

AIR POLLUTION MAPPING BANDS

By

Chirag Nanda

Vatsin Shah

Vedant Agrawal

Final Report for ECE 445, Senior Design, Spring 2022

TA: Amr O. Ghoname

May 2022

Project No. 33

 ii

Abstract

This report details the complete design process for engineering the "Air Pollution Mapping Band." The

"Air Pollution Mapping Band" is a portable device accompanied by an android application. The band is

designed to measure and send Carbon Dioxide, Carbon Monoxide, and Propane concentrations to the

application. The application then plots these concentrations on a map to give a streetwise depiction of air

pollution. Additionally, the application periodically sends these concentration and location data points to

a webserver to maintain a standard map across users. While collecting data, the application can also warn

the user should the pollutant concentration exceed safe thresholds.

 iii

Contents

1. Introduction ... 1

1.1 Problem Overview .. 1

1.2 Solution Overview .. 1

1.3 Visual Aid ... 2

1.4 High-Level Requirements ... 2

1.5 Subsystem Overview .. 3

2. Design ... 4

2.1 Power Subsystem .. 4

2.1.1 Battery and Switch ... 4

2.1.2 LDO Regulators ... 4

2.1.3 Final Circuit Schematic .. 5

2.2 Indicator Subsystem .. 5

2.2.1 Power LED ... 5

2.2.2 Connection LED .. 5

2.2.3 Final Circuit Schematic .. 5

2.3 Sensor Subsystem ... 6

2.3.1 Sensor array ... 6

2.3.2 Microcontroller and Bluetooth ... 6

2.3.4 Final Circuit Schematic .. 7

2.4 PCB Layout ... 7

2.5 App Subsystem ... 8

2.5.1 Bluetooth on Android... 8

2.5.2 AWS Server ... 9

2.5.3 Google Maps .. 10

3. Design Verification ... 11

3.1 Power Subsystem .. 11

3.1.1 Voltage Regulation .. 11

3.1.2 Battery Life .. 11

3.1.3 Switch Check ... 12

3.2 Indicator Subsystem .. 12

3.2.1 Power check ... 12

3.2.2 Indicator check ... 12

 iv

3.3 Sensor Subsystem ... 12

3.3.1 Analog sensor data retrieval ... 12

3.3.2 Periodic Bluetooth data transfer ... 13

3.3.3 Threshold tests ... 13

3.4 Software Subsystem .. 14

3.4.1 Testing AWS Server Pipeline .. 14

3.4.2 Standard map maintenance .. 15

4. Costs and Schedule ... 16

4.1 Parts .. 16

4.2 Labor ... 16

4.3 Total Cost .. 17

4.3 Schedule .. 17

5. Conclusion .. 18

5.1 Accomplishments .. 18

5.2 Uncertainties ... 18

5.3 Ethical considerations ... 18

5.4 Future work ... 19

References ... 20

Appendix A Requirement and Verification Table .. 22

Appendix B Sensor plots .. 26

Appendix C Sensor Tolerance Analysis ... 27

Appendix D Initial PCB Layout.. 30

 1

1. Introduction

1.1 Problem Overview

As air pollution has increased globally, the need for pollution tracking has grown in tandem. Today, most

cities take readings using satellites and sensors scattered around the city to collect an aggregate reading of

city-wide air quality [1]. While this may give a reasonable estimate of the air pollution over a city-wide

area, the air quality of individual localities and streets may differ vastly.

Air pollution can change dramatically over a day. A variety of factors, including traffic, population

density, the operation of office buildings, and factories, can influence the air quality. A more dynamic

calculation of air quality can help people decide which routes to take and which places to avoid. Some

cities like Barcelona and Chicago have tried implementing IOT-based air pollution trackers embedded

into city-wide infrastructure to aid this effort. Google has even attempted to fit street view cars with

sensors to track pollution levels [2]. Nonetheless, these devices are extremely expensive. For instance, the

sensor nodes used in Chicago cost around five thousand dollars per node [3]. Additionally, the sensors are

often spread far apart, preventing accurate locality-centric/streetwise data collection of pollution.

1.2 Solution Overview

Our solution to this problem was to create a cheap wearable band and an accompanying Android app that

would continuously monitor the air quality around the user. The broader idea is to have thousands of

users wear this band to help contribute to a city-wide map that everyone can access. Nevertheless, within

the time constraints of the course, we planned to create a proof of concept of the band and a simple

application that gave alerts to the user about their general vicinity. The app would keep a personal record

of air pollutant levels of the places they visited on a map.

We aimed to measure carbon dioxide (CO2) and carbon monoxide (CO) in parts per million (ppm).

Additionally, since this band would be portable, it had the potential to be used as a warning device in

indoor spaces. Hence, we also wished to sense dangerous flammable gasses like propane. The band could

then help find poorly ventilated areas and warn users of potential gas leaks in warehouses and storage

rooms. For our project, we decided to build one band. However, we planned to have multiple profiles on

our app and a centralized server to test how numerous users could update the same map.

 2

1.3 Visual Aid

Figure 1 highlights how our completed project looks, including the physical device and the android app:

Figure 1: Final design of the project

1.4 High-Level Requirements

While designing our project, we adhered to the following requirements:

1. The system should warn the user if propane is detected (since it is flammable). It should detect

carbon monoxide concentrations up to 200 ppm and warn the user if concentrations exceed 100

ppm. It should detect carbon dioxide concentrations up to 15000 ppm and warn the user if

concentrations exceed 10000 ppm. We have picked these values based on USDA-determined

values of dangerous exposure [4] [5].

2. The app will need to be able to take pollution data from the band and update the map with the

detected concentrations at a period of 5 minutes since pollutant levels do not change rapidly.

3. Our band needs to be wearable and must have around 1-3 hours of battery life to be able to track

pollution data when a person makes their commute

 3

1.5 Subsystem Overview

Figure 2: Block diagram of the project

Figure 2 shows the high-level block diagram for our project. Our design can be broken down into two

broad categories: the board system and the software system. The board system includes the power,

indicator, and sensing subsystem. The power subsystem is responsible for converting the 9V supply into

3.3V and 5V to be used by our microcontroller and sensor array, respectively. The indicator subsystem

relays if the band is powered on and whether or not a device is connected to it. The sensing subsystem is

responsible for collecting and transmitting air pollutant data to the connected device.

The board system met our first high-level requirement by being responsible for powering our sensors and

microcontroller to monitor and send pollutant data to the app. The software system met our second high-

level requirement and consisted of the app subsystem. The app subsystem's main goal was to visualize the

pollutant data on a map and maintain a centralized map across different user profiles using a REST server.

To fulfill our third high-level requirement, we kept the design minimal and ensured that our final printed

circuit board (PCB) was as small as possible so that the band was compact and wearable.

 4

2. Design

2.1 Power Subsystem

The Power subsystem consists of our battery, two Low-DropOut (LDO) regulators, and a switch to cut

out the power to all other subsystems when the band is not in use.

2.1.1 Battery and Switch

The battery we originally planned to use was one made of three 3V coin cells. As our system needed a 5V

rail and a 3.3V rail, we thought that a fully charged battery of 9V would not discharge below our

minimum voltage requirements for our LDO regulators. But after we put our system together, we found

that the current required by the system was between 200-300mA, which was not possible to supply using

3V coin cells. Thus, we instead shifted to using a Duracell 9V (MN1604) [6] battery capable of providing

the required current for more than an hour, which was one of our high-level requirements. As we wanted

to create a wearable device, we also wanted to provide an easy way to shut the device off when it was not

in use. So, we added a switch to completely disconnect the battery from the rest of the system to prevent

wastage of energy.

2.1.2 LDO Regulators

The LDO regulators we used for this project were the LD29150DT50R & LT1129IST-3.3#TRPBF. Our

sensors require 5V, while our microcontroller requires 3.3V. Therefore, we needed to regulate the input

voltage of 9V to two different levels. We decided to use these LDO regulators instead of buck converters

for a couple of reasons. The first one was that we had an issue ordering buck converters that we could

solder reliably even with a reflow oven. The available footprints were too small and required too much

testing to ensure no false connections were made. Also, in case of a bad connection, there was no way to

correct such a mistake due to their size. The second reason was pertaining to our high-level requirement

for the size of the device. With the passive components required around the original buck converter, it

would not have been possible to package everything within the dimensions we specified initially. With

LDOs, we managed to reach the requirements easily.

 5

2.1.3 Final Circuit Schematic

Figure 3: Circuit Schematic of Power Subsystem

2.2 Indicator Subsystem

We needed an easy-to-understand interface to indicate the state of the system. This helped with conveying

to the user whether the device was powered on or not, if the device booted properly, and if a user with the

app was connected to the device. The subsystem we came up with to help with this consists of a RED

LED, that we call a Power LED and a RGB LED, that we call a Connection LED.

2.2.1 Power LED

This LED indicates that power is being supplied to the voltage regulators i.e., it indicates that the device

is switched on. This also helps us see when the voltage from the battery drops low enough that the 5V

regulator cannot supply 5V anymore, as the LED is directly connected to the output of the 5V regulator.

2.2.2 Connection LED

The color of this LED is controlled by the microcontroller. When the ESP32 boots up, it turns the

Connection LED purple until a phone connects to the device. Once that happens, this LED is turned blue,

thus indicating the connection. In case of a problem with boot, such as a failure to initialize Bluetooth or

damage to the sensors, this light would not turn on at all.

2.2.3 Final Circuit Schematic

NOTE: RED_RGB, CON, and RDY are pins on the microcontroller that control the Connection LED. No

such pins exist for the Power LED as it is not controlled by the microcontroller, and directly gets power

from the 5V regulator.

 6

Figure 4: Circuit Schematic of Indicator Subsystem

2.3 Sensor Subsystem

The job of this subsystem is to measure any of the listed harmful gasses in the surroundings and

periodically send this data to the app running on the user's phone. It consists of the MQ-2 sensor to detect

flammable gasses like propane, an MQ-9B sensor to measure the concentration of Carbon Monoxide, an

SGP-30 sensor which measures the concentration of Carbon Dioxide, and the ESP32 microcontroller that

collects the data and sends it over Bluetooth to the app. The microcontroller also controls the Connection

LED based on the current Bluetooth connectivity status.

2.3.1 Sensor array

This sensor array contains an MQ-2, MQ-9B, and an SGP30 sensor. MQ-2 and MQ-9B are variable

resistance sensors. These have a heating coil and a sensing element that changes resistance based on the

concentration of certain gasses around the sensor. The job of the heating coil is to bring the sensors to

their respective operating temperatures, which are higher than room temperature. The potential drop

across the sensing element changes as its resistance changes. Detecting this change in potential drop

allows us to figure out the gas concentration. As we needed to detect this potential drop, we used analog

pins on the ESP32, which connect to the internal 12-bit Analog to Digital Converter (ADC) pins. To use

the SGP30, we connected it to the microcontroller's SDA and SCK pins and used the wire library on

Arduino to communicate over the I2C bus.

2.3.2 Microcontroller and Bluetooth

The microcontroller we chose for our project was the ESP32. We selected the ESP32 because it had

Bluetooth connectivity and an in-built timer. To save power and extend battery life, we transferred the

collected sensor data to the application every two minutes. We used the ESP32's inbuilt timer to keep

track of this period. We programmed the timer to create an interrupt signal every two minutes.

Nevertheless, we programmed the ESP32 to break this periodic data transfer if any detected

concentrations exceed safe thresholds. As soon as a high concentration value is detected, the ESP32

asynchronously sends the data to warn the user.

 7

2.3.4 Final Circuit Schematic

Figure 5: Circuit Schematic of Sensor Subsystem

2.4 PCB Layout

NOTE: Zones are turned off to show the routing of wires and arrangement of components better.

Figure 6: Final PCB layout

 8

2.5 App Subsystem

To utilize the air contamination data obtained from the sensor subsystem, we designed an Android

application that connects to the Bluetooth signal of ESP32. Using the application, we can visually show

the gas values to the users in a human readable format. The application is also responsible for

communicating with the server in the form of GET and POST requests. Finally, the application provides a

way for the users to visually see the contamination data collected from the server on a Google Maps

overlay to see the contamination data in areas around them and use the map to avoid highly polluted

zones. The figure below shows all the wireless communication handled by the app subsystem

Figure 7: Block diagram for wireless communication (right) and finished application (left)

2.5.1 Bluetooth on Android

For handling the Bluetooth connection with the ESP32 microcontroller, we used the native Bluetooth

library provided by Android. We created a Bluetooth client that runs on a separate thread to maintain a

continuous Bluetooth connection without affecting any other functionality that the main thread handles.

This involved establishing a Bluetooth socket with the Bluetooth server broadcasted by ESP32 using the

function createRfcommSocketToServiceRecord(UUID). Then we could connect to this socket and

establish input and output streams. We have designed the code in such a way that every time the app

connects to a Bluetooth socket, it sends an output message of "connected" to the socket. This way, we

could program the microcontroller to detect this message and change the color of the LED in the indicator

subsystem. Then the code establishes an active input stream that collects the broadcasted packets. The

Bluetooth packets are sent in the form of a string with the schema shown in figure 8, with the values

being separated by commas. Each of the three gas concentration values takes up 4 characters and two

commas to separate them, resulting in the total payload size being 14 bytes. We parse the string and get

the values converted into Double type on the application side. We then immediately check for any value

exceeding our set threshold. If any of them do, we alert the user using a notification banner and also send

it to the central server. Regardless, the app updates the server every five minutes.

 9

Figure 8: raw Bluetooth packet format

2.5.2 AWS Server

For creating the server, we decided to use AWS as it offers an intuitive interface to make endpoints that

can invoke user-defined functions. This proves to be a helpful tool for creating highly available servers

that can scale according to the number of incoming requests. We used AWS API Gateway to make POST

and GET endpoints that invoke specific Lambda functions, which are in turn connected to a DynamoDB

database also hosted on AWS to store and return the data. DynamoDB is a NoSQL database where we

defined the primary key to be the GPS coordinates (Latitude, Longitude). For each of these keys, we store

the Carbon-dioxide, Carbon Monoxide, and Propane gas concentration values for those particular

coordinates.

For the POST request, we made a simple API endpoint with pollution-data which invokes a Lambda

function called "AddData." This Lambda function is connected to a DynamoDB table called "pollution-

data". The lambda function just inserts the event that is passed on to it in the body of the POST request.

While sending the user location to the server, we decided to round down the latitude and longitude values

to the third decimal place to group the GPS coordinates in a 100-meter radius together. An example of a

successful POST request is shown in the figure below.

Figure 9: Example of a POST request body and response from the AWS server

For the GET request, we use the same API endpoint with /pollution-data. But this time, the GET request

invokes a separate Lambda function called "ReturnData" that scans the DynamoDB table and returns all

the items retrieved from the table as the body of the response object. Since the schema is uniform, we can

loop through each item of the array and plot the GPS coordinates of the contamination zones on Google

Maps along with the gas concentration values for each zone.

 10

Figure 10: Example of a GET request response from the AWS server

2.5.3 Google Maps

For displaying the Google Maps overlay on our application and to plot all the contamination zones, we

used the buil t-in Maps library provided by the Google Mobile Services (GMS) native to Android. To plot

the contamination zones, we loop through all the entries returned by the GET request to the server and

plot markers on the map using the GPS coordinates with the title "Contamination Zone". We could also

add a circle of 100-meter radius on the map for each contamination zone using the buil t-in function

"addCircle". Moreover, we decided to show the gas concentration values for each GPS coordinate

returned in the info window of each marker. This way, the users can tap on the marker of the

contamination zones to reveal the gas concentration values recorded for that zone.

We also decided to plot and update a blue colored marker to indicate the current location of the user. This

is important as users can visually see if they are located in any contamination zone. We also use this to

notify the user if they enter a contamination zone with higher than threshold concentration values.

Figure 11: View of the Google Maps overlay with contamination zone marker and user location marker

 11

3. Design Verification

This section details how we have met and verified each of our requirements. For a compiled list of

subsystem-specific requirements, please refer to Appendix A.

3.1 Power Subsystem

3.1.1 Voltage Regulation

We verified the regulated voltage levels by running the board using constant 9V from a bench power

supply. We wanted to confirm that our regulators of choice could provide stable voltages within

acceptable ranges. We measured the voltage continuously for almost an hour, as shown in figure 12.

Overall, we did not see any drops in voltage within the time span.

Figure 12: Voltage measurement across LDO

3.1.2 Battery Life

Battery life was verified by simply running the system until the battery ran out. We found that the battery

lasted around 1 hour and 20 minutes, which aligns with the graph given in the battery's datasheet for our

200 - 300mA current draw (figure 13). The voltage across the battery was observed in 10-minute

intervals, as shown in table 1. This battery life is within the range specified in our high-level

requirements.

Time (minutes) Voltage

10 8.9

20 8.6

30 7.8

40 6.7

50 6.1

60 5.8

70 5.2

80 4.7

90 4.3

Table 1: Time vs Voltage across the battery

 12

Figure 13: 9V Duracell battery life for different current draws [6]

3.1.3 Switch Check

Continuity across the switch was verified using a multimeter and the power LED also helps indicate the

working of the switch as this LED turns on as soon as the 5V rail gets power.

3.2 Indicator Subsystem

3.2.1 Power check

Power LED was checked by verifying the voltage across the regulator using a multimeter and seeing the

LED light up at the same time.

3.2.2 Indicator check

Indicator LED was checked by printing the connection state of Bluetooth over the serial terminal and by

visually checking the color of the LED at the same time. We stress tested the status by repeatedly

disconnecting and reconnecting our phone to the board.

3.3 Sensor Subsystem

3.3.1 Analog sensor data retrieval

Both the MQ-2 and MQ-9B sensors are analog sensors that measure concentrations of gases based on

changing resistance. Upon being exposed to a gas, the resistance of their internal sensing materials change

based on a gradient as shown in the graphs in Appendix B. Therefore, to verify the functionality of these

sensors, we essentially had to measure the potential drop and resistance across them.

Before using the sensors, we needed to calibrate them by running 5V across them for around 24 hours.

This calibration process is meant to burn off any impurities stuck to the heating coil. After calibrating the

sensors, we used a breadboard to connect the sensors to our ESP 32 development board and measured the

resistance and potential difference across them using a multimeter. We noticed that the measurements

were very noisy. Nevertheless, both potential difference and resistance would drastically change if we

blew on them or took them outside. This meant that the sensors were at least responsive to changes in

 13

their environment. However, it was impossible to use these measurements to calculate actual values due

to the erratic nature of the data collected.

We then converted the analog sensor data into ppm using an Arduino library called MQUnifiedSensor [7].

The library periodically compares the change in resistance values to the corresponding gradients of the

resistance graphs (shown in Appendix B). Further explanation of the error tolerance of these

measurements is provided in Appendix C.

3.3.2 Periodic Bluetooth data transfer

To verify the periodic data transfer, we used a Bluetooth debugger app on our phone. Once the app is

connected to our board via Bluetooth, the two-minute periodic data transfer begins as shown in figure X.

The transfer period is correct to the nearest minute, as shown in the timestamps. To simulate values

exceeding our threshold, we used Arduino's Serial Input to enter a large measurement. As soon as these

values were read by the ESP32, an asynchronous message was sent to the app.

Figure 14: Bluetooth Connectivity Test

3.3.3 Threshold tests

To further test the sensor thresholds, we field tested the device around campus. We lowered the Carbon

Dioxide and Carbon Monoxide thresholds for the sake of these tests. We observed that when vehicles

passed, the concentration of Carbon Dioxide would spike and immediately a notification would appear on

the phone. The route we took around campus, as well as the notification is shown in figure 4. Realistic

tests of the threshold limits detailed in our high-level requirements were not possible as they would be too

dangerous to perform and would require specialized lab equipment.

Lastly, we used a lighter to verify the Propane sensor. We performed these tests outside to ensure good

ventilation. Upon switching on the lighter, we would immediately see spikes in propane concentrations.

Since the measurements of the MQ-2 sensor were very noisy and would often spike randomly, through

trial and error we figured out a threshold that would only be crossed on the detection of propane. This

threshold was 500ppm.

 14

3.4 Software Subsystem

3.4.1 Testing AWS Server Pipeline

The architecture of our server hosted on AWS consists of an API Gateway, Lambda functions and finally

a DynamoDB table. The API Gateway exposes API endpoints for the GET and POST requests which

when called on launch the specific Lambda functions. These Lambda functions are responsible for either

entering the data or retrieving the data from the DynamoDB table. We tested this pipeline from end to end

by making a test POST request to the API endpoint using Postman as shown on the left of the figure

below. We verified that we get a status of 200 in the response of the POST request and that the entry was

successfully made in the DynamoDB table as shown on the right in the figure below.

Figure 15: Testing the POST request pipeline (Postman on the left and DynamoDB table on the right)

Similarly, to test the GET request pipeline, we made a test GET request to the API endpoint using

Postman and verified that the entire DynamoDB table was returned in the response object of the request.

Figure 16: Response of a GET request made using Postman returning all the entries of the table

