
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

TimeTable Productivity Device

Team #47

BEN XIE

(bx3@illinois.edu)
PRANAV GOEL

(pranavg4@illinois.edu)
HONGRU WANG

(hongru2@illinois.edu)

TA: Pooja Bhagchandani

May 4, 2022

Abstract

This report describes the design process and components used to develop our TimeTable
Device. We will introduce our device’s purpose along with the context for its creation.
We then will talk about the high-level requirements as well as how they and their sub-
level requirements were met. Since problem-solving is part of the design process, we will
then discuss what went wrong and other challenges we faced. We will also discuss the
cost analysis of our project. We will conclude with a breakdown of what went well, what
went wrong, and what we should do going forward along with any ethical considerations
along the way.

ii

Contents

1 Introduction 1
1.1 Purpose . 1

1.1.1 Problem . 1
1.1.2 Solution and Function . 1

1.2 Subsystem Overview . 2

2 Design 3
2.1 Subsystem Design Considerations . 3

2.1.1 Processing and Communication . 3
2.1.2 User Interface . 4
2.1.3 Sensing . 5
2.1.4 Power . 6
2.1.5 Software and Server . 8

3 Cost and Schedule 9
3.1 Cost . 9

3.1.1 Parts . 9
3.1.2 Labor . 9
3.1.3 Total . 9

3.2 Schedule . 9

4 Design Veri�cation 10
4.1 Processing and Communication . 10
4.2 User Interface . 10
4.3 Sensing . 11
4.4 Power . 11
4.5 Web Application, Server, and Chrome Extension 12

5 Conclusion 13
5.1 Accomplishments . 13
5.2 Uncertainties . 14
5.3 Ethical Considerations . 15
5.4 Further Work . 15

5.4.1 Device . 15
5.4.2 Web Application and Chrome Extension 16

References 17

Appendix A Tables 18

Appendix B Diagrams 22

Appendix C Requirements And Veri�cation 24

iii

1 Introduction

1.1 Purpose

1.1.1 Problem

High productivity is something many people try to achieve with little success. Managing
tasks is a vital skill to continuously optimize productivity and creating to-do lists is one
of the most powerful methods used to accomplish this. This system is often used via apps
people access from many devices like phones or laptops. However, apps can ultimately
lower productivity rather than increase it. Checking your to-do list can be a multi-step
process that takes your focus away from your original task and results in you doing some-
thing else. It can allow you to get distracted because less productive apps become easily
accessible.In addition, having your to-do list hidden on your tablet or phone makes it eas-
ier to ignore, especially when noti�cations are often dismissed for no reason other than
cleaning up the lock screen. This makes it easy to forget to check the app or interact with
it entirely. Also, there could be many factors in one's working environment that can lower
productivity, such as air quality [1], temperature [2], and humidity [3]. Many people don't
even realize that something is wrong and will continue working, attributing their lack of
focus and concentration to internal factors such as lack of sleep or stress [4]. In summary,
we need a better method of keeping track of daily tasks. We also need something that
continuously monitors one's working environment and informs them of issues affecting
optimal productivity conditions.

1.1.2 Solution and Function

To give people a better way to monitor their daily tasks, as well as their working environ-
ment, we built a desktop device that can display a to-do list as well as monitor environ-
mental factors such as CO2 levels, temperature, and humidity. This provides a constant
reminder of what needs to be done on your desk, making it easier to check and dif�cult
to ignore. We are able to utilize sensors onboard the device to collect environmental data
around the workspace.

This device uses an E-ink screen to display tasks due to its readability and low idle power
consumption. Because E-ink displays have low refresh rates, we had individually ad-
dressable RGB LEDs to communicate some information, such as the task status, in real-
time. We also included a rotary encoder and button to interact with the device physically.
The primary function of these inputs is to change the status of the tasks between to-do, in-
progress, and �nished. The status for each task will be shown by the LEDs along the edge
of the display. We also included a variety of sensors in the device to measure the environ-
mental factors that were outlined above. Everything connects to an ESP-32 MCU which
handles controlling the device as well as communicating with a server that contains all of
the tasks. The tasks are sent to the server via a website.

1

Figure 1: Block Diagram

1.2 Subsystem Overview

This system has 5 subsystems - Processing and Communication, User Interface (UI), Sens-
ing, Power, and Web-App/Server. This section will give a brief description of each of
these. Implementation details will be provided in section 2.

The Processing and Communication subsystem is the brain of our device. It controls
everything in the UI and Sensing subsystems and handles communication between the
device and the Web-App/Server subsystem.

The UI subsystem is responsible for allowing the user to interact with the device. This
includes showing multiple tasks on a display, selecting tasks, and changing their state
between to-do, in progress, and done, as well as displaying their respective task state. We
also wanted a way to display sensor data in an easy-to-decipher visual format.

The Sensing subsystem measures environmental conditions and sends them all to the
Processing and Communication subsystem to be routed to the UI and Web-App/server
subsystems. We need it to measure Temperature, Humidity, and Air Quality, which have
all been shown to impact productivity.

The Power system is responsible for providing a regulated 5V and 3.3V power source to
the rest of the device from a 12V input.

The Web-App and Server subsystem is primarily used to input and store tasks. The user
will be able to type in the task's name and the due date, and that information will auto-
matically be sent to the server. The server will then send all the tasks to the device over
Wi-Fi to be displayed. The website will also need to read the stored environmental data
from the server and provide an easy to interpret visualization.

2

2 Design

2.1 Subsystem Design Considerations

2.1.1 Processing and Communication

The Processing and Communication subsystem needs to be able to drive the E-ink display
over SPI, talk to our sensors through I 2C, as well as have multiple other GPIO inputs and
outputs for the various buttons, encoders, and LEDs. We also need to be able to connect
through Wi-Fi, either through a built-in antenna or an external component. Finally, we
wanted something well documented and well supported, to make it easier when design-
ing the PCB and writing the �rmware.

The obvious choice here was the ESP-32. This microcontroller is used in a wide variety of
applications, has abundant support and documentation, is compatible with Arduino, and
most notably, has Wi-Fi and bluetooth capabilities built-in [5]. This microcontroller comes
in a variety of versions, we chose the ESP32-WROOM-32E because it was in stock, and
met all of our requirements for our device. The pinout for our module can be seen in the
schematic below (Figure 2). One problem we ran into for our �rst PCB was that PIN 35
on the ESP-32 is input only, but it was assigned to the LED output. This was temporarily
�xed by moving the LED pin to use the JTAG connector, which we never used. For our
second PCB, we swapped the LED pin and the rotary encoder B pin, which resolved the
issue.

With the microcontroller chosen, we needed to create a way to program it. This was done
through the UART0 pins on the ESP32. We also included JTAG pins in case we needed
them for debugging purposes.

The ESP32-WROOM-32E module has many components built into it, so we didn't have
to worry about the oscillator, �ash memory, and many other capacitors and passive com-
ponents [5]. However, we did need a way to control the BOOT and ENABLE pins on the
module. When ENABLE is triggered, the ESP-32 reboots, and if BOOT is activated while
that happens, the ESP-32 boots into �ashing mode, allowing us to upload new �rmware
over UART. Both of these pins are pulled high during normal operation, and are pulled
low using a button. The button also has a debouncing circuit around it in order to prevent
unwanted triggers of the pin.

Finally, we also included a similar button that allows us to reset the Wi-Fi password stored
on the device. Unlike the BOOT and ENABLE buttons, this functionality was not built in,
but we included it in the Processing and Communication subsystem because it relates to
the Wi-Fi system in our device.

3

Figure 2: Processing and Communication Schematic

2.1.2 User Interface

The UI subsystem was arguably the most important subsystem in our device. It is re-
sponsible for displaying all of our tasks, their corresponding task status, and the envi-
ronmental data we collect. It also needs to accept user inputs to select and change task
statuses.

We decided to build our device around a 7.5-inch E-ink display, which is driven primarily
through an SPI interface [6]. We chose an E-ink display over an LCD because E-ink is
easier to read, and we did not need the bene�ts of an LCD screen. The tasks displayed
remain largely static, so we don't need a fast refresh rate. That would have added a time
constraint to our ESP-32 to meet the refresh rate requirements of the display and made
the �rmware more dif�cult to write.

We consulted the E-ink display's datasheet [6] to �nd out what pins we needed. On the
connector to the E-ink display, we had the required SPI pins (MOSI, SCLK, and CS), as
well as additional required pins: DC, RST, and BUSY. These pins were speci�c to the
display we chose, and their functions can also be found in the datasheet.

For displaying the task statuses and the environmental data, we chose to use the SK6812
individually-addressable RGB LEDs [7]. These allow us to easily create a row of 14 LEDs
on the left side of our screen, one for each task displayed. The LEDs will turn Red, Yellow,
and Green, corresponding to To-Do, In Progress, and Completed. These LEDs will be
attached to the PCB via a connector. There will also be three similar LEDs on the PCB
itself, which are used to display the environmental information. These LEDs had the

4

footprint �ipped on our PCB, which made soldering them on much harder. However, we
were eventually able to get all of them connected and working.

For selecting and changing task statuses, we used a rotary encoder with a button built-in
[8]. Turning the encoder changes the selected task, and pushing it in advances the task
status. Another separate button was included to toggle between showing task statuses
and environmental data on the sidebar of RGB LEDs. Both of these required debouncing
circuits, as shown on the schematic (Figure 3).

Figure 3: User Interface Schematic

2.1.3 Sensing

The sensing subsystem included sensors for Temperature, Humidity, Air Quality, ambient
light, and motion.

For measuring Temperature and Humidity, we chose the SHT40 sensor [9], which com-
municates over I2C. For Air quality, we chose the SGP40 [10], which returns an air quality
index between 0 and 500, with 0 representing We chose to use I2C because it was easy to
scale to multiple sensors, and only required two traces on our PCB, making routing much
easier.

The ambient light was measured with a NPN phototransistor. We had a connector for the
phototransistor on our PCB in series with a current-sense resistor. The current pushed
through the phototransistor is proportional to the amount of light hitting it, and by us-
ing the current-sense resistor with an analog to digital converter, we can measure the
brightness in the room. However, because the �rst phototransistor we bought detected
only infrared light, we needed to order a new phototransistor that detected visible light

5

late into the design process. This phototransistor never arrived, so we were not able to
integrate it into our product.

Finally, for motion sensing, we chose to use the RCWL-0516 radar module [11]. We chose
this over the standard PIR motion sensor because the RCWL worked through thin layers
of plastic and even metal, which we tested in the lab. This allows us to hide the motion
sensor inside our enclosure. The sensitivity was also able to be adjusted by soldering a
resistor onto the PCB. Through testing, we decided to use a 700 kW resistor to tune the
sensitivity to be high enough to detect small motions close by, but low enough to not
detect people walking by.

Figure 4: Sensing Schematic

2.1.4 Power

The �nal subsystem on our PCB was the Power subsystem. This was responsible for
delivering clean 5V power to our radar module and LEDs as well as 3.3V to our sensors,
microcontroller, and various buttons.

We decided to have a 12VDC input to our PCB from an external power supply. 12 volts
was chosen to keep the current low, which opened up our options with the power supply,
cable, and connector. This was then stepped down using a switching buck regulator. We
decided to use a switching regulator to minimize power loss. If we had used a linear
regulator, almost three quarters of the power would have been lost as heat, as opposed to
the 90% or higher expected from switching regulators.

3:3VDC

12VDC
= 27:5% (1)

6

Also, noise wasn't a huge concern for the devices on the 5V rail, so the small amount
of ripple from the switching wasn't a concern. However, to step down 5V to 3.3V, we
chose to use a linear regulator. That is because linear regulators are simpler, require less
components, and are cheaper.

Component selection was pretty straightforward. We added up the maximum expected
power draw for each major component, and added a safety factor of 1.5x to determine
the minimum current our power components needed to supply. The ESP32 was by far
the biggest power draw on the 3.3V power rail at 500 mA. In total, the maximum current
was 600 mA, 900 mA with the safety factor. On the 5V rail, we had 17 RGB leds, each
drawing 60 mA at maximum power.

17� 60 = 1020mA (2)

Adding the load from the linear regulator means that our switching regulator needs to be
able to supply at least 2A of current.

We chose the ADP2302ARDZ-5.0-R7 regulator from analog devices [12]. This supplies 2A
of current, which meets the power requirements. For the linear regulator, we chose the
AZ1117 regulator from diodes incorporated, which supplies a maximum of 1A at 3.3V.
This also meets the requirements.

Figure 5: Power Schematic

7

2.1.5 Software and Server

We used React.js as the framework to develop the front end because its concept of Hooks.
Hooks allow as to extract stateful logic such as the status of tasks from the task component
so it can be tested independently and reused without changing the component hierarchy,
which in turn allows us to share Hooks among both the tasks component and the progress
component.

We use Firebase as the backend service because realtime databases can work of�ine. We
can cache the data in device memory, and after reconnecting to the internet, synchronize
it. We can call the Realtime Database from our client-side Javascript code, and display
dynamic data in the static web-app. In addition, we deployed the web-app through Fire-
base Hosting Service, which allows us to deploy or test new versions with command in
Firebase CLI.

We also developed a Chrome Extension as a shortcut for users to add tasks which is
currently published on Chrome Web Store.

8

3 Cost and Schedule

3.1 Cost

3.1.1 Parts

All the parts except for the E-ink display and �lament were ordered twice to in case the
parts get destroyed when soldering them onto the PCBs. View the part cost breakdown
in Appendex A, Table 1.

� Cost per Part = $210:04 (3)

Based on equation 3 we can see that the total cost of all the parts is $210.04.

3.1.2 Labor

Labor costs were based around an hourly salary of $40/hour which is the average salary
of a new ECE graduate from UIUC. This was found based on the average UIUC Electrical
Engineering salary of $76,079 and the average Computer Engineering salary of $92,430.
It also assumes that each team member will work 10 hours per week for 15 weeks. There-
fore,

3 team members�
$40

hour
�

10hours
week

� 15weeks � 2:5 = $45; 000: (4)

3.1.3 Total

Total Cost = Parts Cost+ Labor Cost = $210:04 + $45; 000 = $45; 210:04 (5)

Based on equation 5 we can see that the total cost of this project is$45,210.04.

3.2 Schedule

See schedule in Appendix A, Table 2.

9

4 Design Veri�cation

You can reference all requirement and veri�cations in Appendix C [13].

4.1 Processing and Communication

By connecting the ESP-32 to Wi-Fi, we were able to utilize Firebase's API to interact with
the database. We quickly found that it took less than a second to call the data from the
server to the MCU. The timing largely depended on when we made the call to the �rebase
database. This is because each function has to be �nished one at a time. When a slow
function is running, like writing to the E-ink display, the �rebase function is blocked until
the �rst one �nishes. This can lead to a delay of up to �ve seconds. This may seem like
a small number but, in practice is far too long to stop all the other device functionalities.
Our solution to this was to utilize multiple cores in the ESP32 (multi-core diagram found
in Appendix B, Figure 10). This allowed the Firebase calls to happen simultaneously with
device interactions, signi�cantly increasing the speed. With these enhancements, we were
able to easily meet the requirement of sending and receiving data within 2 minutes. We
veri�ed this by checking changes in the database vs. the serial output for the device.

4.2 User Interface

We used a boolean value in the Firebase Database as an indicator as to when we need to
trigger the E-ink display. We manually set this to “True” when testing the refresh speed,
then measured how long the E-ink display took to �nish updating. We found it took ap-
proximately 5 seconds to update, clearing the 15 second requirement. For displaying the
tasks themselves, getting multiple tasks to render at the same time required looking into
how graphics work on the E-ink display. An E-ink display works by physically moving
black ink particles to the front or back of the screen to display “black” (black particles in
the front) and “white” (black particles in the back). This is done by using “positive” and
“negative” electric �elds to interact with the particles [14] (See Figure 6).

Figure 6: How an E-ink Display Works

10

Keeping this in mind, we had to �nd a way to �rst place all the tasks we wanted to display
in the correct location and then render everything. We used a library called GxEPD2 by
ZinggJM [15] to handle the placement and rendering of text and our custom background.
This worked by having us essentially tell the display, relative to its dimensions, the loca-
tion to place each task, and in what font. Then “write” each line by telling each pad where
we want the charges to be. Then it �nally rendered everything by setting those charges
and moving the ink to the correct locations. A similar concept was applied to the custom
background to have that render alongside the actual tasks. This allowed us to complete
the requirements as now we only have to render once and display all the tasks speci�ed
simultaneously.

For the LEDs, we found that the footprints we used had a few orientation issues. We tried
to use soldering paste instead of the regular solder to decrease the dif�culty but found
that this allowed for the LEDs to short. So we had to solder everything manually, �xing
most of the hardware issues. Then we checked if all the LEDs chained together were
able to turn on and change to speci�c colors - both the same colors and different colors.
We found that all of these operations were successful, completing the veri�cation for that
requirement. Since the LEDs worked, it was fairly simple to test if the Rotary Encoder and
Mode buttons also worked. We had each LED turn brighter when it was “selected”. Then
as we turned the knob we had the next LED inline become brighter instead. Checking if
each detent switched the LED to the correct brightness in both directions allowed us to
con�rm that this requirement was passed. Similarly, for the Mode button, we paired it
with certain LEDs and checked if pressing the button turned them on. This requirement
was also passed.

4.3 Sensing

Verifying the temperature, humidity, and air quality sensors was a relatively straightfor-
ward process. We checked the output values of the sensors with the expected values. We
found that the temperature sensor ran a little bit hot. This was �xed by calibrating it to
match the correct temperature (simply subtracting the expected difference). This kept the
new output values close to the actual values. A similar process was used for the other
two sensors as well.

The motion sensor technically passed our requirements as it was able to detect movement
within 2 meters. However it was too sensitive so it was picking up movement we were
not looking for. The ambient light sensor was unveri�ed as we never received it. Both of
these requirements will be elaborated further in the uncertainties section (5.2).

4.4 Power

This was relatively simple to verify. We built test pads along with the 3.3, 5V, and 12V rail
so that we can use a multi-meter to check if the voltage is correct. The following images
show the results of this test.

11

	Introduction
	Purpose
	Problem
	Solution and Function

	Subsystem Overview

	Design
	Subsystem Design Considerations
	Processing and Communication
	User Interface
	Sensing
	Power
	Software and Server

	Cost and Schedule
	Cost
	Parts
	Labor
	Total

	Schedule

	Design Verification
	Processing and Communication
	User Interface
	Sensing
	Power
	Web Application, Server, and Chrome Extension

	Conclusion
	Accomplishments
	Uncertainties
	Ethical Considerations
	Further Work
	Device
	Web Application and Chrome Extension

	References
	Appendix Tables
	Appendix Diagrams
	Appendix Requirements And Verification

