
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Capacitance Sensors for Mason Bee
Activity Measurement

Team #27

JYOTSNA JOSHI

(jyotsna3@illinois.edu)
KEERAT SINGH

(keerats2@illinois.edu)
PIYUSH SUD

(psud2@illinois.edu)

TA: Amr Ghoname

May 4, 2022

Abstract

A serious problem in U.S. agriculture is the declining honey bee population. While the
honey bee’s hypothesized affliction, Colony Collapse Disorder, is still being researched,
we are proposing that native bee species can help support pollination activities in North
America. Mason bees are one such bee population, a solitary bee species that lives in tun-
nels and pollinates native plants more efficiently than the honey bee. This paper outlines
our design for a sensor-equipped mason bee house, which enables beekeepers to collect
data regarding their kept mason bees. Using capacitive sensors, we can infer when bees
enter and exit the tunnels. To simulate bee activity, we moved 6 mm spherical glass beads
through the tunnels and confirmed that our system can differentiate between bees and
parasites. The data generated by our device is logged onto an SD card for further analysis
by the beekeeper. We hope with access to this information, beekeepers are empowered to
make the best decisions for their bees and boost local pollinator populations.

ii

Contents

1 Introduction 1
1.1 Objective and Background . 1
1.2 Problem . 1
1.3 Solution . 1
1.4 Block Diagram . 3
1.5 High Level Requirements List . 4
1.6 Demonstration . 4

2 Design 5
2.1 Design Procedure . 5

2.1.1 Power Subsystem . 5
2.1.2 Mason Bee Housing Subsystem . 5
2.1.3 Capacitance Measurement Subsystem 5
2.1.4 Data Cleaning Subsystem . 6
2.1.5 Analysis and Storage Subsystem . 6

2.2 Design Details . 7
2.2.1 Power Subsystem . 7
2.2.2 Mason Bee Housing Subsystem . 8
2.2.3 Capacitance Measurement Subsystem 8
2.2.4 Data Cleaning Subsystem . 10
2.2.5 Analysis and Storage Subsystem . 11

3 Verification 14

4 Costs 18

5 Conclusion 19

Appendix A Requirements and Verifications Table 21

Appendix B Python Display Code 25

Appendix C ATMega328P Data Logging Code 30

iii

1 Introduction

1.1 Objective and Background

The well-known loss of pollinators around the world has been a concern for ecologists,
agriculturalists, farmers, and everyday citizens for several years. While the exact reason
for the infamous Colony Collapse Disorder affecting honeybees is unknown, there is in-
terest in boosting their populations so that honey bees can be the thriving pollinators they
were once. But what if we are focusing too squarely on the honey bees? What if there is
an effective way to support native plant pollination with a bee population that is native
to North America? That would be the mason bee, megachilidae osmia. Mason bees, solitary
bees that do not live in hives, do not make honey, and usually do not sting, are a species
of bee that can pollinate an area of native plants almost 100 times more efficiently than
the western honeybee [1]. They are a good species for even amateur apiarists to keep
near their homes to boost local native bee populations and participate in solving global
ecological issues.

1.2 Problem

There are some key hurdles to keeping mason bees. In nature, they live in dark crevices
found in trees, rocks, or in the ground, but kept mason bees live in tunnel homes. Please
refer to Figure 1 to see an example of these tunnel nests.

Female bees will populate these tunnels with eggs for next year, and seal the tunnel when
they are done laying their eggs. Beekeepers must clean these tunnels, especially at the
end of every season, and harvest the bee cocoons for the next year. It is often challenging
to know when to clean a tunnel, especially if it is not possible to determine if the tunnel
is occupied by an alive adult bee. This difficulty arises from the fact that these tunnels are
long and dark, and so bee activity deep inside the tunnels is hard to gauge [2].

1.3 Solution

Our device is a sensor-equipped mason bee house so that beekeepers can be confident
their bees are active and healthy. Beekeepers can view this collected bee movement data
in aggregate and can infer when unwanted visitors like parasites are entering the bee
home; with this information, beekeepers can be proactive about removing tunnels or
cleaning the structure to prevent the spread of infections or parasites.

Implementation: At the core of our solution are capacitive sensors that non-intrusively
detect bee behavior in tunnels. These sensor readings can be interpreted to determine
when bees are entering and exiting, how much of the tunnels are being actively used, and
when unwanted intrusions occur. This data is communicated to the beekeeper, who can
view the collected data at their leisure. Please see Figure 2 to view a diagram detailing
how a bee’s activity is captured onto the user’s SD card.

1

Figure 1: Wood block with holes drilled in to make tunnels for mason bee nesting.

Figure 2: This diagram shows the process of turning a bee’s movement into data that can
be viewed on a user’s PC.

2

1.4 Block Diagram

Figure 3: Block diagram of circuit diagram.

3

The blocks in Figure 3 are described as follows:

1. The Capacitance Measurement Subsystem, which is responsible for measuring the
change in capacitance from the entry/exit of the bee as a sinusoidal signal of ampli-
tude proportional to ∆C.

2. The Power Subsystem, which is responsible for generating a +5 V, GND, and -5 V
power supply for the board.

3. The Data Cleaning Subsystem, which is responsible for extracting the bee data from
the sinusoidal signal outputted by the Capacitance Measurement Subsystem.

4. The Analysis and Storage Subsystem, which stores data from the device in a read-
able format on an SD card, and does visualization and initial processing of the data.

1.5 High Level Requirements List

1. Capacitor sensor setup shall differentiate between entering and exiting simulated
bees (6mm ball) in each tunnel.

2. Sensor setup shall differentiate between simulated bee and simulated parasite (3mm
ball to approximate the size of the Houdini fruit fly, a parasite that eats mason bee
larvae).

3. An integrated SD card shall store data about behavior of bees in the tunnel, which
can be read and displayed by plugging it into a separate computer.

1.6 Demonstration

In our demonstration, we simulated the bee behavior using glass beads. It was impor-
tant to select an electrically accurate bee simulation material to generate the most realistic
change in capacitance during testing and demonstration. We found research document-
ing the dielectric constant of the western honey bee [3]. Since mason bees have roughly
the same size and weight as western honeybees, we estimated that a mason bee’s body
has a dielectric constant between 10.32[4] and 10.64 [3]. For our demo, we used 6 mm
radius glass beads as glass has a dielectric constant of about 10 and mason bee bodies are
approximately 6 mm in size.

To test whether the device can differentiate between parasites and bees, we moved a 3
mm glass bead through the tunnel and compared the system’s response to the response
during a 6 mm size bee simulation. We confirmed that these created measurably different
signals on the oscilloscope; the parasite created a smaller response and the bee created a
larger response. This difference was reflected in the data recorded on the SD card.

4

2 Design

2.1 Design Procedure

2.1.1 Power Subsystem

For the power subsystem, we needed to provide +5 V, GND, and -5 V to all four of the
boards. Our initial idea was to use a 10 V power supply and reference the supplied 5 V as
ground, which would make the supplied 0 V function as -5 V. An alternate idea that came
up in discussion was to use two separate 5 V supplies and connect the 5 V of one supply
to the GND of the other. We selected the second option based on conclusions from our
bee safety research. With outputs of 5 V, GND, and -5 V, the magnitude of change when
compared to earth ground is never more than 5 V.

2.1.2 Mason Bee Housing Subsystem

For our mason bee house, we used a wooden frame structure with an angled roof, three
tunnel slots, and one electronics storage slot. Each tunnel slot contains an acrylic tunnel.
We mounted sensors onto only one tunnel to reduce the cost of the bee house prototype.
The angled roof forms an attic above the highest tunnel so that eggs can be placed in this
sheltered nook when it is time for young mason bees to hatch in the new season.

The dimensions of the tunnel were chosen to foster healthy mason bee populations. Re-
search from environmental groups [2] has shown that male mason bees hatch from eggs
laid near the mouth of the tunnel, and female mason bees hatch from eggs laid deep
within the tunnel. Therefore, tunnels that are too short or too long can cause an un-
healthy imbalance in mason bee populations. Additionally, tunnels that are too wide or
too narrow will be ignored by mason bees. With this in mind, we initially designed our
tunnels to have an 8 mm inner diameter and a length of 5.5 inches. After receiving feed-
back from the Machine Shop, we decided on tunnels with a 9 mm inner diameter due
to material availability. The sensor design and shielding design was done with 8 mm
tunnels in mind, but the increase in tunnel diameter meant that the sensor was not as
sensitive as it could have been. We determined through breadboard prototyping that the
sensor still had enough sensitivity to meet our requirements.

We chose acrylic for the tunnel material because it is non-conductive, resistant to break-
age, and suitable for outdoor use. Our original plans included MOLEX connectors to con-
nect the sensors on the tunnel to the boards mounted on the side of the house. However,
the MOLEX connectors were too big to fit in the space between the tunnel and the outer
copper shielding, so we used a VGA connector instead. With the connector in place, users
can easily detach the wires leading to the sensors to remove and store their tunnels.

2.1.3 Capacitance Measurement Subsystem

The capacitor sensors that form the heart of our project are based on research conducted
at the University of Prince Edward Island in 2005 [5]. In their paper “Capacitance-based
sensor for monitoring bees passing through a tunnel”, they describe a setup where they

5

directed bumblebees to enter their hives through tunnels. In these tunnels, they had set
up a “two-capacitor set-up along with an AC bridge and phase-sensitive detection” which
“produced an asymmetric double pulse for each bee passage”. We had two choices for
the capacitor setup as specified in the paper - we could either use parallel plates or ring-
shaped sensors. We chose to use the ring sensors because it was easier to fit those around
the tunnels in a small package. Previous research also indicated that the ring design was
more sensitive.

The spacing and measurements of the copper rings that form the capacitive sensor were
initially chosen based on recommendations from previous research in tunnel-based insect
monitoring [5], and fine-tuned with trial-and-error prototyping in the lab. We originally
planned to make the sensor rings out of thick, 9 gauge copper wire, but our machinist,
Mr. Glen Hedin, advised that this would be too difficult to bend into rings of our desired
radius. Instead, we used cut sections of copper tubing to meet most of our requirements
for the rings while also allowing for practical machining methods.

The circuitry associated with the sensor also went through many design iterations. At
first, we constructed an instrumentation amplifier ourselves using multiple op-amps.
However, after extensive prototyping, we found that our constructed instrumentation
amplifier did not produce repeatable, reliable results. As a solution, we purchased the
AD620 instrumentation amplifier because of its matched resistor pairs and quality con-
trol testing. The AD620 allowed our system to be very precise and enabled our AC bridge
to be reactive to even small imbalances between its two sides.

Some of our first prototyping was centered around selecting the AC bridge’s driving volt-
age. Based on lab tests, we knew a higher amplitude sinusoidal waveform would make
the sensor more responsive to insect movement, so we decided to use a 5 V waveform
since it provided the necessary sensitivity without requiring extra hardware to imple-
ment.

2.1.4 Data Cleaning Subsystem

The data cleaning subsystem takes the waveform output of the capacitance measurement
subsystem and turns it into a pulse signal that can easily be read by the analysis and
storage subsystem, as shown in Figure 2. To accomplish this, we use phase-sensitive
detection, which is able to extract the small amplitude changes of the waveform amidst
noise. This output is then fed through a low-pass filter to remove noise.

2.1.5 Analysis and Storage Subsystem

This subsystem takes continuous measurement from the sensors, stores the data, and
does initial processing to determine potential entry and exit times. We chose an SD card
for data storage because it is possible to log data directly onto an SD card from an AT-
Mega328P, whereas it would require additional hardware to transmit the data wirelessly
to another computer. Additionally, a layperson can read data from an SD card using

6

a standard laptop without having to learn new technical skills or acquire specific hard-
ware.

We chose to use the ATMega328P because it is a popular microcontroller that can be eas-
ily programmed using the Arduino IDE, is compatible with the USBasp programmers
available in the lab, and can use readily available libraries to write data directly to an SD
card.

The analysis portion of this subsystem takes place within a Python script that would
run on the user’s computer. We planned to do the analysis on the microcontroller, but
we decided to perform the analysis on the user’s computer instead. This is because our
microcontroller could not analyze the collected data while maintaining the desired data
collection rates.

2.2 Design Details

2.2.1 Power Subsystem

This subsystem had simple goals but a difficult implementation - we had to supply 5 V,
GND, and -5 V to the board, but accomplish this in a way that would not disturb the
bees. To do this, we connected the positive output of one power supply to the ground of
the other, creating a three output power supply. We chose the ALP002 adjustable voltage
power supply because it was relatively inexpensive and had a max current output of
1.5 A, which was far above the total current load from all of our chips. Crucially, it is
designed with a floating ground, allowing us to force one of the power supplies to be
negative.

The total current draw of all of the chips was calculated as follows:

Itotal = Imicrocontrollerboard + 3 ∗ Isensorboard (1)

Itotal = IATmega328p + 2 ∗ IMAX038 + 2 ∗ IuA741 + 3 ∗ (IAD620 + IAD630 + 2 ∗ IuA741) (2)

Itotal = 1.5mA+ 2 ∗ 89mA+ 3 ∗ (300mA) (3)

Itotal = 1.0795A < Imax = 1.5A (4)

The microcontroller board contains the ATMega328P, which draws 1.5 mA according to
its datasheet [6]. The board also contains two MAX038 waveform generator ICs, which
each have a maximum power dissipation of 889 mW [7]. Since we are using a 10 V (peak
to peak) supply, and assuming the waveform generator follows Ohm’s law, the maximum
output current of each of the waveform generators is 889 mW/10 V = 89 mA. Lastly, the
microcontroller board contains two HA2-2515-5 hi-slew op-amps. The input bias current

7

is 80 nA, which is negligible, so the only significant current drawn is from the output
load of the op-amp, which is the same as the current coming from the waveform genera-
tors.

The sensor board contains the resistors for the AC-bridge, an instrumentation amplifier
(AD620), a balanced demodulator (AD630), and two op-amps. According to the AT-
Mega328P’s datasheet, the input impedance to the Analog Digital Converter (ADC) is
100 MOhms; for a voltage of 5 V, this corresponds to a current draw of 50 nA, which is
negligible [6]. The balanced demodulator has a maximum bias current of 300 mA. While
our use case uses a bias current of 100 mA, calculations were done with the 300 mA value
to account for unexpected behavior. Lastly, the AD620 has an input bias current of 1 nA,
which is also negligible.

We confirmed the current draw calculations above by monitoring the current draw dis-
played on the power supplies in lab while powering the fully connected circuitry.

2.2.2 Mason Bee Housing Subsystem

The Mason Bee Housing dimensions take into account mason bees’ living needs along
with the physical implications of our electrical design. Previous research [5] has deter-
mined that a tunnel-based capacitive sensor for tracking insect behavior is most effective
when the shield radius is at least 1.5 times the diameter of the rings, and when the width
of the rings is as thick as the design allows. Additionally, the distance between ring pairs
should be between half to one radius apart. With these restrictions in mind, we created a
design of 3 copper rings with a 9 mm radius, separated by 8 mm, as seen in figure 5. This
makes up one sensor. A tube has three sensors: one at the mouth of the tube, one in the
middle, and one in the deepest portion of the tube, as seen in figure 4.

Figure 4: Cutaway visual of tunnel with 3 sensors and copper shielding.

2.2.3 Capacitance Measurement Subsystem

This subsystem is the most integral part of our mason bee house. It contains the AC
bridge which consists of 2 resistor-capacitor pairs and an instrumentation amplifier that
indicates whether the capacitance values are equal. As seen in Figure 2, the two outer
rings of each capacitor sensor are connected to the resistors of the AC bridge, while the

8

Figure 5: Dimensions of capacitor pair sensor

Figure 6: Image of the completed house, with VGA connector, acrylic tubing, sensor
PCBs, and copper shielding visible

middle ring is connected to a sinusoidal voltage source. This configuration results in the
outer two rings behaving like capacitors with the middle ring, which changes capacitance
when a dielectric material (the bee) passes through it.

The capacitors are made of sections of thick copper, whose dimension and spacing con-
siderations can be seen in Figure 5.

The sinusoidal waveform that drives the AC bridge is generated using a MAX038 wave-
form generator chip. It is set up using a 3300 pF capacitor and a 47K Ohm resistor to
generate a frequency of approximately 33 kHz. The chip can only create waveforms with
an amplitude of approximately 2.25 V, so we used an op-amp with a gain of 2 to create
a final amplitude that meets our requirements. The resulting waveform can be seen in
Figure 9.

Since each capacitor in a capacitive sensor set is connected to an arm of the AC bridge,
the change in capacitance that occurs when a bee passes through causes the two arms

9

of the AC bridge to become unbalanced. This results in an amplitude change from the
instrumentation amplifier’s output waveform; the direction of change depends on which
capacitor the bee is going through. This information can be used to determine whether a
bee is entering or exiting the tunnel.

The general equation for the capacitance measurement subsystem output is given by

Vout =
GV0∆C

C
√

(1
ωRC

− ωRC)2 + 4
sin(ωt+

π

2
+ arctan

2
1

ωRC
− ωRC

) (5)

The circuitry associated with each sensor was placed on the sensor PCB. We used three
sensor PCBs: one for each sensor in our electrically outfitted tube. This PCB contains
an AD620 instrumentation amplifier, an AD-630 balanced demodulator, a low-pass filter,
and resistors to form the resistor-capacitor pair of the AC bridge, as well as an input for
the square reference waveform necessary for the demodulator and inputs for the sensor
from the tunnel. Each sensor board has one output, which is connected to the microcon-
troller board. The PCB design for this board can be seen in Figure 7.

Figure 7: PCB layout of sensor board, including AC bridge, balanced demodulator, and
low pass filters

2.2.4 Data Cleaning Subsystem

The data cleaning subsystem uses a technique known as phase-sensitive detection to ex-
tract the change in amplitude in the presence of noise. This is done as follows: the input to
the balanced demodulator is inverted at a frequency equal to frequency of the sine wave.
Since the noise is at a different frequency than the desired signal and is equally likely to
be negative and positive, it eventually goes to zero, leaving the desired signal. This signal
is a DC signal, which contains spikes and some high frequency noise. To get rid of the
high frequency noise, the output is fed through a low-pass filter. This leaves a DC signal
containing spikes whose amplitude is proportional to the change in capacitance of the
sensor.

10

Figure 8: Negative and positive spike created when simulated bee enters and exits
tunnel. Vertical scale of 500 mV/div and time scale of 500ms/div. First pair shows fast

bee movement speed, second pair shows medium speed, and third pair shows slow
speed.

Figure 9: Square and sinusoidal waveform generated by MAX038 and hi-freq opamps

For the modulation frequency, we used the same 33 KHz frequency as the sinusoidal sig-
nal that drives the AC Bridge, because it is much higher than the frequency of the signal
generated from the bee movement, so the phase-sensitive detection does not damage the
signal of interest. We chose to use a 5 V waveform because a larger voltage results in a
larger change in amplitude of the signal, which yields better results.

2.2.5 Analysis and Storage Subsystem

The analysis and storage subsystem consists of the ATMega328P microcontroller and the
SD card used to store the data. The microcontroller PCB also includes an external 16 MHz
oscillator which connects to the microcontroller.

11

The microcontroller board design incorporates breakout connections from the ATmega328P
to an SD card module. This module is placed at the front of the bee house structure, so
that the beekeeper can easily access the card. The data is written onto the SD card in
a comma separated format (CSV). The CSV data is structured as (time, voltage shallow,
voltage mid, voltage deep) to reflect the voltage value collected at each of the three sen-
sors within the tunnel.

The data on the SD card is then processed and visualized in a Python script on the user’s
laptop. The script displays the bee data to an interactive webpage on the user’s computer,
an example of which can be seen in Figure 11. It uses the plotly Python library to create
the interactive graphic, which allows the user to mouse over traces for exact data points,
highlight data from a specific sensor, and even zoom in on specific portions of the graph.
In addition to visualizing the raw data, the script also highlights data points that could
show insect activity in the tunnel. This is done through statistical analysis.

First, a rolling average of each sensor’s data is taken, using overlapping windows of four
data points each. This smooths out but does not entirely remove spikes in the data, and
preserves more of the patterns that are present for longer time periods. In other words,
a spike that lasted for five data points would be less smoothed out than a spike that
lasted for only two data points. These numbers were chosen because our oscilloscope
prototyping showed that simulated insect activity in the tubes created pulses of at least
100 ms, so spikes of only 30 ms (the approximate separation between each data point
collected on the SD card) would not be significant. After the rolling average was applied,
the median of relevant data from each sensor was computed. Data points where this
median was crossed were identified as potential insect movement. Focusing on these data
points, the data immediately before and immediately after the crossing was analyzed. If
it was consistently above and then consistently below the median, or vice versa, it was
a contender for the asymmetric pulse pattern that is generated when an insect passes a
sensor. In this case, the data point is marked with a circle in the visualization.

The code running on the ATMega328P to write collected data to the SD card can be found
in Appendix C. The Python code written to visualize the results are in Appendix B.

12

Figure 10: PCB layout of microcontroller board

Figure 11: Output of display script showing data collected and initial analysis

13

3 Verification

As our subsystems grew to be quite electrically complex, prototyping and verification
consumed a large portion of the semester’s work.

We went down our data pipeline in order (as outlined in Figure 3), and built the sys-
tem from the most core component, the AC bridge measuring the capacitance inputs, to
the outermost component, the user-facing data visualizing script. This modular design
allowed us to take measured, methodical steps towards completion, and allowed us to
build our system incrementally. It also allowed us to roll back to a ”working version”
quickly as we could undo our progress to the last known functional state in an easy and
reliable manner.

One of the early verifications we had trouble with was the AC bridge functionality. Orig-
inally we planned to create an instrumentation amplifier out of op-amps to save on cost,
since they were readily available in the lab. However, we found that our original attempt
at simply replacing the instrumentation amplifier with an op-amp did not reproduce the
same functionality. Upon further research, we used a connection of three opamps and
various resistors to replicate the behavior of an instrumentation amplifier, but found that
mismatches in the resistor behavior caused irregular behavior in the AC bridge output.
That is, it would not respond the same way to the same input at different times. In order
to meet the requirements necessary for this subsystem, we ordered an AD620 instrumen-
tation amplifier that used matched resistors.

The AD620 instrumentation amplifier’s functionality was verified through breadboard
testing, as pictured in Figure 13. Here, we have a prototype of our capacitance sensor on
a short segment of tunnel functioning as the two capacitors in the AC Bridge. We were
able to confirm that passing a simulated bee through the tunnel creates a difference in
the waveforms generated by the two resistor capacitor pairs that make up the AC Bridge
arms. These are the green and blue waveforms on the lower portion of the oscilloscope.
Then, when these waveforms are fed into the AD620 instrumentation amplifier, the am-
plifier’s output is a very small amplitude waveform when the sensor is undisturbed. The
amplitude of the output waveform increased when a simulated bee caused an imbalance
in the AC bridge. The results of our testing are shown in Table 1.

Our tunnel verification was simpler: we soldered the connecting wires onto the ring our-
selves, and so tested the continuity from the ring to the end of the wire to confirm that the
connection was solid and strong.

We then moved onto testing the demodulator. The demodulator’s main function is to ex-
tract the amplitude changes in the waveform outputted by the instrumentation amplifier;
in this way, it is able to take the waveform data and produce a cleaner signal that contains
the same data.

This works because the output of the instrumentation amplifier is the sum of a modulated
DC signal containing the change in capacitance and large amounts of noise. The demod-
ulator extracts this modulated DC signal from the noise and demodulates it, resulting in
the desired signal. We confirmed this behavior by connecting the instrumentation am-

14

plifer’s output to the demodulator input, and could see that negative and positive spikes
could be seen on the oscilloscope when a simulated bee entered or exited the tunnel, as
seen in Figure 12 .

The demodulator also requires low pass filters at its output to reduce noise; without these
filters, the signal response we were seeking was difficult to identify among the noise. At
this point, our capacitor measurement circuitry was complete.

This was an eventful stage of testing, as many key observations were made at this time.
Firstly, we noticed that the sensor is sensitive to changes in the speed of the bee moving
through the tunnel. Faster movements generate taller, sharper spikes while slower move-
ments generate smaller, more rounded spikes, as seen in Figure 8. At a bee’s natural pace
of movement, our circuit outputs a gentle response to the activity, which is more difficult
to detect as the response can be lost in noise.

We hypothesize that a larger supplied input voltage, different materials for our machined
sensor rings, or better insulation around the sensors would lead to a more sensitive sys-
tem that could better reject noise and highlight bee movement; however, we were unable
to investigate these ideas this semester due to time and material constraints. Neverthe-
less, we found that fast movements created easily identifiable spikes in the signal. In or-
der to compare different bead size movements, we set a testing standard: in comparisons,
all bead sizes are moved at top speed with maximum force by the same person, which
keeps as many variables constant as possible. With this standard in place, we confirmed
that a 3 mm bead representing a parasite generates smaller signal spikes when passing
through the tunnel than when a 6 mm bead representing a mason bee moves through the
tunnel.

Following the demodulator verification, we worked on generating the required wave-
forms from the MAX038 waveform generator chips. The hurdle here was interpreting
equations from the datasheet correctly to select resistors and capacitors that are used with
the chip to set the frequency and shape of the output. Once we performed the calculations
and went through some trial-and-error in determining the required resistance and capac-
itance values, we verified that the generated signal met our specifications by observing
the output on an oscilloscope, as seen in Figure 9.

Confirming that our power subsystem gave us the required -5 V, GND, and +5 V was
simple; we used a voltmeter to measure the voltage output.

We verified that our SD card could be reliably used to store continuously collected data
by continuously collecting data for two minutes and observing how much space this took
up on the card. From this we were able to calculate that a day’s worth of data would take
up 0.3 GB on the device. With the SD card we have selected, that means the device can
continuously collect data for 107 days before running out of storage space, which is long
enough to last a whole mason bee season.

Finally we wrote and tested our Python desktop-side script that displays the data col-
lected on the SD card. From observing the visualization created by the script, we realized
we needed to collect data more frequently on the ATMega328P. We decreased the delay in

15

collecting the data and saw more continuous results on the visualizations. Our intent was
to model the graphic after the oscilloscope readings we captured in out testing. Please re-
fer to Figure 11, where ”spikes” are marked by entry and exit time markers; these spikes
look like the oscilloscope readings.

These verification activities brought us to the end of performing active prototyping and
hardware verification. From here, we moved onto soldering, system integration, and
building the rest of the house structure and mounting.

Figure 12: Output of the instrumentation amplifier (green) and the balanced
demodulator (yellow).

16

Figure 13: First time test of the instrumentation amplifier working together with the
tunnel and sensor to produce a change in amplitude in response to bee movement.

Table 1: Table showing verification results of instrumentation amplifier circuit when
glass beads of various sizes and treatments are inserted into tube

Bead Size
Output voltage waveform amplitude

no bead in tube

Output waveform amplitude

bead between cap rings

8 mm

gray synthetic opal
703 mV 834 mV

8 mm

champagne bead
702 mV 820 mV

6 mm

unbuffed synthetic opal
701 mV 754 mV

6 mm

champagne bead
704 mV 760 mV

3 mm

champagne bead
703 mV 725 mV

17

4 Costs

Table 2 shows the cost breakdown of a single unit of the bee house. This is as we have
manufactured it, i.e. there are only capacitance sensors in one out of the four tunnels in
the house. For the labor cost, we assume each person in the group spent a total of 60
hours prototyping, debugging, and designing, with a salary is $35 per hour. Similarly for
the machine shop, we assume that they spent a total of 30 hours designing and machining
our product, with a salary of $35 per hour.

Table 2: Table showing cost breakdown of project

Item
Retail Cost/

Item

Student Cost/

Item
Manufacturer Quantity

Hour of Member Labor $35 $0 N/A 640

Hour of Machine Shop Labor $35 $0 N/A 40

Instrumentation Amplifier $20.58 $20.58 Analog Devices 3

Balanced Demodulator $39.04 $39.04 Analog Devices 3

Operational Amplifier $1.31 $0.00 Texas Instruments 3

High-slew

Operational Amplifier
$7.00 $0.00 Intersil 2

MAX 038 Waveform Generator $5.00 $0.00 Maxim Integrated 2

MicroSD Card and Adapter $8.54 $8.54 Sandisk 1

ATMega 328P $5.00 $5.00 Atmel 1

Power Supply $11.23 $11.23 Allover Power 2

In total, the parts would cost us $214.86, which, in combination with labor, brings the total
to $24,022.79 for the entire bee house with only one tunnel containing capacitive sensors.
However, as the student labor was unpaid and many parts and machine shop time were
available as course resources, the bee house’s actual costs are closer to $200 for a house
with one fully functional tunnel. Please note that this base cost excludes standard parts
such as wood, copper, and acrylic, and common resistors and capacitors.

18

5 Conclusion

In conclusion, our bee house serves as a proof-of-concept for a consumer-oriented mason
bee house. In its current form, this bee house is a ready-to-use tool for research applica-
tions, as the device is able to collect data accurately and precisely. However, additional
work needs to be done in order to make the bee house a viable consumer product.

Future work can be done in the following areas:

1. Software to provide a less technical, more user-friendly interface that displays the
behavior of the bees in a way that can be understood by someone who has no knowl-
edge of bees

2. Make the device weather resistant

3. Visual indicators of urgent sensor readings like parasite detection

We have also put our utmost effort into preventing accidental harm to mason bees that
would eventually inhabit the device. Our literature search led us to infer that mason bees
do not seem to mind the electric fields generated by the capacitor rings, as their close
genetic cousin, the leafcutter bee, was studied to not mind the capacitor rings at all [4].
We have also sized the mason bee tunnels in line with best practices informed by current
research on healthy mason bee populations. Research published in the journal Apidologie
in 2013 [1] concluded that tunnels with a length of at least 15 cm produce the healthiest
offspring and a suitable male-female larva ratio. This aligns with Section 1.2 of the ACM
Code of Ethics: avoid harm [8].

This mason bee house has been designed to be as approachable to amateur beekeepers as
possible, since our objective is to empower beekeepers to make the best decision possible
for their bees. Even though the technical functionality can be complex, the parts directly
interfacing with a user - such as an SD card, Python scripts, and data stored in .txt or .csv
- are common technologies in consumer electronics. This design is in keeping with the
ACM Code of Ethics Section 1.4, where it is noted that technology should be as accessible
as possible [8].

The beekeeper’s physical safety is also a high priority concern; we did not create devel-
oper safety procedures as our device cannot cause harm to the people who use it, even
by accident; it has no moving parts or batteries, and does not presently involve real bees.
We have avoided using batteries to protect the user, the bees, and the environment; by
using DC power supplied from wall outlet connections, the device overall does not gen-
erate much heat or produce toxic waste. Our electronics are also all low-voltage and low
current, so our device poses no risk of injury due to electrical shock.

By bringing transparency to mason bee houses, we have provided beekeepers a way to
stay vigilant against today’s most pressing mason bee home concerns. We hope that from
our efforts ,we have created a tool to boost native pollinator populations and have con-
tributed to the betterment of the environment, for ourselves, for our posterity, and of
course, for the bees.

19

References

[1] Sedivy, C., Dorn, S. Towards a sustainable management of bees of the subgenus Os-
mia (Megachilidae; Osmia) as fruit tree pollinators. Apidologie 45, 88–105 (2014).
https://doi.org/10.1007/s13592-013-0231-8

[2] Mader, E., Shepard, M., Vaughan, M., & Guisse, J. (2018, May). Tunnel
Nests for Native Bees. https://xerces.org. Retrieved January 25, 2022, from
https://xerces.org/sites/default/files/2018-05/13-054 02 XercesSoc Tunnel-Nests-
for-Native-Bees web.pdf

[3] Alzaabi, O. (2019). Airborne Insect Radar Scattering Characterization Using Electro-
magnetic Modeling (dissertation).

[4] Alzaabi, O., Lanagan, M., Breakall, J., & Urbina, J. (2019). Dielectric Properties of
Honey Bee Body Tissue for Insect Tracking Applications.

[5] Campbell, J. M., Dahn, D. C., & Ryan, D. A. (2005). Capacitance-based sensor for mon-
itoring bees passing through a tunnel. Measurement Science and Technology, 16(12),
2503–2510. https://doi.org/10.1088/0957-0233/16/12/015

[6] “Atmega 328 P Datasheet,” 2015. [Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-
Microcontrollers-ATmega328P Datasheet.pdf. [Accessed: 04-May-2022].

[7] “Max038 High-frequency waveform generator: Maxim integrated,”
High-Frequency Waveform Generator, 20-Sep-2007. [Online]. Available:
https://www.maximintegrated.com/en/products/analog/clock-generation-
distribution/silicon-crystal-oscillators/MAX038.html. [Accessed: 04-May-2022].

[8] “ACM Code of Ethics and Professional Conduct.” ACM.org. [Online]. Available:
https://www.acm.org/code-of-ethics. [Accessed: Feb 10, 2022].

[9] http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/opampvar5.html

20

Appendix A Requirements and Verifications Table

Mason Bee Housing Subsystem:

Requirement Verification

1. Provide secure housing
for tunnels and circuitry.

1A. House will be shake tested to make sure no parts are unse-
cured and to ensure fit of connections.
1B. A successful test will have none of the electronic compo-
nents disconnect, ie. after the shake, the device is still func-
tional.

2. Shall be weather resis-
tant.

2A. Wooden structure of outside housing will be exposed to
100 ml of water from the top to simulate rain.
2B. Insert three glass balls into tunnels to simulate bee activity.
2C. Manually check [pull SD card out from housing, load
into desktop, open file that the data has been written to] the
data written to the SD Card and verify that activity has been
recorded as expected. In particular, three spikes indicating bee
entry and exit should be visible.

Capacitance Measurement Subsystem:

Requirement Verification

2. Square wave and sinu-
soidal wave are generated
from waveform generator
and amplifier with char-
acteristics at least 4.75V
and no more than 5.25V
amplitude and 33kHz fre-
quency (at least 25kHz and
no more than 50 kHz).

2A. Connect an oscilloscope probe to the labelled square and
sinusoidal wave outputs on microcontroller PCB. Make sure to
ground the probe by connecting the ground clip.
2B. Press ’default’ on the oscilloscope to return it to its default
setup. Zoom in on the oscilloscope vertically and horizontally
to 2V vertical scale (for both waveforms) and 20 micro seconds
horizontal scale.
2C. Supply +5V, -5V, and ground to the microcontroller board
and wait 5 seconds.
2D.Then click measure on the oscilloscope and set up mea-
surements for amplitude and frequency of the two waveforms.
Confirm that the readings are within acceptable range.

21

3. Output of instrumen-
tation amplifier (proto-bee
data) is a waveform that
increases in amplitude in
response to a bead pass-
ing through the capacitive
sensor and is sensitive to
the bead’s direction of mo-
tion.

3A. Set up oscilloscope probe on test point of sensor board
circuit. Make sure to ground the probe’s clip.

3B. Press ’default’ on the oscilloscope to return it to default
setup. Zoom in on the oscilloscope vertically and horizontally
to 500mV vertical scale and 100ms horizontal scale.

3C. Supply the sensor board and the microcontroller board
with +5V, -5V, and ground. Make sure the microcontroller
board’s sin output is connected to the center rings of the
capacitor sensor and that the microcontroller board’s square
output is connected to the demodulator’s reference (lower
right header on sensor board). Wait five seconds.

3D. Insert a bead into the tunnel, moving it in and out, mak-
ing sure to pass the capacitive sensor whose circuit it being
measured. Watch the oscilloscope and confirm that when a
bead is not inserted, the waveform is consistent, and when it
is inserted, the waveform changes, and that when the bead is
removed, the waveform changes in the opposite way.

4. Sensor board output
follows reaction of instru-
mentation amplifier test
point to bead entry and
exit, but waveform has
less amplitude (no more
than 0.25 V) and clearly
shows the entry and exit
pattern of increase and
decrease corresponding to
direction of bead travel.

4A. Set up test described above in section 3.
4B. Add a probe on the output of the sensor board (top pin on
the bottom right header of the sensor board), making sure to
ground the probe’s reference clip.
4C. Turn on the channel for the additional probe and set verti-
cal zoom to 1V per division.
4D. Insert and remove the bead, and visually confirm that the
sensor board output follows the instrumentation amplifier sig-
nal’s envelope. Confirm the entry and exit pattern of increase
and decrease corresponding to direction of bead travel, noting
that a lower velocity of travel will make a pulse with less am-
plitude but longer duration. A higher velocity of travel will
make a pulse with higher amplitude and shorter duration.

22

Analysis and Storage Subsystem:

Requirement Verification

1. SD card contains read-
ings from capacitance sen-
sor system in CSV format.

1A. Verify that the outputs of the 3 sensor boards (the top pin
on the bottom right header of the sensor board) are connected
to A0, A1, A2 on the ATMEGA in the correct order (topmost
sensor board to A0, etc.)
1B. Verify that the microcontroller board sin wave output is
connected to capacitive sensor center rings and the microcon-
troller board square wave output is connected to the demodu-
lator reference (bottom pin on the bottom right header of the
sensor board). 1C. Supply +5V, -5V, and ground to the boards.
1D. Simulate bee behavior in the sensor tunnel by inserting
a bead, making sure to pass through all capacitive sensors
that are involved in the test. Do this for approximately half
a minute.
1E. Stop supplying power. Remove the SD card and view its
contents on a computer. Confirm that there exists a file (prob-
ably titled sen3.txt) that contains four columns of data and
many rows, of which the first column increases each row and
the other three columns reflect readings of the sensors.

2. SD card will be able to
contain the data resulting
from continuous readings
of 1 day.

2A. Simulate 2 minutes of bee behavior.
2B. Note the amount continuous data generated from the 2
minutes by inspecting the size of the text file. Multiply this
size by 720. (24 hours/ 2 minutes = 720)
2C. Confirm that the SD card is at least this size by checking its
reported storage capacity on a computer.

3.Computer-side program
(display.py) should inter-
pret csv data in a way that
does not require technical
expertise on the part of the
user.

3A. Run display.py after installing the necessary libraries (pan-
das and plotly).
3B. Visually confirm that the bead motion is identifiable on the
generated picture.

23

Power Subsystem:

Requirement Verification

1. Power subsystem
should be able to supply
voltage at +5V(from 4.8
to 5.8), ground, and -5V
(from -4.8 to -5.8)

1A. Take the two variable power supplies and connect the
breadboard output by attaching it to the barrel. Unscrew the
terminals and use a wire to connect the positive terminal of
one power supply to the negative terminal of the other. Attach
a wire to the two other terminals.
1B. Use an oscilloscope to probe each terminal. Confirm that
the positively marked, unconnected terminal is within the cor-
rect range for +5V, the joined terminal is at ground, and the
negative, unconnected terminal is within the correct range for
-5V.

2. Current draw of elec-
tronics should not exceed
1.5A.

2A. Connect all the electronics as described in Test 1 of the
Analysis and Storage Subsystem.
2B.Supply power using the power supply in lab. Use the +25v,
com, and -25v outputs, turn on the output, and set them to +5V
and -5V.
2C. Conduct the test described in Test 1 of the Analysis and
Storage Subsystem, but monitor the current draw displayed
on the power supply to confirm it does not exceed 1.5 Amps.

24

Appendix B Python Display Code

this script displays data from the bee tube in a time vs voltage
graph. To use this you will need to install plotly and pandas
pip install plotly
pip install pandas
the script does not currently deal with timestamp overflow, because
millis starts at zero when the arduino is powered and does not roll over
until apporx 50 days have passed, which is like a whole bee season
the graph will display on your default browser
the script also clears the file in which the arduino writes data, and makes a
copy of the data it cleared in a file named with the data and time

import csv
import plotly.express as px
import shutil
import datetime
import numpy as np

fontcolor=’#ffffff’

lists to store data from the text file
time=[]
sen1=[]
sen2=[]
sen3=[]

avg_time=[]
avg_sen1=[]
avg_sen2=[]
avg_sen3=[]

populate lists with data from csv file
make sure data is being read as numbers and not strings

use below line for use with device
with open("D:\SEN3.TXT") as File:

use below line for use during debugging
with open("SEN3v2.TXT") as File:

beedata = csv.reader(File, delimiter = ’,’)

for row in beedata:
time.append(int(row[0]))
sen1.append(int(row[1]))

25

sen2.append(int(row[2]))
sen3.append(int(row[3]))

make picture of continuous data
’’’
fig = px.line(title=’Raw measured activity within tube’)
fig.add_scatter(x=time, y=sen1, name=’shallow’)
fig.add_scatter(x=time, y=sen2, name=’mid’)
fig.add_scatter(x=time, y=sen3, name=’deep’)

fig.update_layout(
xaxis_title="time",
yaxis_title="voltage",
)

’’’
do analysis to identify interesting bee behavior patterns

average out the data
uses slightly overlapping averaging windows for a smoother graph
for i in range(1,(len(time)-3),1):

avg_time.append(round((time[i]+time[i+1]+time[i+2]+time[i+3])/4))
avg_sen1.append(round((sen1[i]+sen1[i+1]+sen1[i+2]+sen1[i+3])/4))
avg_sen2.append(round((sen2[i]+sen2[i+1]+sen2[i+2]+sen2[i+3])/4))
avg_sen3.append(round((sen3[i]+sen3[i+1]+sen3[i+2]+sen3[i+3])/4))

fig1 = px.line(title=’Processed activity within tube’)

fig1.add_scatter(x=avg_time, y=avg_sen1, name=’shallow’, line=dict(color=’DarkSeaGreen’))
fig1.add_scatter(x=avg_time, y=avg_sen2, name=’mid’, line=dict(color=’LightSkyBlue’))
fig1.add_scatter(x=avg_time, y=avg_sen3, name=’deep’, line=dict(color=’Violet’))

fig1.update_layout(
xaxis_title="time",
yaxis_title="voltage",
plot_bgcolor=’#19183a’,
paper_bgcolor=’#19183a’,
title_font_color=fontcolor,
legend_font_color=fontcolor,
legend_grouptitlefont_color=fontcolor,
legend_title_font_color=fontcolor,

)

fig1.update_xaxes(color=fontcolor)

26

fig1.update_yaxes(color=fontcolor)

find interesting things in the data

find "normal" to be able to make conclusions about abnormal
med1=np.median(avg_sen1[75:])
med2=np.median(avg_sen2[75:])
med3=np.median(avg_sen3[75:])

put the reference lines on the graph
#fig1.add_hline(ref1)
#fig1.add_hline(med2)
#fig1.add_hline(med3)

mark potential bee crossing points, stage 1: cross the median
in1=[]
out1=[]
in2=[]
out2=[]
in3=[]
out3=[]

sensitivity = 2 #how much of a deviation from normal is significant (in same units as y axis)

for i in range(1,(len(avg_time)-10)):

#identify potential bee crossings on shallow data
#ins
if ((avg_sen1[i]<med1) and (avg_sen1[i+1]>med1)):

if ((sum(avg_sen1[i-5:i])/5)< med1-sensitivity and (sum(avg_sen1[i:i+5])/5)>med1+sensitivity):
in1.append((avg_time[i], avg_sen1[i]))

#outs
if ((avg_sen1[i]>med1) and (avg_sen1[i+1]<med1)):

if ((sum(avg_sen1[i-5:i])/5)> med1+sensitivity and (sum(avg_sen1[i:i+5])/5)<med1-sensitivity):
out1.append((avg_time[i], avg_sen1[i]))

#identify potential bee crossings on mid data
#ins
if ((avg_sen2[i]<med2) and (avg_sen2[i+1]>med2)):

if ((sum(avg_sen2[i-5:i])/5)< med2-sensitivity and (sum(avg_sen2[i:i+5])/5)>med2+sensitivity):
in2.append((avg_time[i], avg_sen2[i]))

#outs
if ((avg_sen2[i]>med2) and (avg_sen2[i+1]<med2)):

if ((sum(avg_sen2[i-5:i])/5)> med2+sensitivity and (sum(avg_sen2[i:i+5])/5)<med2-sensitivity):
out2.append((avg_time[i], avg_sen2[i]))

27

#identify potential bee crossings on deep data
#ins
if ((avg_sen3[i]<med3) and (avg_sen3[i+1]>med3)):

if ((sum(avg_sen3[i-5:i])/5)< med3-sensitivity and (sum(avg_sen3[i:i+5])/5)>med3+sensitivity):
in3.append((avg_time[i], avg_sen3[i]))

#outs
if ((avg_sen3[i]>med3) and (avg_sen3[i+1]<med3)):

if ((sum(avg_sen3[i-5:i])/5)> med3+sensitivity and (sum(avg_sen3[i:i+5])/5)<med3-sensitivity):
out3.append((avg_time[i], avg_sen3[i]))

#if any entry or exits are found, label them on the graph
if (in1):

fig1.add_scatter(x=list(zip(*in1))[0], y=list(zip(*in1))[1],
mode=’markers’, name=’shallow in’, marker=dict(size=10, color=’GreenYellow’))

if (out1):
fig1.add_scatter(x=list(zip(*out1))[0], y=list(zip(*out1))[1],
mode=’markers’, name=’shallow out’, marker=dict(size=10, color=’LimeGreen’))

if (in2):
fig1.add_scatter(x=list(zip(*in2))[0], y=list(zip(*in2))[1],
mode=’markers’, name=’mid in’, marker=dict(size=10, color=’Aqua’))

if (out2):
fig1.add_scatter(x=list(zip(*out2))[0], y=list(zip(*out2))[1],
mode=’markers’, name=’mid out’, marker=dict(size=10, color=’DodgerBlue’))

if (in3):
fig1.add_scatter(x=list(zip(*in3))[0], y=list(zip(*in3))[1],
mode=’markers’, name=’deep in’, marker=dict(size=10, color=’Fuchsia’))

if (out3):
fig1.add_scatter(x=list(zip(*out3))[0], y=list(zip(*out3))[1],
mode=’markers’, name=’deep out’, marker=dict(size=10, color=’DarkViolet’))

add pictures of reference value for visual confirmation
fig1.show()

uncomment the lower code when using it on the device
make a correctly dated copy of data

now = str(datetime.datetime.now())[5:19]
now = now.replace(":","_")

src="D:\SEN3.TXT"
dst="D:data"+str(now)+".txt"

28

shutil.copyfile(src,dst)

#clear the original file to make space for next reading
with open("D:\SEN3.TXT", ’w’):

pass

29

Appendix C ATMega328P Data Logging Code

#include <SPI.h>
#include <SD.h>

File myFile;

int chipsel = 4;

//variables to read data from tubes
int val1, val2, val3;
unsigned long timestamp;

int sen1 = A0;
int sen2 = A1;
int sen3 = A2;

void setup() {
// initalize ss pin , 10
pinMode(chipsel, OUTPUT);

//set up input pins for 3 capacitor pairs
pinMode(sen1, INPUT);
pinMode(sen2, INPUT);
pinMode(sen3, INPUT);

digitalWrite(chipsel, HIGH);

pinMode(10, OUTPUT);
digitalWrite(10, HIGH);

Serial.begin(9600);

if (!SD.begin(chipsel)) {
while(1);
Serial.println("not initialized SD");

}
}

void loop() {
//debugging message
Serial.print("within loop ");

//take reading from each capacitor pair

30

val1 = analogRead(sen1);
val2 = analogRead(sen2);
val3 = analogRead(sen3);

//open file for writing
File dataFile = SD.open("sen3.txt", FILE_WRITE);

//debugging message to see measured values
Serial.print(val1);
Serial.print(",");
Serial.print(val2);
Serial.print(",");
Serial.println(val3);

//write measured values to file in csv format
if (dataFile) {

timestamp = millis();
dataFile.print(timestamp);
dataFile.print(",");
dataFile.print(val1);
dataFile.print(",");
dataFile.print(val2);
dataFile.print(",");
dataFile.println(val3);
dataFile.close();
Serial.println("w");

}

//short delay to allow SD card library to finish its tasks
//50ms was selected based on the oscilloscope readings we took
//it should be frequent enough to take more than one reading during the up-down pattern
//making it recognizable in the readings from the csv
delay (25);

}

31

	Introduction
	Objective and Background
	Problem
	Solution
	Block Diagram
	High Level Requirements List
	Demonstration

	Design
	Design Procedure
	Power Subsystem
	Mason Bee Housing Subsystem
	Capacitance Measurement Subsystem
	Data Cleaning Subsystem
	Analysis and Storage Subsystem

	Design Details
	Power Subsystem
	Mason Bee Housing Subsystem
	Capacitance Measurement Subsystem
	Data Cleaning Subsystem
	Analysis and Storage Subsystem

	Verification
	Costs
	Conclusion
	Appendix Requirements and Verifications Table
	Appendix Python Display Code
	Appendix ATMega328P Data Logging Code

