
ECE 445 Final Report - Pet Health Monitor

By

Jeffery Haag

Rushill
Shah

Tanmay Thakur

May 4th, 2022

TA: Hojoon Ryu

Team Number : 59

Abstract

The primary purpose of this project is to provide cat owners an easy and effective way to

monitor their pet’s health and lifestyle while the pets go on with their daily activities. Body

temperature, heart rate are quantitative indicators and daily activity is a qualitative indicator of

a pet’s health and lifestyle and with these metrics, a pet owner can make a much more

informed decision.

The project was partially successful as the final prototype failed to record heart rate but was

successful in recording the temperature and activity level data from sensors embedded in a

portable wearable for a cat which then was transmitted to the user’s phone via bluetooth. The

user then can use the designed phone application to view the transmitted data in real time.

2

Contents

1. Introduction 4

2. Outline of Subject Matter 5
2.1 Introduction 5

2.2 Device Design 5

2.2.1 Power Subsystem 7

2.2.2 Control Subsystem 7

2.2.3 Sensors Subsystem 8

2.2.4 User Subsystem 8

3. Verification 9
3.1 Power Subsystem 9

3.2 Control System 10

3.3 Sensor Subsystem 10

3.4 User Subsystem 10

4. Costs 11

5. Conclusion 12
5.1 Notable Features 12

5.2 Testing Uncertainty 13

5.3 Ethical Considerations 13

5.4 Future Work 13

6. References 14

Appendix 15

Appendix A- Arduino code 15

Appendix B - Block Diagrams and Other Images 19

Appendix C - RV Tables 21

Appendix D - App Images 25

Appendix E - App Code 27

Appendix F - Battery life calculation 30

3

1. Introduction

A pet owner’s prime concern is the well being of their pets and a trip to a veterinary doctor is

usually very expensive. According to various pet care blogs the average cost of a routine check

up can end up anywhere between $50 - $250 depending on the pet, tests required and the

doctor’s medical opinion. A short term hospitalization can cost anywhere between $600 -

$1700. In order to prevent a serious complication, it is very important to monitor the overall

health of one's pets. Usually owners monitor the health of their pets by behavioral changes

such as eating habits, decrease in physical activity levels and sleep schedules. Often these

behavioral changes are difficult to point out and thus an early onset of a health complication

can go unnoticed for a long time which can lead to delayed medical attention. This delay can

lead to further complications which not only increases the cost of treatment but sometimes can

cause severe impacts on the pet’s health and make the treatment procedures extremely

difficult. Relevant health metrics and real-time updates to the owners can enable them to make

an informed decision about their pet’s current health and lifestyle and get them proper medical

assistance accordingly. Current products in the market which record real-time vitals of pets are

expensive and have a starting range of around $120, thus can be unaffordable to a lot of pet

owners.

In order to help alleviate a part of this cost and ensure that an owner has a holistic view of their

pet’s health at a low cost, we designed a wearable sleeve to let pet owners keep track of

important data during play sessions or as they go about their daily routine. As mentioned

above, changes in metrics like body temperature and heart rate are good indicators of a pet’s

health and we aim to combine these metrics along with qualitative analysis of the pet’s activity

levels by measuring movement, and update the user in case of a significant change. To

implement this, we decided to use specific cost effective sensors available to get the heart rate

and the temperature data of the pet. For the movement data and the activity level, we used an

accelerometer to measure the instantaneous acceleration of the pet which we used later to

calculate the distance traveled and a quantitative measure of the daily activity level of the pet.

The metric we used for this is named to be activity ratio and as the name suggests, it is a ratio of

the total active time to total time. For the user end we designed an application for android

phones which uses the inbuilt bluetooth interface of the phone to communicate with our device

and receive the data collected from the sensors. The app then parses the data and provides the

above mentioned metrics of the cat’s health to the user. With a log of data over an extended

amount of time can help the user spot the behavioral changes in a more statistical and

metricized form.

Our design initially had only three high level requirements.

4

● The device should collect data from all three sensors and stream it to the control unit at

least every 10 seconds.

● The device should maintain wireless connection to the user’s smartphone and transfer

the sensor data from the control unit to the user’s phone.

● The android application should apply computations on incoming data to present

accurate readings to the user in a human interpretable format.

Our final product fulfilled the second and third requirements but could only partially fulfill the

first one. We were not able to integrate the heart rate sensor because of functional and ethical

considerations which are discussed later in the report.

2. Outline of Subject Matter

2.1 Introduction

As mentioned above in the introduction (Section 1), our design’s high level requirements aimed

at integrating, storing and transmitting the collected data to the user end through the phone

application. To achieve that we divided our design into four different subsystems which could be

tested individually. Since our device is supposed to collect data from a pet, testing and

calibrating the sensor data for accuracy was a very integral part and one of our main objectives

of our design. Since these subsystems run independently, integrating them was a fairly simple

process and hence helped us focus on the accuracy of data before moving on to integrate

different components of our design. Another very important design consideration was the

physical form of the device as it had to be portable and comfortable enough for the pet to be

wearing it most of the time. We decided to create a cloth sleeve, resembling a sweater for pets

with a pouch to hold the device. The temperature sensor needed to be in contact with the pet’s

body so we decided to use wires attached to the sleeve to connect the temperature sensor to

our device. This design choice gave us the leeway to test for best placement of the sensor to get

accurate readings.

2.2 Device Design

Since our project was heavily reliant on data collection and transmission, the sensors and the

control unit were a big part of our device. Another independent yet very important aspect of

our end product was the user interface on the phone as without presenting the collected data

in a meaningful way, our product would have not served a practical purpose. Since all the

5

components in our design didn’t need too much electrical power to operate, the power

subsystem was not as significant of a design consideration as compared to the sensors.

Figure 1: Overall Block Diagram

As you can see in the figure above, the independent systems interact with each other using

different protocols. The temperature sensor which we found accurate has an analog output

whereas the accelerometer has a built in ADC converter and uses SPI protocol to communicate

with the microcontroller. The microcontroller which was the control unit of our device had an

inbuilt bluetooth module which then transmitted the data stored in its memory to the phone

via bluetooth which the phone application then received by establishing an active connection

with the device. Our initial design had a separate storage system as an SD card to store data for

an extended duration before transmitting the data, but later we realized that since all the data

to be sent is a string of characters, our device didn’t need the extra SD card and the inbuilt

memory of the microcontroller was enough to store a day’s worth of data as a buffer.

6

2.2.1 Power Subsystem

The power requirements of our design was limited to a 3.3 V battery as all our sensors and the

microcontroller operate optimally in that range. We designed our power subsystem to regulate

a 5 V battery to produce a 3.3 V output using a voltage regulator. The relevant schematic can be

found in Appendix D. Our designed PCB routed the output voltage of the regulator to the

microcontroller chip (Refer to Appendix D3 for the design). Even though the regulator was

working perfectly, after an incident of burning the diode due to a short circuit caused by

bridging two terminals of the resistor, we had to shift from our PCB to a development board.

Since we could not use the power supply circuit on our development board, we ended up using

a power bank outputting 5 V as there was already a regulator on the ESP 32 Wrover

development board we used in our design.

2.2.2 Control Subsystem

The control system’ main purpose is to interface the sensor subsystem and the app system using

bluetooth and local memory as well as transferring states using button presses. Initially we

were planning on using a local SD card to save information, in order to achieve the high level

requirement of being able to store 24 hours of data. We discovered that the onboard memory

of the microchip is sufficient for this purpose, and also doesn’t require the additional complexity

and weight of the micro SD card system, so we opted to just have the onboard memory.

Figure 2: Control Unit State Machine

Physically the control system includes the microcontroller, 4 buttons, and various

resistors,wires, etc. to make it function properly. Since we used the esp32 Wroom, an

additional bluetooth unit wasn’t necessary because it comes onboard with the esp32. For

buttons we have a physical power button and reset button. On the app we have a pair button,

7

and a transmit button, which will change the state of the control system. The default state is off,

and when powered on goes into data collection mode. From data collection mode it can either

go into pair mode or into transmit mode. When in collection mode, this is when sensor data is

sent to memory after being modified by code to

clean it. In pair mode it pauses the transfer and establishes a bluetooth connection. While in

transmit mode it reads the data from memory and transmits to the phone using the bluetooth

functionality. This entire system is very simple but also extremely important, in order to deliver

cleaned data to the app subsystem. To view the code that does this, consult appendix A

2.2.3 Sensors Subsystem

We originally planned on having 3 sensors for our device. Accelerometer, pulse, and

temperature. Since pulse sensors are designed for human use, and don’t work great under the

best of conditions, getting it to work on a cat proved impossible. So on the final device we had

an accelerometer sensor as well as a temperature sensor. The accelerometer takes the x,y, and z

acceleration from the sensors’ orientation. Because of this mounting the acceleration sensor

was very important so that the z acceleration would measure -9.8m/s/s when at rest so as not

to add unwanted acceleration values to other dimensions. We ended up mounting it inside the

enclosure that housed the pcb, which in turn is held relatively stable on the cat’s back.

For temperature, this is a relatively simple thermal coupling that we would want to be in as

close contact to the cat’s body as possible. It is an analog sensor that has a voltage on one of

the wires that is easily converted to a value in Celsius in the control unit. In order to get as close

to the cat’s body as possible, the sensor runs through the material of the harness and is pressed

into the cat’s armpit. This value has a very good correlation with the cat’s true internal

temperature, but needs to be adjusted by a linear adjustment to match the core body

temperature(Nutt).

2.2.4 User Subsystem

The purpose of the User-End application subsystem is to take as input the feed of live data from

our control unit, process it and allow the user to view the data on an android application. The

real time bluetooth data comes in and is registered by a Bluetooth Adapter, that connects only

to the MAC address of our device. The data is parsed for the 3-axis accelerometer and

temperature and then processed individually. This takes around 5 seconds to compute. The

functions for bluetooth connection can be found in Appendix E.3.

8

We find the Activity Ratio by counting the number of readings where the change in axis

acceleration for each was over a certain bound value (through trial and error, determined to be

a 0.25) implemented as a low pass filter. We then find the ratio of the active events as defined

above to the total events. We then use a double integral on the formula below for all axes in

order to calculate the estimated distance covered.

Equation 1: Equation for distance used for integral

𝑠 = (1
2) * 𝑎 * 𝑡2

We conducted multiple trials, and found that the uncertainty was approximately 30%. We

expected this rate due to the fact that our equation does not consider the initial velocity, or the

‘ut’ term since we have no indication of that using the accelerometer itself (as seen in equation

2). In further work, we elaborate on GPS data that could improve this. The accelerometer

parsing functions can be found in Appendix E.2.

Equation 2: Actual equation for distance

𝑠 = 𝑢 * 𝑡 + (1
2) * 𝑎 * 𝑡2

For temperature, we determine the maximum and average value and display them to the user.

Our temperature sensor displayed more accurate cat temperature readings, within ±2°C of

realistic values. The temperature parsing functions can be found in Appendix E.1.

3. Verification

3.1 Power Subsystem

Since the power requirements of the sensors were minimal, the only requirement we had
from the power subsystem was an output of regulated 3.3 V and the battery to last for at
least 6 hours before needing to be charged. To verify if our power supply was supplying a
constant voltage output of 3.3 V, we used the power supply in the Senior Design lab to
supply a constant DC voltage of 5 V and then used an oscilloscope to measure the output
reading to be 3.3 V (Refer to appendix C.3 for the RV table).

To verify the battery life, we first computed the battery life by calculating power consumed
by each device of our circuit to sum them up and find the total power consumed by the
device. We looked at the datasheets to find the average consumption of each device. Refer

9

to appendix for the exact consumption by each device and the calculation of total power. We
then looked up at the total energy of our battery to calculate the number of hours it would
last. To verify we measured the current across the power supply at a 5 V output to calculate
the power consumed by our device. We then used the measured current to measure the
power consumed by multiplying it by the voltage across the device.

3.2 Control System

As you can view in Appendix C.2, a working control system would do the following; sensor data

is accurately written to local memory, data from local memory is read and correctly transmitted

using the bluetooth features, the device can be turned off and on and has an LED representing

the change, bluetooth pairing is initiated by a button, with an LED representing this state. With

the exception of the bluetooth pairing being represented by an LED, we were able to verify all

the above requirements. To be clear, the device does pair, it just doesn’t have an LED to tell the

user it is pairing. All these are verified not only by the listed verification found in the table but

also by the high level requirements that require the control system, also being verified

3.3 Sensor Subsystem

As you can see in Appendix C.4, a working sensor subsystem would contain the following:

sensors send data at least once per second, sensors are active and transmit data to the control

unit at least 95% of the time the unit is on. The pulse sensor data and the accelerometer is

accurate to ±10% of actual values and the temperature sensor is accurate to ±5% of actual

values. All sensors are verified to send data once per second and also transmit 100% of the time

when in the recording state from our testing. As previously mentioned, unfortunately our pulse

sensor is not operational so that aspect of the requirement is failed. For the temperature sensor

though we achieved 5% accuracy quite easily in our tests. AS for the accelerometer, this is

extremely accurate in and of itself, so it passes the requirement, but when we tried to use this

data to calculate distance or activity time, a higher degree of error is introduced.

3.4 User Subsystem

As seen in Appendix C.1, a fully functional User-End subsystem would fulfill the following

requirements: smartphone is able to connect to the device via bluetooth, phone can receive

data from the last 24 hours, and app parses data to reveal distance and activity with

temperature metrics.

We fulfilled all these requirements on the User-End subsystem. Since we moved to real-time

bluetooth data streams, we were able to collect data indefinitely until a button on the device

10

would be pressed, sending a signal to stop collection. We were able to connect to bluetooth and

enforced a connection on hitting the pair button by pairing to the MAC address of the ESP-32.

Finally, we are left with the metrics requirement. While we were unable to depict our data with

graphs on the app itself due to library issues, we managed to calculate an Activity Ratio as an

indication of time the cat was active during the collection session. Additionally, we use the

distance formula with integrals as discussed in Section 2.2.4 to estimate the distance covered.

This was within ±30% of actual distance values, but our tests were conducted on smaller

distances. We find the maximum and average temperature from a collection session and display

those metrics too.

Images from the android application can be found in Appendix D displaying the data pages and

home screen

4. Costs

Table 1: Parts Cost Summary

Manufacturer Model Qty Cost($) Description

Adafruit 165 1 2.75 Body temperature sensor 1

Texas

Instruments

LM35DZ PN

JUNCTION

SENSOR

1 1.66 Body temperature sensor 2

Adafruit 1093 1 25.00 Pulse sensor

Maxim

Integrated

MAX30102EFD

+T

1 5.06 Pulse sensor

Adafruit 1231 1 17.50 Accelerometer

Adafruit 4097 1 6.00 Accelerometer

Adafruit 387 1 0.75 LED's

Adafruit 1119 10 2.50 Buttons

Adafruit 254 1 7.50 SD Card To Spi board

11

Adafruit 1294 1 9.95 SD card 4 gb w/ adapter

Adafruit 2011 1 12.50 Battery 3.7V

Adafruit 1959 1 14.95 Battery 5v

Adafruit 4077 1 9.95 Bluetooth Module

Adafruit 2746 1 19.95 Bluetooth Module

Table 2: Labor Cost Estimate

As you can see, the total cost of labor is around $4,500 and the total cost of parts was $136. Of

course you may notice that there are many sensors that were ordered that were not included

on the final product. This is because we did testing on which sensors would work best and only

the best functioning ones made it into the final product. The costs of this specific model thus

has a lot of R&D costs baked into it, in order to make the most accurate tool.

5. Conclusion

5.1 Notable Features

With this project, we have managed to successfully detect cat temperature and quantify the

intensity and frequency of their movements with an activity ratio. We were able to successfully

test these activity ratio values for consistency with higher ranges of activity as compared to

lower. While we were unable to deliver on our initial proposal of pulse sensing, we believe that

even if we had an IR pulse sensor, we would be unable to measure the pulse due to damping of

vibrations through the cat’s fur.

12

5.2 Testing Uncertainty

Our device was developed for a cat of a certain size, and there is always some subjective

uncertainty and we would need to adjust the temperature sensor position for each cat. As a

result, our design wouldn’t work for all without adjustment. The accelerometer was placed on

the back in order to minimize errant movements being tracked, but a cat walking in itself makes

the accelerometer move. As a result we had to measure the change in axis acceleration in order

to get our activity ratio. The temperature sensor had a constant uncertainty, and with being run

for longer it got more accurate.

5.3 Ethical Considerations

Since our project requires us to directly work with and test our device on a cat, we strictly

abided by the regulations set out by PETA and the Human Care for Animals Act1. We found that

2-5 kilograms is a safe weight to carry, while our device (along with the harness) was well under

that weight limit. We ensured that all electrical components were insulated and there was no

direct exposure to the cat’s skin (other than sensor surfaces). Additionally, due to our backup

pulse sensor requiring EKG adhesive fluid, we did not go through with it to prevent any

discomfort or harm to the cat. We ensured that all tests were done in the presence of the cat

owners too. While PETA emphasizes animal freedom and no experimentation, we made sure to

test only when the cat was deemed to be ‘comfortable’ by the owner.

Additionally, we followed the ACM Code of Ethics2, with the sole purpose of our project being to

contribute to the scientific field and computing, while ensuring that there is no negative

externality or harm caused by our actions.

5.4 Future Work

There are many possible improvements to the project that we could make if we continued

working on it beyond this course. Improvements could be made in the technical design and

physical aspects of the project. In order to give users a better estimate of the distance covered

and actual position of the cat, we believe that we could use the WiFi module of the ESP-32,

which has specific plugins and tools for positional data. This would augment our accelerometer

and give us a better metric for activity.

2 The code affirms an obligation of computing professionals to use their skills for the benefit of society.
Code of Ethics. (n.d.). Retrieved May 4, 2022, from https://www.acm.org/code-of-ethics

1 HAARC, Retrieved May 4, 2022, from https://ilga.gov/legislation/ilcs/ilcs3.asp?ActID=1717

13

In order to make our actual physical design more compact and easier for cats to handle, we

propose to locate the temperature sensor and the accelerometer on a collar-like attachment,

which would be powered by a battery located on the harness. This improvement would greatly

streamline the physical design and make better use of the sensing and real-time data transfer

implementations.

6. References

1. The code affirms an obligation of computing professionals to use their skills for the
benefit of society. Code of Ethics. (n.d.). Retrieved May 4, 2022, from
https://www.acm.org/code-of-ethics

2. Costa, D. dos S., Turco, S. H. N., Ramos, R. P., Silva, F. M. F. M., & Freire, M. S. (n.d.).
Electronic Monitoring System for measuring heart rate and skin temperature in small
ruminants. Engenharia Agrícola. Retrieved May 4, 2022, from
https://www.scielo.br/j/eagri/a/VSYJ448gk9DqpcxyntD6MfK/?lang=en.

3. Maddie’s Shelter Medicine Program, College of Veterinary ... - HSVMA. (n.d.). Retrieved
May 5, 2022, from https://www.hsvma.org/assets/pdfs/kelly_nutt_poster.pdf

4. Medicine, C. for V. (n.d.). Animal & Veterinary. U.S. Food and Drug Administration.
Retrieved May 4, 2022, from https://www.fda.gov/animal-veterinary

5. Plotts, E. (2020, June 8). How much does a vet visit cost? here's everything you need to
know. Pawlicy Advisor. Retrieved May 4, 2022, from
https://www.pawlicy.com/blog/vet-visit-cost/.

6. PostedinHealth, Megan, P. by, Cats, P. S., PostedinBehaviour, & PostedinNutrition.
(2021, November 25). How strong are cats? Tuxedo Cat. Retrieved May 4, 2022, from
https://www.tuxedo-cat.co.uk/how-strong-are-cats/.

7. . (n.d.). Retrieved May 4, 2022, from
https://ilga.gov/legislation/ilcs/ilcs3.asp?ActID=1717

14

Appendix

Appendix A- Arduino code

Appendix A.1 - Libraries & Pins Used

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_ADXL343.h>
#include "BluetoothSerial.h"
#include "esp_adc_cal.h"

#define TEMP_PIN 35 //temp pin for sensor
#define MEASURE_SWITCH_PIN 11 //GIOP21 pin connected to upload
switch ;HI=mesure LO=idle
Adafruit_ADXL343 accel = Adafruit_ADXL343(12345);
//35 34 reserved
BluetoothSerial SerialBT;

Appendix A.2 - Code for Temperature Sensor

int setUpThermo()
{

return 0;
}

uint32_t readADC_Cal(int ADC_Raw)
{

esp_adc_cal_characteristics_t adc_chars;

esp_adc_cal_characterize(ADC_UNIT_1, ADC_ATTEN_DB_11,
ADC_WIDTH_BIT_12, 1100, &adc_chars);

return(esp_adc_cal_raw_to_voltage(ADC_Raw, &adc_chars));
}

15

String getThermodata()
{

float reading = analogRead(TEMP_PIN);
// Calibrate ADC & Get Voltage (in mV)

float Voltage = readADC_Cal(reading);

float LM35_TempC_Sensor1 = (Voltage - 500) / 10;
float temperatureF = (LM35_TempC_Sensor1 * 1.8) + 32;

return (String)(temperatureF) ;
}

Appendix A.3 - Code for Temperature Sensor

int setUpAccel()
{

#ifndef ESP8266
while (!Serial); // for Leonardo/Micro/Zero

#endif
/* Initialize the sensor */
if(!accel.begin())
{

/* There was a problem detecting the ADXL343 ... check your
connections */

Serial.println("Ooops, no ADXL343 detected ... Check your
wiring!");

while(1);
}
accel.setRange(ADXL343_RANGE_4_G);

}

String getAcceldata()

16

{
sensors_event_t event;
accel.getEvent(&event);

String returnString = (String) event.acceleration.x + "," +
(String) event.acceleration.y + "," + (String)
event.acceleration.z;

return returnString;
}

Appendix A.4 - Code for Pulse Sensor

int setUpPulse()
{

//TODO:
pinMode(35, INPUT); // Setup for leads off detection LO +
pinMode(34, INPUT); // Setup for leads off detection LO -
return 0;

}

String getPulsedata()
{

return (String)analogRead(A0);
}

Appendix A.5 - Code for ESP32’s Bluetooth Module

int setUpBluetooth()
{

SerialBT.begin("Cat Thermometer");
Serial.println("Connected Succesfully!");

SerialBT.connect();
return 0;

}

17

int sendBluetoothData(String data)
{

SerialBT.print(data);
Serial.print(data);
return 0;

}

Appendix A.6 - Code for the Control Unit

void setup() {

Serial.begin(115200);
Serial.print("hi");
// put your setup code here, to run once:
setUpThermo();

setUpAccel();

setUpBluetooth();

setUpPulse();

}

void loop() {

int measureState = digitalRead(MEASURE_SWITCH_PIN);

//Upload Button

delay(1000);

String accel_data = getAcceldata();
String temp_data = getThermodata();
String pulse_data = getPulsedata();

18

String trans_string = accel_data + "\t" + temp_data + "\t" +
pulse_data + "\n";

sendBluetoothData(trans_string);

}

Appendix B - Block Diagrams and Other Images

Appendix B.1

19

Appendix B.2

Appendix B.3

20

Appendix B.4

Appendix C - RV Tables

Appendix C.1
R&V Table 1: User-End Subsystem

Requirements Verification

Smartphone is able to connect to bluetooth
unit

1.User will navigate to their smartphone's
bluetooth settings and search for available
devices while standing within 10 feet of the
device.
2.The user will attempt to pair with the
device on their phone.
3. When the smartphone returns a pair
complete, or similar message it is a success.

Phone can receive data from the last 24 hours 1. After successful pairing, navigating to the
smartphone app and updating the app via an
on screen prompt should result in the
presence of data from the devices sensors

21

dating back 24 hours. The presence of data
visible in the app dating back 24 hours is a
success.

App parses data to reveal metrics such as
distance covered, sedentary time, and check
for healthy vital signs.

1.Once in the app, the data should be visible
in the form of distance traveled, sedentary
time, frequency and total time with vitals
spent outside healthy range. 2. 2. Success is,
The presence of this data in readable form
Frequency and time outside healthy vital
range accurate to ±5% real value
Distance traveled and Sedentary time
accurate to ±20% real value.

Appendix C.2

R&V Table 2: Control Unit Table

Requirements Verification

Sensor data is received and accurately written
to the SD-Card.

1. We will feed custom test data such that
test data is held at a certain value to the
microcontroller using a lab signal generator
for digital data and a power supply for analog
data.
2. After a set period we will plug the sd into a
computer so we can view the raw data in .txt
format.
3.We will compare the data in the .txt to our
test sensor data to ensure it is being recorded
correctly

SD-Card data is read and fed to the bluetooth
module

1. We will save custom data to the SD card
using a computer, again such that the data is
held constant.
2. We will then have the control unit output
the data to the bluetooth subsystem by
putting the control unit in that state.
3. We will check what data is being sent on
the output line by using an oscilloscope, and
verify it is the test data we saved in.

The unit is turned off and on by the button 1. We will observe the unit with a voltmeter

22

and it’s state is represented by an LED light and ensure that no wire is hot while the LED
is off.
2. We will press the on button and ensure
that the power LED turns on and then check
with the voltmeter that the wires are now
hot.
3. We will press the off button and ensure the
LED turns off and the wires are no longer hot.

Bluetooth pairing state is initiated by the
pairing button and is represented by an LED
light.

1. The pairing LED should be off before any
action is taken
2. After pressing the pairing button, the
device should show as visible\pairable to any
bluetooth compatible device in the area and
the pair LED should turn on.

Appendix C.3

R&V Table 3: Power Unit Subsystem

Requirements Verification

1. Battery lasts for 6 hours 1. We will measure the Potential applied
and the supplied current using a
multimeter and an oscilloscope while
verifying individual subsystems.

2. With the recorded current and voltage
values, we can calculate the power
consumed by each of the subsystems.

3. Since we know the energy stored in
the battery, we make sure that the
battery can provide the required
power for at least 6 hours.

Appendix C.4

R&V Table 4: Sensor Subsystem

Requirements Verification

Sensors send data at at least once per second 1. We will check each sensor output with an
oscilloscope and ensure it is sending
information at once per second.

23

Sensors are active and transmitting data to
the control unit, at least 95% of the time the
unit is on.

1. We will allow sensors to collect data for 1
hour. Assuming the control unit has passed its
earlier tests, we will then check the SD on a
computer.

2. By seeing how many data values there are
on the SD, and knowing the clock speed and
thus, how many values there should be, we
can calculate what percent of the time the
sensors were sending data. If it is greater
than 95%, it passes.

The pulse sensor data and the accelerometer
is accurate to ±10% of actual values and the
temperature sensor is accurate to ±5% of
actual values.

1. To test temperature, we will use an outside
infrared thermometer and compare it to the
value of the sensor recorded on the sd card at
temperatures 36,36.5,37,37.5,38,38.5, and 39
celsius using the infrared as a baseline. If the
average difference at each temperature is
less than ±5%, it passes.

2. To test the accelerometer, we will attach a
phone with an accelerometer to the cat via
the harness. We will allow it to move for 10
minutes and then get the graph for x,y,z
acceleration from the sensor as well as the
phone. For each x,y,z we will find x = (Yphone -
YSensor) . We will then do error = x / Yphone . If x
<= 0.05 it passes.

3. To test the pulse sensor, after consulting a
vet, we will use a person's hand to measure
the cat’s heart rate over a 5 minutes while
recording pulse every 30 seconds. At the
same time the sensor will be attached. We
will then compare the manually gotten data
to the sensor data. We will average the pulse
sensor data to its value every 30 seconds. We
will then calculate the differences and if it is
under ±5% from the manual data it passes.

24

Appendix D - App Images

Appendix D.1 - Data Page

25

Appendix D.2 - Parsing Page

Appendix D.3 - Home Page

26

Appendix E - App Code

Appendix E.1 - Temperature Processing

27

Appendix E.2 - Acceleration Processing

28

Appendix E.3 - Bluetooth Connection

29

Appendix F - Battery life calculation

Energy stored in the Battery = 5 V * 2600 mAh

= 13 Watt-h

30

