCP
 packets accurately through
 the RJ45 port into the MCU.

 Setup and verify IP and MAC
 address of external PHY chip
 and MCU and then send a
 command from laptop to turn
 the LEDs on the
 microcontroller development
 board on.

 N

 As the system is designed for
 an ethernet at a PoE standard,
 the ethernet subsystem must
 be able to output 47.5 - 48.5
 V DC to the PD controller.

 Firstly, plug a PoE ethernet
 connection then, using a
 voltmeter, measure the
 voltage of the output diode
 bridge and verify that it is
 within the range of 47.5 V -
 48.5 V.

 Partially achieved

 Power Subsystem Requirements and Verification Table

 Requirement Verification Verification status
 (Y or N)

 The power subsystem must be
 able to receive a 47.5 - 48.5
 VDC output from the ethernet
 subsystem and step it down to
 11.5 - 12.5 V output with a
 current of 5.5 - 6.5 A.

 Input a 48V DC into the PoE
 PD controller. Then measure
 that the appropriate output
 voltage and current of the
 converter should be within
 the range of 11.5 - 12.5 V and
 5.5 - 6.5 A respectively.

 Y

 Must be able to step down
 voltage received from the
 ethernet subsystem that is in
 the range of 47.5 - 48.5 V DC
 and step it down to an
 acceptable range of 3.0 - 3.6
 V.

 Input a 48V DC into the PoE
 PD controller. Then measure
 that the appropriate output
 voltage and current of the
 converter should be within
 the range of 3.0 - 3.6 V.

 Y

 21

 Motor Control Subsystem Requirements and Verification Table

 Requirement Verification Verification status
 (Y or N)

 Must be able to accept SPI
 commands from MCU and
 convert the commands to
 step/dir pulses that are
 accurate enough for
 microstepping 256 microsteps
 per full step.

 We will print the SPI
 responses from the TMC429
 and TMC2660 chips on a
 serial monitor and match
 them with the datasheets, as
 well as microstep 51200
 times and see if this matches
 a full rotation.

 Y

 Must be able to provide up to
 3A per motor phase without
 going above 125 ° C.

 We will be able to monitor
 the current provided using an
 ammeter and also monitor its
 heat using an infrared
 thermometer.

 Partially achieved

 22

	Appendix	B:	Parts	List	

 Part # Manufacturer Description Quantity Cost Cost/Unit

 C1608X7S2A
 473K080AE

 TDK
 Corporation

 CAP., 0.047uF, X7S, 100V,
 10%, 0603 2 $0.58 $0.29

 CL21B104K
 ACNNNC

 Samsung
 Electro-Mech
 anics

 CAP., 0.1uF, 25V, 0805
 (decoupling) 30 $1.20 $0.04

 C0805C473K
 1RAC7800 KEMET

 CAP., 0.047uF, X7R, 100V,
 10%, 0805 1 $0.32 $0.32

 100SEV22M8
 X10-5 Rubycon CAP., 22uF 100V 20% 1 $0.73 $0.73

 CC0603JRNP
 O9BN200 YAGEO

 CAP CER 20PF 50V
 C0G/NPO 0603 2 $0.20 $0.10

 106SML050
 M

 Illinois
 Capacitor

 CAP ALUM 10UF 20% 50V
 SMD 2 $1.02 $0.51

 C0805C103J5
 GEC7800 KEMET

 CAP CER 0805 10NF 50V
 C0G 5% 3 $0.90 $0.30

 UMK212B72
 24KG-T Taiyo Yuden

 CAP CER 0.22UF 50V X7R
 0805 1 $0.15 $0.15

 50ZL100MEF
 CT78X11.5 Rubycon

 CAP ALUM 100UF 20%
 50V RADIAL 2 $0.82 $0.41

 CL31A106M
 BHNNNE

 Samsung
 Electro-Mech
 anics

 CAP CER 10UF 50V X5R
 1206 2 $0.60 $0.30

 CL21B474K
 AFNNNG

 Samsung
 Electro-Mech
 anics r 1 $0.10 $0.10

 23

 CL21A106K
 AYNNNE

 Samsung
 Electro-Mech
 anics

 CAP CER 10UF 25V X5R
 0805 1 $0.20 $0.20

 ESW226M10
 0AG3AA KEMET

 CAP ALUM 22UF 20%
 100V RADIAL 1 $0.38 $0.38

 CL21B105K
 AFNNNE

 Samsung
 Electro-Mech
 anics

 CAP CER 1UF 25V X7R
 0805 1 $0.10 0.1

 88534221000
 1

 Wurth
 Elektronik

 CAP., 1000pF, X7R, 2000V,
 10% 1808 2 $0.94 $0.47

 C0805X7R20
 1-103KNE-C
 T Venkel

 CAP, 0.01uF, X7R, 200V,
 10%, 0805 4 $0.20 $0.05

 PMEG10030
 ELPX Nexperia

 DIODE,SCHOTTKY,100V,3
 A,2-pin SOD-128,AEC-Q101 1 $0.50 $0.50

 PTVS58VP1
 UP-115 Nexperia

 DIODE, TVS, 58V, 600W,
 SOD128 1 $0.51 $0.51

 L171L-GC

 American
 Opto Plus
 LED LED, Green, 0805 5 $1.90 $0.38

 MM3Z12VC onsemi
 DIODE, Zener,12V, 200mW,
 SOD-323 4 $1.00 $0.25

 J1B1211CCD WIZnet RJ45 Port 2 $6.84 $3.42

 RMCF0603JT
 30K0

 Stackpole
 Electronics

 RES., 30k, 1/10W, 5%, 0603
 1 $0.10 $0.10

 RMCF0805F
 T1K00

 Stackpole
 Electronics

 RES., 1.00K, 1/8W, 1%, 0805
 2 $0.20 $0.10

 24

 RMCF0805F
 T64R9

 Stackpole
 Electronics

 RES., 64.9, 1/8W, 1%, 0805
 1 $0.10 $0.10

 RMCF0805F
 T76K8

 Stackpole
 Electronics

 RES., 76.8, 1/8W, 1%, 0805
 1 $0.10 $0.10

 RMCF0805F
 T37K4

 Stackpole
 Electronics

 RES., 37.4, 1/8W, 1%, 0805
 1 $0.10 $0.10

 SWR201-NR
 TN-S04-SA-
 WH

 Sullins
 Connector
 Solutions Motor/Limit Connectors 2 $0.36 $0.18

 NREC002SA
 BC-M30RC

 Sullins
 Connector
 Solutions

 2.54mm 2-pin Headers

 11 $1.21 $0.11

 NREC003SA
 BC-M30RC

 Sullins
 Connector
 Solutions

 2.54mm 3-pin Headers

 2 $0.32 $0.16

 PRPC002DA
 AN-RC

 Sullins
 Connector
 Solutions 2x2 2

 PRPC004DA
 AN-RC

 Sullins
 Connector
 Solutions 2x4 1

 PRPC005DA
 AN-RC

 Sullins
 Connector
 Solutions 2x5 1

 PRPC040SA
 AN-RC

 Sullins
 Connector
 Solutions 1x3 4

 PRPC002DA
 AN-RC

 Sullins
 Connector
 Solutions

 2x2 Male Headers (for PoE
 selection) 4 $0.60 $0.15

 25

 BUK7M12-6
 0EX Nexperia N-MOSFETs 10 $9.80 $0.98

 RMCF0805F
 T470R

 Stackpole
 Electronics
 Inc

 RES 470 OHM 1% 1/8W
 0805 4 $0.40 $0.10

 RMCF0603F
 T220R

 Stackpole
 Electronics
 Inc

 RES 220 OHM 1% 1/10W
 0603 1 $0.10 $0.10

 RMCF0805F
 T34R8

 Stackpole
 Electronics
 Inc

 RES 34.8 OHM 1% 1/8W
 0805

 1 $0.10 $0.10

 RMCF0805F
 T140R

 Stackpole
 Electronics
 Inc

 RES 140 OHM 1% 1/8W
 0805

 1 $0.10 $0.10

 RMCF0805F
 T46R4

 Stackpole
 Electronics

 RES., 46.4, 1/8W, 1%, 0805
 1 $0.10 $0.10

 RMCF0805F
 T330R

 Stackpole
 Electronics
 Inc

 RES 330 OHM 1% 1/8W
 0805

 2 $0.20 $0.10

 RMCF0603F
 T174K

 Stackpole
 Electronics

 RES., 174k, 1%, 1/10W, 0603
 1 $0.10 $0.10

 RMCF0603F
 T52K3

 Stackpole
 Electronics

 RES., 52.3k, 1%, 1/10W,
 0603 1 $0.10 $0.10

 RMCF0603Z
 T0R00

 Stackpole
 Electronics

 RES., 0, 1/10W, 0603
 2 $0.20 $0.10

 RMCF0805F
 T8R20

 Stackpole
 Electronics

 RES., 8.2, 1/8W, 1%, 0805
 1 $0.10 $0.10

 RMCF0603JT
 3K30

 Stackpole
 Electronics

 RES., 3.3k , 1/10W, 5%, 0603
 1 $0.10 $0.10

 26

 RMCF0603J
 G100K

 Stackpole
 Electronics

 RES., 100k, 1/10W, 5%, 0603
 2 $0.20 $0.10

 RMCF0805F
 T22R0

 Stackpole
 Electronics
 Inc RES 22 OHM 1% 1/8W 0805 4 $0.40 0.1

 RMCF0805F
 T18R0

 Stackpole
 Electronics
 Inc RES 18 OHM 1% 1/8W 0805 5 $0.50 $0.10

 RMCF0805F
 T150R

 Stackpole
 Electronics
 Inc

 RES 150 OHM 1% 1/8W
 0805 1 $0.10 $0.10

 RNCP0805FT
 D10K0

 Stackpole
 Electronics
 Inc

 RES 10K OHM 1% 1/4W
 0805 4 $0.40 $0.10

 WFMB2010R
 0750FEA Vishay Dale

 RES 0.075 OHM 1% 2W
 2010 2 $2.76 $1.38

 RMCF0805F
 T2K20

 Stackpole
 Electronics
 Inc

 RES 2.2K OHM 1% 1/8W
 0805 4 $0.40 $0.10

 CRGCQ0805
 F4K7

 TE
 Connectivity
 Passive
 Product

 RES 4.7K OHM 1% 1/8W
 0805 1 $0.10 $0.10

 RMCF2512JT
 3K00

 Stackpole
 Electronics

 RES., 3.0k, 5%, 1W, 2512
 1 $0.30 $0.30

 RMCF0603JT
 75R0

 Stackpole
 Electronics

 RES., 75, 1/10W, 5%, 0603
 8 $0.80 $0.10

 $0.00

 B3SL-1002P Push button switch 1 $0.90 $0.90

 27

 7490220122
 Wurth
 Elektronik Transformer 1 $6.77 $6.77

 LT4321HUF
 Analog
 Devices PoE Diode Bridge Controller 1 $5.11 $5.11

 LT4293HMS
 Analog
 Devices PoE PD Controller 1 $6.15 $6.15

 STM32F407
 VET6 Songhe MCU 1 $19.88 $19.88

 NCP1117LPS
 T33T3G onsemi

 3.3V DC/DC Converter
 (Linear) 1 $0.45 $0.45

 E48SC12010
 NRFA

 Delta
 Electronics

 12V DC/DC Converter
 (Switching) 1 $33.39 $33.39

 DP83848
 Waveshare-M
 odule Ethernet PHY 1 $13.98 $13.98

 TMC429-I Trinamic Motion Controller 1 $12.55 $12.55

 TMC2660C-P
 A Trinamic Stepper Driver 1 $7.32 $7.32

 SXO53C3A0
 71-50.000MT Suntsu 50MHz Oscillator (for PHY) 1 $0.52 $0.52

 AS-8.000-20
 Raltron
 Electronics 8MHz Oscillator (for MCU) 1 $0.18 $0.18

 Total Cost $146.84

	Appendix	C:	Schedule	

 Week Bryan Putra Armando

 28

 2/28 Finish 1st draft of PCB
 Layout

 Research on ethernet
 communication for STM32F4
 chips and how to run TCP
 transmission

 Research on configuring and
 controlling TMC2660 and
 TMC429 chips

 3/7 Finalize PCB and submit
 order

 Run ethernet and test
 examples on an STM32F4
 evaluation board with an
 ethernet PHY chip board

 Research on configuring and
 controlling TMC2660 and
 TMC429 chips; examine how
 TMC API interfaces with
 STM32 or C code.

 3/14 Spring Break Spring Break Spring Break

 3/21 Solder parts onto the board
 and assemble the project

 Debug ethernet software and
 get it to work for ping tests

 Solder parts onto the board
 and assemble the project

 3/28 Verify the power board
 against requirements

 Debug PoE circuitry to
 troubleshoot PoE negotiation
 problems

 Verify the power board
 against requirements.

 Continue debug ethernet
 software and look investigate
 it at a lower level

 Help troubleshoot PoE
 negotiation problems

 Verify the power board
 against requirements

 Start writing code for the
 motor control subsystem
 while referring to the TMC
 API.

 4/4 Continue debugging PoE
 subsystem so that it functions
 for PoE+ and PoE++
 standards and verify it against
 requirements

 Debug PoE subsystem so that
 it is functional for PoE+ and
 PoE++ standards and verify it
 against requirements

 Continue writing code for the
 motor control subsystem
 while referring to the TMC
 API

 4/11 Write code to enable sending
 SPI commands via MCU pins

 Research and write code for
 configuring and commanding
 TMC2660 and TMC429
 chips using SPI commands.

 Write code to enable sending
 SPI commands via MCU pins

 Research and write code for
 configuring and commanding
 TMC2660 and TMC429
 chips using SPI commands.

 Write code to enable sending
 SPI commands via MCU pins

 Research and write code for
 configuring and commanding
 TMC2660 and TMC429
 chips using SPI commands.

 4/18 Debug software for
 configuring and commanding
 TMC2660 and TMC429
 chips using SPI commands.

 Verify motor control
 subsystem against
 requirements.

 Debug software for
 configuring and commanding
 TMC2660 and TMC429
 chips using SPI commands.

 Verify motor control
 subsystem against
 requirements.

 Debug software for
 configuring and commanding
 TMC2660 and TMC429
 chips using SPI commands.

 Attempt to get ETH phy chip
 to work with software

 Verify motor control
 subsystem against
 requirements.

 29

 4/25 Debug ethernet software

 Implement UART
 communication for demo
 purposes to substitute
 ethernet communication

 Demo

 Debug ethernet software

 Implement UART
 communication for demo
 purposes to substitute
 ethernet communication

 Demo

 Debug ethernet software

 Implement UART
 communication for demo
 purposes to substitute
 ethernet communication

 Demo

 5/2 Final presentation Final presentation Final presentation

 30

	Appendix	D:	Full	Schematics	

 31

 32

 33

	Appendix	E:	PCB	Layout	

 Main Board:

 Power Board:

 34

