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	Abstract	

 The universal power over ethernet (PoE) stepper driver is a small, accurate and low cost stepper motor 
 driver that tackles problems with current drivers at Argonne National Lab. Combining PoE circuitry with 
 a microcontroller and high accuracy stepper motor drivers, a user will be able to connect our device to a 
 PoE network switch and use a single cable for both powering and communicating with a stepper motor. 
 This report will delve into the design of the project, verify it, outline the costs and discuss future work to 
 be done on the project. 
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	1.	Introduction	

	1.1	Problem	and	Solution	Overview	
 At Argonne National Laboratory the Advanced Photon Source houses a synchrotron beamline where 
 scientists conduct various x-ray diffraction experiments. Numerous stepper motors are used for precise 
 alignment and automation during experiments. Currently, the drivers that are used are bulky and 
 expensive. Each driver needs a dedicated slot, and in many sections of the beamline, these slots are 
 already filled, making it difficult to add more drivers. Hence, a compact, scalable driver would be ideal, 
 but current market solutions require a power supply for each driver in addition to wiring for serial 
 communications. This is not an optimal solution as the number of motors increases. 

 This project aims to make use of already installed power over ethernet (PoE) network switches at 
 Argonne to both communicate with a stepper driver and power it. Such a solution would allow for neat 
 cabling and saving of space. In our solution, an ethernet cable connects to our device from a PoE network 
 switch and a circuit will separate the power and data transmitted. Furthermore, there will be a motor 
 control system that interfaces with the microcontroller unit (MCU). This will then generate current pulses 
 to control the motor. In order to power the MCU and the motor control system, there is a power 
 subsystem that steps down 48 V from the network switch into 12 V for the motors and 3.3 V for all the 
 integrated circuits (ICs) on the board. This module will be universal to most stepper motors with different 
 current requirements while being relatively low cost. 

	1.2	High-level	Requirements	
 In order to create a universal PoE stepper motor driver, it requires features such as requesting the 
 necessary power from the network switch, separating ethernet data and power, stepping down high 
 voltage to a usable level for the motors and ICs, and lastly circuitry and logic to control stepper motors 
 accurately. The list below contains the three high-level requirements needed in order to make such a 
 device. 

 1.  The driver must be compatible with any bipolar stepper motor with a requirement of 3 A per 
 phase or lower. This requirement is necessary since there are a wide range of stepper motors used 
 at Argonne with different sizes and current requirements. Being able to power motors with a 
 rating of up to 3 A per phase covers the vast majority of stepper motors used. 

 2.  The driver must be able to control and step down the 47.5-48.5 V PoE++ power delivery to 
 11.5-12.5 V and 3.0-3.6 V to create up to 6 A of usable power for the motors. 3.3 V is the 
 required voltage for the IC chips on the board. This is necessary because the proper PoE 
 negotiation must happen so that power is supplied to the device, and the stepper motors require a 
 12 V supply with up to 3 A per phase for each motor. 

 3.  The driver must have reliable transmission of data over ethernet and interpret the commands into 
 STEP/DIR pulses to drive the motor; reliable meaning that it does not overheat and so does not 
 reach over 125  ° C as to not heat the TMC2660 stepper driver chip. As Argonne uses stepper 
 drivers for important alignment and automation purposes, it is important to ensure that it may 
 continuously function. The TMC2660 chip has a maximum operating temperature rating of 125° 
 C. [1] 
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	1.3	Design	Overview	

 Fig. 1: Block diagram of universal PoE stepper driver. 

 The universal PoE stepper driver consists of three subsystems as illustrated in Fig. 1. The ethernet 
 subsystem accepts an ethernet cable from a PoE network switch through an RJ45 port. The RJ45 port 
 interfaces with the transformer through AC and DC signals for data and power, respectively. The 
 transformer sends 48 V to the diode bridge controller for it to be rectified to account for polarity in 
 different pins going into the power delivery (PD) controller in the power subsystem. The transformer also 
 communicates with the ethernet PHY chip to send and receive data which then goes into the MCU. 

 The power subsystem is responsible for powering all integrated circuits (ICs) on the board as well as 
 powering the motor. To do that, the power subsystem must accept 48 V and convert it into 3.3 V which 
 powers all the ICs, and 12 V which is used to power the motor. 

 The motor control subsystem contains the logic and circuitry to drive the motor and stop the motor using 
 limit switches. The motion controller first receives SPI commands from the MCU for various commands. 
 It then produces the corresponding step and direction pulses which go into the stepper driver IC. The 
 stepper driver IC then produces a current to move the motor accordingly. Additionally, the motion 
 controller receives on or off signals from the limit switches which stops the stepper motor if a boundary is 
 reached. 
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	2	Design	

	2.1	Ethernet	Subsystem	

	2.1.1	Ethernet	Subsystem	Design	Procedure	
 For the ethernet subsystem, we heavily referenced the Analog Devices DC2911A development board for 
 our PoE circuitry [3]. This features both the LT4293 PD controller and the LT4321 diode bridge 
 controller. It can provide both the PoE+ and PoE++ standards for which there are network switches 
 installed at Argonne. We were also already in possession of this board from Argonne, which is why we 
 used this as a starting point for our design. 

 For our ethernet PHY, we used the Texas Instruments DP83848. Because of the parts shortage, all 
 standard 10/100 Base-T ethernet PHYs were out of stock. For this reason, we needed to desolder a PHY 
 from some external source, and the Waveshare DP83848 development board was the best candidate since 
 this chip had seemingly widespread support and it was relatively cheap. Additionally, examples were 
 using this chip with our exact MCU, the STM32F407. However, an alternative to this would be the 
 Microchip LAN8742. This is commonly integrated on STM32 development boards with ethernet 
 connectivity, and we would have started with one of these development platforms if we went this route. 

	2.1.2	Ethernet	Subsystem	Design	Details	
 This subsystem is responsible for receiving both power and data from the PoE network switch, also called 
 the PSE. The ethernet data signals are AC, with the Rx pair between pins 1 and 2 while the Tx pins are 
 between 3 and 6. The power is 48 VDC, which can be on different pins depending on which PoE standard 
 is being used. In our case, we are using two standards: PoE+ (25.5 W) and PoE++ (51 W). PoE+ operates 
 in mode A, while PoE++ operates in mode B. Mode A has positive DC voltage on the Rx data lines (pins 
 1 and 2), and GND on the Tx lines (pins 3 and 6). In mode B, the normally unused pins are used for 
 power, with positive voltage on pins 4 and 5 and GND on pins 7 and 8. 

 After the power and data come in through the RJ45 port, a transformer allows the AC ethernet signals to 
 pass through while the DC power does not. The power is taken from the transformer center taps, which 
 are the POE_CT signals seen on Fig. 2. 
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 Fig. 2: Ethernet transformer circuit schematic. 

 To account for the power being on different pins, A “diode” bridge is needed to rectify the power. While a 
 passive rectifying bridge with actual diodes can be used, a more efficient method is to use MOSFETs. In 
 this case, each center tap signal is connected between the source and drain of two MOSFETs. A controller 
 IC (Analog Devices LT4321) detects which signals correspond to positive and negative voltage and drives 
 the gates of the MOSFETs to connect positive voltage to the VPORTP rail and negative voltage to the 
 VPORTN rail. 

 Fig. 3: Diode bridge circuit schematic 

 Before power can be supplied to the device, a negotiation must occur between the PSE and the PD 
 (powered device). For this, we used the Analog Devices LT4293. 
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 Fig. 4: PD controller schematic. 

 For a negotiation to occur, the PSE first applies two voltages between 2.7V and 10.1V, measuring the 
 current response to verify a characteristic 25 kΩ resistance that demonstrates a PD is present. This is the 
 DETECT voltage shown in Fig. 5. After this test, the first classification voltage is sent between 14.5V and 
 20.5V. The PSE measures the signature current, and depending on the reading, more classification 
 voltages can be sent. More cycles correspond to more power being allowed to the PD. for PoE++, a max 
 of three classification voltages can be sent, as seen in Fig. 5. 

 Fig. 5: Class 3 PoE negotiation diagram. 

 On the data side, the Tx and Rx pairs that are coupled through the transformer connect to the ethernet 
 PHY. PHY stands for physical layer transceiver, and this is where the AC ethernet signals are interpreted 
 into a digital interface that can communicate with the MCU. We used the DP83848 PHY which is a 
 standard 10/100 Mb/s ethernet PHY. As seen in Fig. 6, the Tx and Rx pairs connect to the top left of the 
 IC. RMII, which stands for reduced MII, is the protocol used to communicate with MCU. These pins can 
 be seen on the right side of the schematic, including TXD0, TXD1, TXEN, TXD0, RXD1, CRS_DV, 
 MDC, and MDIO. Finally, RMII requires a 50 MHz oscillator shared between the PHY and the MCU 
 which can be seen in the bottom right of Fig. 6. 
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 Fig. 6: DP83848 ethernet PHY schematic. 

 As far as PCB layout for this subsystem, we followed the same general design as the DC2911A board. 
 However, this board was 6 layers, while ours was only 2, so many adjustments were made to complete the 
 routing. The full PCB layout can be referenced in Appendix E. The DC2911A simply had an RJ45 port 
 for output data, so on our board we routed the data pairs directly to the DP83848 PHY. It is important that 
 these traces are approximately the same length to match impedance. Additionally, the PHY has outputs 
 for status LEDs on the RJ45 port that signify data transfer, which we added. 

	2.2	Power	Subsystem	

	2.2.1	Power	Subsystem	Design	Procedure	
 For our power subsystem, we used the E48SC12010NRFA for our 12 V DC/DC converter, which is 
 capable of providing 120 W (10 A) of power. This provides the 12 V supply for the motors, and we 
 needed enough current to provide a max of 3 A per motor phase, or 6 A total. The 12 V is stepped down 
 to 3.3 V to power the ICs, and for this we used a simple linear regulator, the NCP1117, which can provide 
 up to 1 A. A potential alternative to this was a switching buck converter, but we determined that we did 
 not need this extra efficiency, and we did not want to introduce extra noise into our circuit that might 
 interfere with current sensing by the motor drivers. 

	2.2.2	Power	Subsystem	Design	Details	
 This subsystem is rather simple in design. First, the outputs from the PoE circuitry are VOUT+, VOUT-, 
 and PWRGD. VOUT+ is positive PoE voltage, while VOUT- is ground. PWRGD serves as an enable pin 
 for the power supply, recommended for the most reliable operation. These outputs connect to the Vin+, 
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 Vin-, and ON/OFF pins of the 12 V DC/DC converter, respectively. +12 V is then provided between the 
 Vout+ and Vout- pins. For standard 12V operation, the E48SC12010 datasheet instructs connecting the 
 Sense+ pin to Vout+ and Sense- to Vout- [2]. The TRIM pin is left unconnected. 

 As mentioned above, the 12 V is only used for powering the motors, and must be stepped down to 3.3 V 
 to power the ICs. Our 3.3 V regulator is a simple linear regulator. The input 12 V is connected between 
 the VI and GND pins, and the output is between VO and GND. 10 uF capacitors are needed on the input 
 and output pins, and we also added a status LED to show power. 

 Fig. 7: Power subsystem schematic. 

 For the layout of this subsystem we initially thought about putting the 12 V converter on our main board, 
 however, its large size made it difficult to fit while keeping our board compact. As a result, we decided to 
 have a separate PCB for power shown in Fig. 8. This connects to our main board through jumper wires. 

 Fig. 8: Power board PCB layout. 
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	2.3	Motor	Control	Subsystem	

	2.3.1	Motor	Control	Design	Procedure	
 We used two main ICs for the motor control subsystem: the TMC429 and the TMC2660. These are made 
 by the German company Trinamic Motion Control, which specializes in laboratory automation. They are 
 known for their precision and reliability, and their drivers are used frequently at Argonne. Once we knew 
 we wanted to use Trinamic drivers, there were a few options for the configuration we used. We had the 
 option between a stepper motor gate driver plus external power MOSFETs or a driver that had integrated 
 MOSFETs. This is a trade-off between simplicity and power. We opted for the latter option to simplify the 
 board layout while maintaining a reasonable amount of power. The TMC2660 is Trinamic's most 
 powerful driver IC, with a maximum of 2.8 A of current per motor phase. This is more than enough for 
 most steppers at Argonne. 

 Given that our driver would control the stepper motors that are used for alignment and automation for the 
 synchrotron beamline where x-ray diffraction experiments are conducted we also aimed to have precise 
 drivers. With this in mind, we also chose the stepper driver that allowed for the needed accuracy with the 
 ability for 256 microsteps. For maximum accuracy, Trinamic advises that these drivers are coupled with a 
 motion controller IC. In the case of the TMC26x series, the TMC429 is recommended. The purpose of 
 this chip is to offload critical calculations and look up tables from the MCU and make interfacing with the 
 driver IC easier and more reliable. Rather than sending STEP/DIR pulses directly to the driver, the MCU 
 can write parameters such as position and velocity through SPI and not have to worry about timing. 

	2.3.2	Motor	Control	Design	Details	
 Both of the motor control chips require SPI for the initialization of certain parameters. During operation, 
 though, The MCU only sends SPI commands to the TMC429, which in turn sends STEP/DIR signals to 
 the TMC2660. Step and direction (STEP/DIR) is the standard digital interface for stepper motor drivers. 
 First, the value of DIR indicates whether the motor should move clockwise or counterclockwise. The 
 positive edge of STEP tells the driver to move the motor one unit in the direction specified by DIR. The 
 unit is determined by the driver IC and can either be a full step, half step, or microstep. In our case, the 
 TMC2660 is configured for max resolution, which is 256 microsteps per full step. Therefore, one STEP 
 pulse moves the motor by 1 microstep, which is 

 1     𝑓𝑢𝑙𝑙𝑠𝑡𝑒𝑝 
 256     𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑒𝑝𝑠 *  1     𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

 200     𝑓𝑢𝑙𝑙𝑠𝑡𝑒𝑝𝑠 *  360° =  0 .  00703125° 

 The SPI and STEP/DIR inputs can be seen on the bottom left of the TMC2660 schematic symbol in Fig. 
 9. Next, there are power inputs for each motor phase, VSA and VSB, as seen on the top of the symbol. As 
 specified in the TMC2660 datasheet [1], There should be both electrolytic and ceramic capacitors on 
 these inputs, as well as a 220 nF cap between VHS and 12 V, and a 470 uF cap between 5VOUT and 
 GND. On the right side of the symbol in Fig. 9 are the motor outputs. Since there are two coils, there are 4 
 connections total: OA1 and OA2 for coil A and OB1 and OB2 for coil B. Each of these connections has 4 
 pins on the TMC2660 due to large current output. On the left side of the symbol are the current sensing 
 resistors. The full motor current runs through these resistors, and the driver measures the voltage across 
 them and limits the current if it measures a high enough voltage. 
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 Fig. 9: Motor control subsystem schematic. 

 The TMC429 is rather simple in terms of external circuitry. In addition to the SPI inputs, it has STEP/DIR 
 outputs, a clock input, and three reference switch inputs. The reference switches are used as emergency 
 stop switches to stop the motor if they are pulled to ground. The TMC429 can drive up to 3 motors, 
 however since we are only driving 1, we configured REF1 to be the left stop switch and REF3 to be the 
 right stop switch. In other words, if the motor is moving counterclockwise and REF1 is activated, the 
 motor will be stopped. Conversely if the motor is moving clockwise and REF3 is activated, the motor will 
 also be stopped. 

 Since there is a considerable amount of current traveling to the motor, the PCB layout required particular 
 attention. We created 4 large planes on the bottom layer of the board corresponding to each motor coil 
 output, with several vias transporting this current to each plane. Then, thick traces connected these planes 
 to the motor connector. 

 Fig. 10: TMC2660 PCB layout. 
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 The commands sent from the microcontroller communicate through SPI commands with datagrams of 
 32-bits. In Fig. 9 the aforementioned communication can be noted with the SPI inputs on both the chips. 

 Using the TMC429 datasheet [4] it can be seen that the most significant bits hold a 4-bit register value 
 and a read/write bit. In order to move the motor certain registers must be chosen and certain bits in the 
 lower 24 bits must be configured to alter the register contents. A high level flow of this process is 
 presented in Fig. 11 below. 

 Fig. 11: Flow chart of motor control code. 

 For example, register zero (4’b0000) controls the target position with its lower 24 bits. To get it to move 
 to a target position a 24-bit value representing the position must be sent. This command is sent through 
 the HAL library command. 

 𝐻𝐴𝐿  _  𝑆𝑃𝐼  _  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒 ( &  ℎ𝑠𝑝𝑖  1 ,     𝐷𝐴𝑇𝐴  _  𝑆𝐸𝑁𝑇 ,     𝐷𝐴𝑇𝐴  _  𝑅𝐸𝐶𝐼𝐸𝑉𝐸𝐷 ,     𝑁𝑈𝑀  _  𝐵𝑌𝑇𝐸𝑆  _  𝑊𝑅𝐼𝑇𝐸 ,  𝑇𝐼𝑀𝐸𝑂𝑈𝑇 );

 Where hspi1 is the SPI handler that is used to refer to the TMC429 and the 32 bits are sent in 
 DATA_SENT. In this case, DATA_RECIEVED is not important as it was marked as a "write" command; 
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 however, for register reads this is where the output will be stored. NUM_BYTES_WRITE is 
 self-explanatory and  is the amount of time  it waits for data to be sent and received before  𝑇𝐼𝑀𝐸𝑂𝑈𝑇 
 continuing program execution. 

 With all this in mind, we decided to create a couple of functions that would accomplish tasks such as 
 setting the positions, getting the position, setting the velocity, getting the velocity, and changing the 
 current scaling that determines how much current the motor is driven with. These functions would then 
 pair nicely when receiving external commands from ethernet. 

	2.4	MCU	

	2.4.1	MCU	Design	Procedure	
 The MCU is not its own subsystem but straddles the ethernet and motor control subsystems. Its job is to 
 receive/transmit the ethernet data via the RMII interface from the PHY, interpreting this data into motor 
 controls to send through SPI. 

 We decided to use an STM32F407 for our MCU, due to its built-in ethernet MAC and ample processing 
 power. Additionally, we first thought we might use a motor control API provided by Trinamic, which was 
 targeted for ARM processors. Another potential option could be the Microchip PIC18 series, some of 
 which have a built-in Ethernet MAC and PHY. This would decrease design complexity, but would come 
 at the cost of reduced processing power and peripheral support. 

	2.4.2	MCU	Design	Details	
 For the circuitry surrounding the MCU, we first allocated pins for the RMII input. Next, we had two SPI 
 outputs for the two motor control ICs. GPIOs were used for the CS pins in each SPI channel. Both 
 Trinamic ICs require a clock input, and to keep the layout simpler, we decided to have 16 MHz PWM 
 outputs from the MCU rather than an external oscillator. We also added an 8 MHz crystal for the MCU to 
 ensure accurate timing, some status LEDs, and a UART interface for debugging purposes. Finally, our 
 method of programming was an SWD interface, which requires two signals: SWCLK and SWDIO, in 
 addition to 3.3V and GND. 
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	3.	Design	Veri�ication	
 The high-level requirements for the project have all been achieved except for ethernet data transmission. 
 We were able to run multiple different stepper motors with a requirement of 3 A or lower, able to step 
 down PoE voltage so that it powers the rest of the board, and ensured that there was no overheating. To 
 break down the projects, there are requirements and verifications we have to achieve and conduct as can 
 be seen in appendix A. The results are further discussed in this section. 

	3.1	Ethernet	Veri�ication	

 Table 1: Ethernet subsystem output voltage. 

 Voltage Measured (V) 

 54.3172 

 54.3171 

 54.3171 

 54.3171 

 54.3171 

 The first ethernet subsystem requirement is that it must be able to output 47.5 - 48.5 VDC. In order to 
 verify this requirement, we used the GS110TUP PoE network switch that is connected to the RJ45 port on 
 our board. Table 1 illustrates the value measured on the output of the ethernet subsystem and it averages 
 54.3171 V. This requirement is partially achieved because, for the purposes of this project, this fulfills the 
 minimum required voltage for the design to operate. The measured voltage is higher than the 
 requirements because of the voltage supplied by the PoE network switch. On the network switch’s 
 datasheet [5], it states that it uses a 54 V and 4.7 A power supply hence the measured voltage. From initial 
 research, we thought that PoE only transmitted at 48 V but in actuality, it is within a range of 48 - 57 V. 
 [6]. It is important to note that this poses no issue for our device, as the voltage we measured is still 
 within the range of the DC/DC converter maximum input voltage. However, as this is still outside of the 
 requirement, we conclude that this requirement is partially achieved. 

 The second requirement in the ethernet subsystem is that it must be able to receive TCP packets 
 accurately through the RJ45 port into the MCU. We were unable to get the ethernet software working 
 hence this requirement was not achieved. While developing the software, we saw that the LEDs were 
 blinking on the ports hence, it signifies that data were transmitting. However, as the packet transmission 
 was investigated, we did not see any of which went to the development board’s MAC address hence, we 
 were unable to connect to it. We believe that CPU memory barriers for ethernet were not properly 
 configured. After further research, we found that ethernet uses DMA (Direct Memory Access) in order to 
 reduce CPU utilization. Ethernet uses memory descriptors to identify which parts of memory can be used 
 for DMA but in STM32’s generated code, descriptor memory is not necessarily configured as the 
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 ethernet’s device memory. Hence, ethernet fails when trying to read within the memory barrier because 
 the STM32 has not set the OWN bit there to signify that it can be read by this specific peripheral. 

	3.2	Power	System	Veri�ication	

 Table 2: Voltage and current output from 12 V DC/DC converter with a load of 2 Ω. 

 Voltage Measured (V)  Current Measured (A) 

 12.001  5.783 

 12.002  5.776 

 12.003  5.785 

 12.007  5.784 

 12.011  5.777 

 The first requirement discussed is that the power subsystem must be able to receive a 47.5-48.5 VDC and 
 output 11.5-12.5 V with a current of 5.5-6.5 A. In order to verify this requirement, we used a DL83021A 
 electronic load in constant resistance mode at 2 Ω so that we could measure the appropriate current and 
 voltage. To power up the power module, we used a DP831 programmable DC power supply at 48 V and 2 
 A. Table 2 shows the results that were obtained after 5 trials, averaging to 12.005 V and 5.781 A. Hence, 
 it concludes that the design achieves the requirement. 

 Table 3: Voltage output of 3.3V linear regulator. 

 Voltage Measured (V) 

 3.301 

 3.301 

 3.302 

 3.300 

 3.301 

 The second requirement in the power subsystem is that the power subsystem must be able to receive a 
 47.5-48.5 VDC and output 3.0-3.6 V. In order to verify this requirement, we again used the DP831 
 programmable DC power supply at 48 V and 2 A. We also used a multimeter to measure the voltages of 
 the 3.3 V output headers of the power board. The result can be seen in Table 3 which averages to a 
 reading of 3.301 V. Hence, this requirement has been achieved. 
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	3.3	Motor	Control	Veri�ication	
 The first requirement tested is that the motor control subsystem  must be able to accept SPI commands 
 from MCU and convert the commands to step/dir pulses that are accurate enough for 
 microstepping 256 microsteps per full step.  Testing the Motor Control Subsystem was performed by 
 sending specific SPI commands from the microcontroller to the TMC429 and displaying the returned 
 information using UART to a serial monitor. For example, a target position of 52800 was set to the motor 
 to move a full rotation. The reason this number corresponds to a full rotation is because the TMC2660 is 
 configured to a resolution of 256 microsteps per full step, and there are 200 full steps in a full motor 
 rotation so 256*200 = 52800 microsteps per rotation. We verified visually that the motor shaft did in fact 
 move a full rotation, and the position was then read back on the serial monitor and verified to see if the set 
 position was the current actual position. 

 Another requirement we had was to provide 3 A to the motor without exceeding 125  °  C. Unfortunately, 
 we were only able to get an infrared thermometer meant to measure human temperature and at one point 
 we exceeded the temperature limit. The limit only allowed us to measure up to 43  °  C. With this in mind, 
 we plotted the data shown below with Fig. 12 and assuming linearity we used the best fit line equation to 
 estimate the temperature at 3 A and arrived at the result of 73.4  °  C. This temperature is well below our 
 target of 125  °  C. 

 Given the fact we are assuming linearity and using an equation that may not show the full picture, we can 
 only partially verify this subsystem. Moreover, we tested this on multiple different motors and they 
 showed similar results; however, none are rated for  3A so even if we had the ability to accurately 
 measure the temperature we would still feel unsafe in providing a current that our motors were not 
 intended for. 

 Fig. 12: Plot of the current against the measured temperature of the TMC2660. 
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	4.	Costs	

	4.1	Parts	
 The total cost of parts totals to $146.84. For a complete list of parts refer to Appendix B. 

	4.2	Labor	
 To estimate the labor costs, it would be important to note how much an ECE graduate from University of 
 Illinois at Urbana-Champaign earns on average. An electrical engineering graduate earns  $79,129 per 
 year and a computer engineering graduate earns an average of $99,145 per year [7]. Averaging between 
 these two majors results in $89,137 per year which roughly translates to $44/hr with the assumption of 40 
 hour work weeks and 50 working weeks per year. It has been observed that this project takes 150 hours to 
 complete therefore, the labor cost can be calculated using the following formula and presented by Table 4 
 below: 

 2 .  5    *     150     ℎ𝑟    *     $44/     ℎ𝑟    *     3     𝑝𝑒𝑜𝑝𝑙𝑒    =     $49 ,  500 

 Table 4: Estimated labor costs. 

 Name  Hourly Rate  Total Hours 
 Expense 
 Multiplier 

 Total 
 Cost/Person 

 Armando  $44.00  150.00  2.50  $16,500.00 

 Bryan  $44.00  150.00  2.50  $16,500.00 

 Putra  $44.00  150.00  2.50  $16,500.00 

 Labor Total  $49,500.00 

 Adding the costs for labor and parts, it can be estimated that the total cost for this project is: 
 $49,646.84 

	4.3	Schedule	
 Refer to appendix C for the schedule. 
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	5.	Conclusion	

	5.1	Accomplishments	
 In the end, we were able to test and verify all of the subsystems except for ethernet communication. To 
 specify we were able to get the PoE circuitry to work as it was able to output 54V, signifying that the 
 proper PoE negotiation had taken place. This worked for both PoE+ and PoE++ standards. Moreover, we 
 were then able to successfully step down the 48v received from PoE into 12V and 3.3V usable for the 
 motor and ICs. We were able to get all the ICs involved in motor control to communicate with each other 
 as the microcontroller was able to send commands to the motion controller which were interpreted into 
 step directions pulses that were used to drive the motors. 

	5.2	Uncertainties	
 Overall we have ideas as to why the ethernet subsystem did not work as intended. The ideas have been 
 touched on before but we are still unsure as to exactly which of those if any is the solution to our problem. 
 Possible ways to fix this will be discussed in the future work section below. 

 As a result of this system, we were not able to work through the full integration of the software. This 
 means that we are still uncertain about the steps we would need to do to get it working on the SPEC 
 system that Argonne, our end users, currently use. 

	5.3	Ethical	considerations	
 To ensure safety and to be in accordance with IEEE Code of Ethics #9 [8], we must be sure to avoid 
 injuries. Our project has two potential hazards one of them being the high voltages used and the other 
 being the heat of various components, especially on our power board. To mitigate the risks of working 
 with high voltages for our end-user we have an enclosure so the power pins are not directly exposed. An 
 additional precaution we have taken is insulating for potentially dangerous components. 

	5.4	Future	work	
 Moving forward with the project it would be pertinent to first address the only part that was not able to 
 work - ethernet. To get this system working it would be best to address the issues that we had while 
 working on it. Seeing as two PHY chips were shorted and we believe the cause to be transient voltages on 
 the Tx/Rx lines, we would include some TVS diodes on the PHY data inputs. Moreover, we would use a 
 different PHY that is also included on an STM32 dev board. Once that is tested and is proven to work, we 
 could move those same components with the working software onto our custom board. Going forward, it 
 would be ideal to integrate our device with the SPEC control software that is currently being used at 
 Argonne. This is proprietary software used specifically for synchrotron beamline control. From a design 
 and usability standpoint, we would also switch to a 4-layer PCB design to increase ease of routing, signal 
 integrity, and optimized heat management. Additionally, instead of connecting our power board to our 
 main board through jumper wires, we would add stackable headers so that the power board could fit 
 neatly into a socket. This would also result in better current conduction. To increase performance of the 
 motor control subsystem, we would add a dedicated 16 MHz oscillator for both the TMC429 and 
 TMC2660 clock inputs. Due to high amounts of noise that resulted from the PWM outputs from the 
 MCU, we were forced to use the internal clock for the TMC2660, which is not recommended. Finally, to 
 allow for even higher power motors and a generally more robust design, we would use one of the 
 Trinamic gate driver ICs such as the TMC262 coupled with external MOSFETs. 
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	Appendix	A:	Requirement	and	Veri�ication	Table	

 Ethernet Subsystem Requirements and Verification Table 

 Requirement  Verification  Verification status 

 The ethernet subsystem must 
 be able to receive TCP 
 packets accurately through 
 the RJ45 port into the MCU. 

 Setup and verify IP and MAC 
 address of external PHY chip 
 and MCU and then send a 
 command from laptop to turn 
 the LEDs on the 
 microcontroller development 
 board on. 

 N 

 As the system is designed for 
 an ethernet at a PoE standard, 
 the ethernet subsystem must 
 be able to output 47.5 - 48.5 
 V DC to the PD controller. 

 Firstly, plug a PoE ethernet 
 connection then, using a 
 voltmeter, measure the 
 voltage of the output diode 
 bridge and verify that it is 
 within the range of 47.5 V - 
 48.5 V. 

 Partially achieved 

 Power Subsystem Requirements and Verification Table 

 Requirement  Verification  Verification status 
 (Y or N) 

 The power subsystem must be 
 able to receive a 47.5 - 48.5 
 VDC output from the ethernet 
 subsystem and step it down to 
 11.5 - 12.5 V output with a 
 current of 5.5 - 6.5 A. 

 Input a 48V DC into the PoE 
 PD controller. Then measure 
 that the appropriate output 
 voltage and current of the 
 converter should be within 
 the range of 11.5 - 12.5 V and 
 5.5 - 6.5 A respectively. 

 Y 

 Must be able to step down 
 voltage received from the 
 ethernet subsystem that is in 
 the range of 47.5 - 48.5 V DC 
 and step it down to an 
 acceptable range of 3.0 - 3.6 
 V. 

 Input a 48V DC into the PoE 
 PD controller. Then measure 
 that the appropriate output 
 voltage and current of the 
 converter should be within 
 the range of 3.0 - 3.6 V. 

 Y 
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 Motor Control Subsystem Requirements and Verification Table 

 Requirement  Verification  Verification status 
 (Y or N) 

 Must be able to accept SPI 
 commands from MCU and 
 convert the commands to 
 step/dir pulses that are 
 accurate enough for 
 microstepping 256 microsteps 
 per full step. 

 We will print the SPI 
 responses from the TMC429 
 and TMC2660 chips on a 
 serial monitor and match 
 them with the datasheets, as 
 well as microstep 51200 
 times and see if this matches 
 a full rotation. 

 Y 

 Must be able to provide up to 
 3A per motor phase without 
 going above 125  ° C. 

 We will be able to monitor 
 the current provided using an 
 ammeter and also monitor its 
 heat using an infrared 
 thermometer. 

 Partially achieved 
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	Appendix	B:	Parts	List	

 Part #  Manufacturer  Description  Quantity  Cost  Cost/Unit 

 C1608X7S2A 
 473K080AE 

 TDK 
 Corporation 

 CAP., 0.047uF, X7S, 100V, 
 10%, 0603  2  $0.58  $0.29 

 CL21B104K 
 ACNNNC 

 Samsung 
 Electro-Mech 
 anics 

 CAP., 0.1uF, 25V, 0805 
 (decoupling)  30  $1.20  $0.04 

 C0805C473K 
 1RAC7800  KEMET 

 CAP., 0.047uF, X7R, 100V, 
 10%, 0805  1  $0.32  $0.32 

 100SEV22M8 
 X10-5  Rubycon  CAP., 22uF 100V 20%  1  $0.73  $0.73 

 CC0603JRNP 
 O9BN200  YAGEO 

 CAP CER 20PF 50V 
 C0G/NPO 0603  2  $0.20  $0.10 

 106SML050 
 M 

 Illinois 
 Capacitor 

 CAP ALUM 10UF 20% 50V 
 SMD  2  $1.02  $0.51 

 C0805C103J5 
 GEC7800  KEMET 

 CAP CER 0805 10NF 50V 
 C0G 5%  3  $0.90  $0.30 

 UMK212B72 
 24KG-T  Taiyo Yuden 

 CAP CER 0.22UF 50V X7R 
 0805  1  $0.15  $0.15 

 50ZL100MEF 
 CT78X11.5  Rubycon 

 CAP ALUM 100UF 20% 
 50V RADIAL  2  $0.82  $0.41 

 CL31A106M 
 BHNNNE 

 Samsung 
 Electro-Mech 
 anics 

 CAP CER 10UF 50V X5R 
 1206  2  $0.60  $0.30 

 CL21B474K 
 AFNNNG 

 Samsung 
 Electro-Mech 
 anics  r  1  $0.10  $0.10 
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 CL21A106K 
 AYNNNE 

 Samsung 
 Electro-Mech 
 anics 

 CAP CER 10UF 25V X5R 
 0805  1  $0.20  $0.20 

 ESW226M10 
 0AG3AA  KEMET 

 CAP ALUM 22UF 20% 
 100V RADIAL  1  $0.38  $0.38 

 CL21B105K 
 AFNNNE 

 Samsung 
 Electro-Mech 
 anics 

 CAP CER 1UF 25V X7R 
 0805  1  $0.10  0.1 

 88534221000 
 1 

 Wurth 
 Elektronik 

 CAP., 1000pF, X7R, 2000V, 
 10% 1808  2  $0.94  $0.47 

 C0805X7R20 
 1-103KNE-C 
 T  Venkel 

 CAP, 0.01uF, X7R, 200V, 
 10%, 0805  4  $0.20  $0.05 

 PMEG10030 
 ELPX  Nexperia 

 DIODE,SCHOTTKY,100V,3 
 A,2-pin SOD-128,AEC-Q101  1  $0.50  $0.50 

 PTVS58VP1 
 UP-115  Nexperia 

 DIODE, TVS, 58V, 600W, 
 SOD128  1  $0.51  $0.51 

 L171L-GC 

 American 
 Opto Plus 
 LED  LED, Green, 0805  5  $1.90  $0.38 

 MM3Z12VC  onsemi 
 DIODE, Zener,12V, 200mW, 
 SOD-323  4  $1.00  $0.25 

 J1B1211CCD  WIZnet  RJ45 Port  2  $6.84  $3.42 

 RMCF0603JT 
 30K0 

 Stackpole 
 Electronics 

 RES., 30k, 1/10W, 5%, 0603 
 1  $0.10  $0.10 

 RMCF0805F 
 T1K00 

 Stackpole 
 Electronics 

 RES., 1.00K, 1/8W, 1%, 0805 
 2  $0.20  $0.10 
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 RMCF0805F 
 T64R9 

 Stackpole 
 Electronics 

 RES., 64.9, 1/8W, 1%, 0805 
 1  $0.10  $0.10 

 RMCF0805F 
 T76K8 

 Stackpole 
 Electronics 

 RES., 76.8, 1/8W, 1%, 0805 
 1  $0.10  $0.10 

 RMCF0805F 
 T37K4 

 Stackpole 
 Electronics 

 RES., 37.4, 1/8W, 1%, 0805 
 1  $0.10  $0.10 

 SWR201-NR 
 TN-S04-SA- 
 WH 

 Sullins 
 Connector 
 Solutions  Motor/Limit Connectors  2  $0.36  $0.18 

 NREC002SA 
 BC-M30RC 

 Sullins 
 Connector 
 Solutions 

 2.54mm 2-pin Headers 

 11  $1.21  $0.11 

 NREC003SA 
 BC-M30RC 

 Sullins 
 Connector 
 Solutions 

 2.54mm 3-pin Headers 

 2  $0.32  $0.16 

 PRPC002DA 
 AN-RC 

 Sullins 
 Connector 
 Solutions  2x2  2 

 PRPC004DA 
 AN-RC 

 Sullins 
 Connector 
 Solutions  2x4  1 

 PRPC005DA 
 AN-RC 

 Sullins 
 Connector 
 Solutions  2x5  1 

 PRPC040SA 
 AN-RC 

 Sullins 
 Connector 
 Solutions  1x3  4 

 PRPC002DA 
 AN-RC 

 Sullins 
 Connector 
 Solutions 

 2x2 Male Headers (for PoE 
 selection)  4  $0.60  $0.15 
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 BUK7M12-6 
 0EX  Nexperia  N-MOSFETs  10  $9.80  $0.98 

 RMCF0805F 
 T470R 

 Stackpole 
 Electronics 
 Inc 

 RES 470 OHM 1% 1/8W 
 0805  4  $0.40  $0.10 

 RMCF0603F 
 T220R 

 Stackpole 
 Electronics 
 Inc 

 RES 220 OHM 1% 1/10W 
 0603  1  $0.10  $0.10 

 RMCF0805F 
 T34R8 

 Stackpole 
 Electronics 
 Inc 

 RES 34.8 OHM 1% 1/8W 
 0805 

 1  $0.10  $0.10 

 RMCF0805F 
 T140R 

 Stackpole 
 Electronics 
 Inc 

 RES 140 OHM 1% 1/8W 
 0805 

 1  $0.10  $0.10 

 RMCF0805F 
 T46R4 

 Stackpole 
 Electronics 

 RES., 46.4, 1/8W, 1%, 0805 
 1  $0.10  $0.10 

 RMCF0805F 
 T330R 

 Stackpole 
 Electronics 
 Inc 

 RES 330 OHM 1% 1/8W 
 0805 

 2  $0.20  $0.10 

 RMCF0603F 
 T174K 

 Stackpole 
 Electronics 

 RES., 174k, 1%, 1/10W, 0603 
 1  $0.10  $0.10 

 RMCF0603F 
 T52K3 

 Stackpole 
 Electronics 

 RES., 52.3k, 1%, 1/10W, 
 0603  1  $0.10  $0.10 

 RMCF0603Z 
 T0R00 

 Stackpole 
 Electronics 

 RES., 0, 1/10W, 0603 
 2  $0.20  $0.10 

 RMCF0805F 
 T8R20 

 Stackpole 
 Electronics 

 RES., 8.2, 1/8W, 1%, 0805 
 1  $0.10  $0.10 

 RMCF0603JT 
 3K30 

 Stackpole 
 Electronics 

 RES., 3.3k , 1/10W, 5%, 0603 
 1  $0.10  $0.10 
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 RMCF0603J 
 G100K 

 Stackpole 
 Electronics 

 RES., 100k, 1/10W, 5%, 0603 
 2  $0.20  $0.10 

 RMCF0805F 
 T22R0 

 Stackpole 
 Electronics 
 Inc  RES 22 OHM 1% 1/8W 0805  4  $0.40  0.1 

 RMCF0805F 
 T18R0 

 Stackpole 
 Electronics 
 Inc  RES 18 OHM 1% 1/8W 0805  5  $0.50  $0.10 

 RMCF0805F 
 T150R 

 Stackpole 
 Electronics 
 Inc 

 RES 150 OHM 1% 1/8W 
 0805  1  $0.10  $0.10 

 RNCP0805FT 
 D10K0 

 Stackpole 
 Electronics 
 Inc 

 RES 10K OHM 1% 1/4W 
 0805  4  $0.40  $0.10 

 WFMB2010R 
 0750FEA  Vishay Dale 

 RES 0.075 OHM 1% 2W 
 2010  2  $2.76  $1.38 

 RMCF0805F 
 T2K20 

 Stackpole 
 Electronics 
 Inc 

 RES 2.2K OHM 1% 1/8W 
 0805  4  $0.40  $0.10 

 CRGCQ0805 
 F4K7 

 TE 
 Connectivity 
 Passive 
 Product 

 RES 4.7K OHM 1% 1/8W 
 0805  1  $0.10  $0.10 

 RMCF2512JT 
 3K00 

 Stackpole 
 Electronics 

 RES., 3.0k, 5%, 1W, 2512 
 1  $0.30  $0.30 

 RMCF0603JT 
 75R0 

 Stackpole 
 Electronics 

 RES., 75, 1/10W, 5%, 0603 
 8  $0.80  $0.10 

 $0.00 

 B3SL-1002P  Push button switch  1  $0.90  $0.90 
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 7490220122 
 Wurth 
 Elektronik  Transformer  1  $6.77  $6.77 

 LT4321HUF 
 Analog 
 Devices  PoE Diode Bridge Controller  1  $5.11  $5.11 

 LT4293HMS 
 Analog 
 Devices  PoE PD Controller  1  $6.15  $6.15 

 STM32F407 
 VET6  Songhe  MCU  1  $19.88  $19.88 

 NCP1117LPS 
 T33T3G  onsemi 

 3.3V DC/DC Converter 
 (Linear)  1  $0.45  $0.45 

 E48SC12010 
 NRFA 

 Delta 
 Electronics 

 12V DC/DC Converter 
 (Switching)  1  $33.39  $33.39 

 DP83848 
 Waveshare-M 
 odule  Ethernet PHY  1  $13.98  $13.98 

 TMC429-I  Trinamic  Motion Controller  1  $12.55  $12.55 

 TMC2660C-P 
 A  Trinamic  Stepper Driver  1  $7.32  $7.32 

 SXO53C3A0 
 71-50.000MT  Suntsu  50MHz Oscillator (for PHY)  1  $0.52  $0.52 

 AS-8.000-20 
 Raltron 
 Electronics  8MHz Oscillator (for MCU)  1  $0.18  $0.18 

 Total Cost  $146.84 

	Appendix	C:	Schedule	

 Week  Bryan  Putra  Armando 
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 2/28  Finish 1st draft of PCB 
 Layout 

 Research on ethernet 
 communication for STM32F4 
 chips and how to run TCP 
 transmission 

 Research on configuring and 
 controlling TMC2660 and 
 TMC429 chips 

 3/7  Finalize PCB and submit 
 order 

 Run ethernet and test 
 examples on an STM32F4 
 evaluation board with an 
 ethernet PHY chip board 

 Research on configuring and 
 controlling TMC2660 and 
 TMC429 chips; examine how 
 TMC API interfaces with 
 STM32 or C code. 

 3/14  Spring Break  Spring Break  Spring Break 

 3/21  Solder parts onto the board 
 and assemble the project 

 Debug ethernet software and 
 get it to work for ping tests 

 Solder parts onto the board 
 and assemble the project 

 3/28  Verify the power board 
 against requirements 

 Debug PoE circuitry to 
 troubleshoot PoE negotiation 
 problems 

 Verify the power board 
 against requirements. 

 Continue debug ethernet 
 software and look investigate 
 it at a lower level 

 Help troubleshoot PoE 
 negotiation problems 

 Verify the power board 
 against requirements 

 Start writing code for the 
 motor control subsystem 
 while referring to the TMC 
 API. 

 4/4  Continue debugging PoE 
 subsystem so that it functions 
 for PoE+ and PoE++ 
 standards and verify it against 
 requirements 

 Debug PoE subsystem so that 
 it is functional for PoE+ and 
 PoE++ standards and verify it 
 against requirements 

 Continue writing code for the 
 motor control subsystem 
 while referring to the TMC 
 API 

 4/11  Write code to enable sending 
 SPI commands via MCU pins 

 Research and write code for 
 configuring and commanding 
 TMC2660 and TMC429 
 chips  using SPI commands. 

 Write code to enable sending 
 SPI commands via MCU pins 

 Research and write code for 
 configuring and commanding 
 TMC2660 and TMC429 
 chips  using SPI commands. 

 Write code to enable sending 
 SPI commands via MCU pins 

 Research and write code for 
 configuring and commanding 
 TMC2660 and TMC429 
 chips  using SPI commands. 

 4/18  Debug software for 
 configuring and commanding 
 TMC2660 and TMC429 
 chips using SPI commands. 

 Verify motor control 
 subsystem against 
 requirements. 

 Debug software for 
 configuring and commanding 
 TMC2660 and TMC429 
 chips using SPI commands. 

 Verify motor control 
 subsystem against 
 requirements. 

 Debug software for 
 configuring and commanding 
 TMC2660 and TMC429 
 chips using SPI commands. 

 Attempt to get ETH phy chip 
 to work with software 

 Verify motor control 
 subsystem against 
 requirements. 
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 4/25  Debug ethernet software 

 Implement UART 
 communication for demo 
 purposes to substitute 
 ethernet communication 

 Demo 

 Debug ethernet software 

 Implement UART 
 communication for demo 
 purposes to substitute 
 ethernet communication 

 Demo 

 Debug ethernet software 

 Implement UART 
 communication for demo 
 purposes to substitute 
 ethernet communication 

 Demo 

 5/2  Final presentation  Final presentation  Final presentation 
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	Appendix	D:	Full	Schematics	
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	Appendix	E:	PCB	Layout	

 Main Board: 

 Power Board: 
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