
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

TimeTable Productivity Device

Team #47

BEN XIE

(bx3@illinois.edu)
PRANAV GOEL

(pranavg4@illinois.edu)
HONGRU WANG

(hongru2@illinois.edu)

TA: Pooja Bhagchandani

May 4, 2022

Abstract

This report describes the design process and components used to develop our TimeTable
Device. We will introduce our device’s purpose along with the context for its creation.
We then will talk about the high-level requirements as well as how they and their sub-
level requirements were met. Since problem-solving is part of the design process, we will
then discuss what went wrong and other challenges we faced. We will also discuss the
cost analysis of our project. We will conclude with a breakdown of what went well, what
went wrong, and what we should do going forward along with any ethical considerations
along the way.

ii

Contents

1 Introduction 1
1.1 Purpose . 1

1.1.1 Problem . 1
1.1.2 Solution and Function . 1

1.2 Subsystem Overview . 2

2 Design 3
2.1 Subsystem Design Considerations . 3

2.1.1 Processing and Communication . 3
2.1.2 User Interface . 4
2.1.3 Sensing . 5
2.1.4 Power . 6
2.1.5 Software and Server . 8

3 Cost and Schedule 9
3.1 Cost . 9

3.1.1 Parts . 9
3.1.2 Labor . 9
3.1.3 Total . 9

3.2 Schedule . 9

4 Design Verification 10
4.1 Processing and Communication . 10
4.2 User Interface . 10
4.3 Sensing . 11
4.4 Power . 11
4.5 Web Application, Server, and Chrome Extension 12

5 Conclusion 13
5.1 Accomplishments . 13
5.2 Uncertainties . 14
5.3 Ethical Considerations . 15
5.4 Further Work . 15

5.4.1 Device . 15
5.4.2 Web Application and Chrome Extension 16

References 17

Appendix A Tables 18

Appendix B Diagrams 22

Appendix C Requirements And Verification 24

iii

1 Introduction

1.1 Purpose

1.1.1 Problem

High productivity is something many people try to achieve with little success. Managing
tasks is a vital skill to continuously optimize productivity and creating to-do lists is one
of the most powerful methods used to accomplish this. This system is often used via apps
people access from many devices like phones or laptops. However, apps can ultimately
lower productivity rather than increase it. Checking your to-do list can be a multi-step
process that takes your focus away from your original task and results in you doing some-
thing else. It can allow you to get distracted because less productive apps become easily
accessible.In addition, having your to-do list hidden on your tablet or phone makes it eas-
ier to ignore, especially when notifications are often dismissed for no reason other than
cleaning up the lock screen. This makes it easy to forget to check the app or interact with
it entirely. Also, there could be many factors in one’s working environment that can lower
productivity, such as air quality [1], temperature [2], and humidity [3]. Many people don’t
even realize that something is wrong and will continue working, attributing their lack of
focus and concentration to internal factors such as lack of sleep or stress [4]. In summary,
we need a better method of keeping track of daily tasks. We also need something that
continuously monitors one’s working environment and informs them of issues affecting
optimal productivity conditions.

1.1.2 Solution and Function

To give people a better way to monitor their daily tasks, as well as their working environ-
ment, we built a desktop device that can display a to-do list as well as monitor environ-
mental factors such as CO2 levels, temperature, and humidity. This provides a constant
reminder of what needs to be done on your desk, making it easier to check and difficult
to ignore. We are able to utilize sensors onboard the device to collect environmental data
around the workspace.

This device uses an E-ink screen to display tasks due to its readability and low idle power
consumption. Because E-ink displays have low refresh rates, we had individually ad-
dressable RGB LEDs to communicate some information, such as the task status, in real-
time. We also included a rotary encoder and button to interact with the device physically.
The primary function of these inputs is to change the status of the tasks between to-do, in-
progress, and finished. The status for each task will be shown by the LEDs along the edge
of the display. We also included a variety of sensors in the device to measure the environ-
mental factors that were outlined above. Everything connects to an ESP-32 MCU which
handles controlling the device as well as communicating with a server that contains all of
the tasks. The tasks are sent to the server via a website.

1

Figure 1: Block Diagram

1.2 Subsystem Overview

This system has 5 subsystems - Processing and Communication, User Interface (UI), Sens-
ing, Power, and Web-App/Server. This section will give a brief description of each of
these. Implementation details will be provided in section 2.

The Processing and Communication subsystem is the brain of our device. It controls
everything in the UI and Sensing subsystems and handles communication between the
device and the Web-App/Server subsystem.

The UI subsystem is responsible for allowing the user to interact with the device. This
includes showing multiple tasks on a display, selecting tasks, and changing their state
between to-do, in progress, and done, as well as displaying their respective task state. We
also wanted a way to display sensor data in an easy-to-decipher visual format.

The Sensing subsystem measures environmental conditions and sends them all to the
Processing and Communication subsystem to be routed to the UI and Web-App/server
subsystems. We need it to measure Temperature, Humidity, and Air Quality, which have
all been shown to impact productivity.

The Power system is responsible for providing a regulated 5V and 3.3V power source to
the rest of the device from a 12V input.

The Web-App and Server subsystem is primarily used to input and store tasks. The user
will be able to type in the task’s name and the due date, and that information will auto-
matically be sent to the server. The server will then send all the tasks to the device over
Wi-Fi to be displayed. The website will also need to read the stored environmental data
from the server and provide an easy to interpret visualization.

2

2 Design

2.1 Subsystem Design Considerations

2.1.1 Processing and Communication

The Processing and Communication subsystem needs to be able to drive the E-ink display
over SPI, talk to our sensors through I2C, as well as have multiple other GPIO inputs and
outputs for the various buttons, encoders, and LEDs. We also need to be able to connect
through Wi-Fi, either through a built-in antenna or an external component. Finally, we
wanted something well documented and well supported, to make it easier when design-
ing the PCB and writing the firmware.

The obvious choice here was the ESP-32. This microcontroller is used in a wide variety of
applications, has abundant support and documentation, is compatible with Arduino, and
most notably, has Wi-Fi and bluetooth capabilities built-in [5]. This microcontroller comes
in a variety of versions, we chose the ESP32-WROOM-32E because it was in stock, and
met all of our requirements for our device. The pinout for our module can be seen in the
schematic below (Figure 2). One problem we ran into for our first PCB was that PIN 35
on the ESP-32 is input only, but it was assigned to the LED output. This was temporarily
fixed by moving the LED pin to use the JTAG connector, which we never used. For our
second PCB, we swapped the LED pin and the rotary encoder B pin, which resolved the
issue.

With the microcontroller chosen, we needed to create a way to program it. This was done
through the UART0 pins on the ESP32. We also included JTAG pins in case we needed
them for debugging purposes.

The ESP32-WROOM-32E module has many components built into it, so we didn’t have
to worry about the oscillator, flash memory, and many other capacitors and passive com-
ponents [5]. However, we did need a way to control the BOOT and ENABLE pins on the
module. When ENABLE is triggered, the ESP-32 reboots, and if BOOT is activated while
that happens, the ESP-32 boots into flashing mode, allowing us to upload new firmware
over UART. Both of these pins are pulled high during normal operation, and are pulled
low using a button. The button also has a debouncing circuit around it in order to prevent
unwanted triggers of the pin.

Finally, we also included a similar button that allows us to reset the Wi-Fi password stored
on the device. Unlike the BOOT and ENABLE buttons, this functionality was not built in,
but we included it in the Processing and Communication subsystem because it relates to
the Wi-Fi system in our device.

3

Figure 2: Processing and Communication Schematic

2.1.2 User Interface

The UI subsystem was arguably the most important subsystem in our device. It is re-
sponsible for displaying all of our tasks, their corresponding task status, and the envi-
ronmental data we collect. It also needs to accept user inputs to select and change task
statuses.

We decided to build our device around a 7.5-inch E-ink display, which is driven primarily
through an SPI interface [6]. We chose an E-ink display over an LCD because E-ink is
easier to read, and we did not need the benefits of an LCD screen. The tasks displayed
remain largely static, so we don’t need a fast refresh rate. That would have added a time
constraint to our ESP-32 to meet the refresh rate requirements of the display and made
the firmware more difficult to write.

We consulted the E-ink display’s datasheet [6] to find out what pins we needed. On the
connector to the E-ink display, we had the required SPI pins (MOSI, SCLK, and CS), as
well as additional required pins: DC, RST, and BUSY. These pins were specific to the
display we chose, and their functions can also be found in the datasheet.

For displaying the task statuses and the environmental data, we chose to use the SK6812
individually-addressable RGB LEDs [7]. These allow us to easily create a row of 14 LEDs
on the left side of our screen, one for each task displayed. The LEDs will turn Red, Yellow,
and Green, corresponding to To-Do, In Progress, and Completed. These LEDs will be
attached to the PCB via a connector. There will also be three similar LEDs on the PCB
itself, which are used to display the environmental information. These LEDs had the

4

footprint flipped on our PCB, which made soldering them on much harder. However, we
were eventually able to get all of them connected and working.

For selecting and changing task statuses, we used a rotary encoder with a button built-in
[8]. Turning the encoder changes the selected task, and pushing it in advances the task
status. Another separate button was included to toggle between showing task statuses
and environmental data on the sidebar of RGB LEDs. Both of these required debouncing
circuits, as shown on the schematic (Figure 3).

Figure 3: User Interface Schematic

2.1.3 Sensing

The sensing subsystem included sensors for Temperature, Humidity, Air Quality, ambient
light, and motion.

For measuring Temperature and Humidity, we chose the SHT40 sensor [9], which com-
municates over I2C. For Air quality, we chose the SGP40 [10], which returns an air quality
index between 0 and 500, with 0 representing We chose to use I2C because it was easy to
scale to multiple sensors, and only required two traces on our PCB, making routing much
easier.

The ambient light was measured with a NPN phototransistor. We had a connector for the
phototransistor on our PCB in series with a current-sense resistor. The current pushed
through the phototransistor is proportional to the amount of light hitting it, and by us-
ing the current-sense resistor with an analog to digital converter, we can measure the
brightness in the room. However, because the first phototransistor we bought detected
only infrared light, we needed to order a new phototransistor that detected visible light

5

late into the design process. This phototransistor never arrived, so we were not able to
integrate it into our product.

Finally, for motion sensing, we chose to use the RCWL-0516 radar module [11]. We chose
this over the standard PIR motion sensor because the RCWL worked through thin layers
of plastic and even metal, which we tested in the lab. This allows us to hide the motion
sensor inside our enclosure. The sensitivity was also able to be adjusted by soldering a
resistor onto the PCB. Through testing, we decided to use a 700 kΩ resistor to tune the
sensitivity to be high enough to detect small motions close by, but low enough to not
detect people walking by.

Figure 4: Sensing Schematic

2.1.4 Power

The final subsystem on our PCB was the Power subsystem. This was responsible for
delivering clean 5V power to our radar module and LEDs as well as 3.3V to our sensors,
microcontroller, and various buttons.

We decided to have a 12VDC input to our PCB from an external power supply. 12 volts
was chosen to keep the current low, which opened up our options with the power supply,
cable, and connector. This was then stepped down using a switching buck regulator. We
decided to use a switching regulator to minimize power loss. If we had used a linear
regulator, almost three quarters of the power would have been lost as heat, as opposed to
the 90% or higher expected from switching regulators.

3.3VDC

12VDC
= 27.5% (1)

6

Also, noise wasn’t a huge concern for the devices on the 5V rail, so the small amount
of ripple from the switching wasn’t a concern. However, to step down 5V to 3.3V, we
chose to use a linear regulator. That is because linear regulators are simpler, require less
components, and are cheaper.

Component selection was pretty straightforward. We added up the maximum expected
power draw for each major component, and added a safety factor of 1.5x to determine
the minimum current our power components needed to supply. The ESP32 was by far
the biggest power draw on the 3.3V power rail at 500 mA. In total, the maximum current
was 600 mA, 900 mA with the safety factor. On the 5V rail, we had 17 RGB leds, each
drawing 60 mA at maximum power.

17 · 60 = 1020 mA (2)

Adding the load from the linear regulator means that our switching regulator needs to be
able to supply at least 2A of current.

We chose the ADP2302ARDZ-5.0-R7 regulator from analog devices [12]. This supplies 2A
of current, which meets the power requirements. For the linear regulator, we chose the
AZ1117 regulator from diodes incorporated, which supplies a maximum of 1A at 3.3V.
This also meets the requirements.

Figure 5: Power Schematic

7

2.1.5 Software and Server

We used React.js as the framework to develop the front end because its concept of Hooks.
Hooks allow as to extract stateful logic such as the status of tasks from the task component
so it can be tested independently and reused without changing the component hierarchy,
which in turn allows us to share Hooks among both the tasks component and the progress
component.

We use Firebase as the backend service because realtime databases can work offline. We
can cache the data in device memory, and after reconnecting to the internet, synchronize
it. We can call the Realtime Database from our client-side Javascript code, and display
dynamic data in the static web-app. In addition, we deployed the web-app through Fire-
base Hosting Service, which allows us to deploy or test new versions with command in
Firebase CLI.

We also developed a Chrome Extension as a shortcut for users to add tasks which is
currently published on Chrome Web Store.

8

3 Cost and Schedule

3.1 Cost

3.1.1 Parts

All the parts except for the E-ink display and filament were ordered twice to in case the
parts get destroyed when soldering them onto the PCBs. View the part cost breakdown
in Appendex A, Table 1.

Σ Cost per Part = $210.04 (3)

Based on equation 3 we can see that the total cost of all the parts is $210.04.

3.1.2 Labor

Labor costs were based around an hourly salary of $40/hour which is the average salary
of a new ECE graduate from UIUC. This was found based on the average UIUC Electrical
Engineering salary of $76,079 and the average Computer Engineering salary of $92,430.
It also assumes that each team member will work 10 hours per week for 15 weeks. There-
fore,

3 team members · $40

hour
· 10 hours

week
· 15 weeks · 2.5 = $45, 000. (4)

3.1.3 Total

Total Cost = Parts Cost + Labor Cost = $210.04 + $45, 000 = $45, 210.04 (5)

Based on equation 5 we can see that the total cost of this project is $45,210.04.

3.2 Schedule

See schedule in Appendix A, Table 2.

9

4 Design Verification

You can reference all requirement and verifications in Appendix C [13].

4.1 Processing and Communication

By connecting the ESP-32 to Wi-Fi, we were able to utilize Firebase’s API to interact with
the database. We quickly found that it took less than a second to call the data from the
server to the MCU. The timing largely depended on when we made the call to the firebase
database. This is because each function has to be finished one at a time. When a slow
function is running, like writing to the E-ink display, the firebase function is blocked until
the first one finishes. This can lead to a delay of up to five seconds. This may seem like
a small number but, in practice is far too long to stop all the other device functionalities.
Our solution to this was to utilize multiple cores in the ESP32 (multi-core diagram found
in Appendix B, Figure 10). This allowed the Firebase calls to happen simultaneously with
device interactions, significantly increasing the speed. With these enhancements, we were
able to easily meet the requirement of sending and receiving data within 2 minutes. We
verified this by checking changes in the database vs. the serial output for the device.

4.2 User Interface

We used a boolean value in the Firebase Database as an indicator as to when we need to
trigger the E-ink display. We manually set this to “True” when testing the refresh speed,
then measured how long the E-ink display took to finish updating. We found it took ap-
proximately 5 seconds to update, clearing the 15 second requirement. For displaying the
tasks themselves, getting multiple tasks to render at the same time required looking into
how graphics work on the E-ink display. An E-ink display works by physically moving
black ink particles to the front or back of the screen to display “black” (black particles in
the front) and “white” (black particles in the back). This is done by using “positive” and
“negative” electric fields to interact with the particles [14] (See Figure 6).

Figure 6: How an E-ink Display Works

10

Keeping this in mind, we had to find a way to first place all the tasks we wanted to display
in the correct location and then render everything. We used a library called GxEPD2 by
ZinggJM [15] to handle the placement and rendering of text and our custom background.
This worked by having us essentially tell the display, relative to its dimensions, the loca-
tion to place each task, and in what font. Then “write” each line by telling each pad where
we want the charges to be. Then it finally rendered everything by setting those charges
and moving the ink to the correct locations. A similar concept was applied to the custom
background to have that render alongside the actual tasks. This allowed us to complete
the requirements as now we only have to render once and display all the tasks specified
simultaneously.

For the LEDs, we found that the footprints we used had a few orientation issues. We tried
to use soldering paste instead of the regular solder to decrease the difficulty but found
that this allowed for the LEDs to short. So we had to solder everything manually, fixing
most of the hardware issues. Then we checked if all the LEDs chained together were
able to turn on and change to specific colors - both the same colors and different colors.
We found that all of these operations were successful, completing the verification for that
requirement. Since the LEDs worked, it was fairly simple to test if the Rotary Encoder and
Mode buttons also worked. We had each LED turn brighter when it was “selected”. Then
as we turned the knob we had the next LED inline become brighter instead. Checking if
each detent switched the LED to the correct brightness in both directions allowed us to
confirm that this requirement was passed. Similarly, for the Mode button, we paired it
with certain LEDs and checked if pressing the button turned them on. This requirement
was also passed.

4.3 Sensing

Verifying the temperature, humidity, and air quality sensors was a relatively straightfor-
ward process. We checked the output values of the sensors with the expected values. We
found that the temperature sensor ran a little bit hot. This was fixed by calibrating it to
match the correct temperature (simply subtracting the expected difference). This kept the
new output values close to the actual values. A similar process was used for the other
two sensors as well.

The motion sensor technically passed our requirements as it was able to detect movement
within 2 meters. However it was too sensitive so it was picking up movement we were
not looking for. The ambient light sensor was unverified as we never received it. Both of
these requirements will be elaborated further in the uncertainties section (5.2).

4.4 Power

This was relatively simple to verify. We built test pads along with the 3.3, 5V, and 12V rail
so that we can use a multi-meter to check if the voltage is correct. The following images
show the results of this test.

11

Figure 7: 12V Multi-meter
Readout

Figure 8: 5V Multi-meter
Readout

Figure 9: 3.3V Multi-meter
Readout

The 3.3V output had an error of only .06% and the 5V output had an error of .48%. It
is important to note that the 12V input doesn’t have to be very accurate so long as the
requirements for 5V and 3.3V are still being met. Our buck converter was actually able
to take up to 20V of power, which allowed for consistent power delivery for 5V and 3.3V
even if the 12V rail fluctuated. Because both of the outputs are well within 2% error, we
were able to verify the power requirements.

4.5 Web Application, Server, and Chrome Extension

The web application is used to store tasks as input for the device, modify the tasks’ con-
tent, status, or due date, display the current environment data collected from the sensors,
and show the user’s productivity as a ratio of tasks created and tasks completed. The Fire-
base Realtime Database connects our device with the web application and the Chrome
Extension. The Chrome extension is used as a shortcut to add tasks without opening
the web-app. The logic behind is very straightforward: the user inputs the data such as
task information through the web application and Chrome Extension into the database,
and the device then retrieves the data of task information from the database. Similarly,
the device stores the environment data from the sensors in the database, then the web
application retrieves the environment data and renders it.

The first requirement of the subsystem is that the user can store at least 12 tasks from the
web application to the firebase. Because of the size of our device, we managed to allow
the user to input at most 14 tasks. We verified that the database immediately stored the
input from the front-end. And the device retrieved the task information from the server
within ten seconds. The second requirement is that the environment data including the
temperature, humidity, and AQI values collected from the sensors on the device gets
transmitted to the server. We verified that as long as there is a change in the temperature,
humidity, or AQI values, it would be reflected in our database immediately. The Firebase
real-time database is very responsive and useful to transmit data between the device and
the web-app.

12

5 Conclusion

There are many takeaways we had while developing our project. We developed skills in
teamwork, time management, cost management, and salesmanship. It was important that
we prioritized the main functionality of our design - creating a Minimum Viable Product
(MVP). Focusing on the details of the MVP allowed for the resulting product to be at a
point where someone could use it. We added extra features to the device like over-the-
air updates (OTA) and multi-core processing to the MVP because of this. Our focus on
creating a high quality MVP gave way for the accomplishments but also resulted in a few
uncertainties as discussed below.

5.1 Accomplishments

Our first high level requirement specified that our device must display at least 12 of the
tasks at the same time and within a minute. Our device was able to render 14 tasks at the
same time along with our own custom design for the background. We were also able to
display the tasks well within a minute of adding a task. Oftentimes it would only take 10-
15 seconds before it renders. The longest time it took before rendering was around 40-45
seconds. The rendering time itself took 5 seconds or less. As such, our project successfully
satisfied this requirement.

Our second high level requirement was to take environmental data on air quality, tem-
perature, and humidity and send it at least once to the server every 15 minutes. We were
able to measure the data and send the data over in almost real time. The delay would
be at most 30 seconds and at least 2-3 seconds before that data was sent over to firebase.
We tested this by printing out when it reads data and timing from that point till when
the firebase database updates. This means our project successfully satisfied this require-
ment.

There are also many accomplishments outside of the high level requirements. The main
two successes were getting multi-core processing and OTA updates to work for the ESP-
32. A big part of achieving the high level requirements was due implementing multi-core
processing. We were worried about different calls blocking each other, causing massive
time delays. By using both ESP32 cores we were able to separate out database related
functionality and local functionalities. For example, getting the E-ink display to work
required calling tasks from the database before rendering them out. It takes some time
to actually render the tasks. So while it renders, in a single core we wouldn’t be able to
do anything else. This would significantly delay other features like task selection which
should be instantaneous (because it is done locally on the device). By separating these
on each core, we can have both of these tasks run at the same time. For conflicts, we
used FreeRTOS to schedule/prioritize threads, speeding up the processes significantly.
Refer to the multi-core diagram in Appendix B, Figure 10 for a visual representation of
the process. This is what allowed the user interface to be so responsive and still meet our
high level requirements relating to the database side of the project.

13

For OTA, we created a portal from which we can upload our firmware directly. This was
then uploaded to a storage database in Firebase. We also had a version management setup
in Firebase’s realtime database. On the ESP32, we were constantly checking that database
to see if the most recent firmware version matched the current version. If it did not, then
we pulled the firmware from the storage and flashed that. Refer to the OTA Diagram
in Appendix B, Figure 11 for a detailed breakdown of the OTA process. Getting OTA to
work enabled us to speed up our development time significantly, made our product more
reliable, and ultimately extensible for the future. OTA proved to be extremely useful to
program the ESP32 when UART became unreliable. With OTA, we were able to update
the ESP32 from anywhere so long as it remained connected to Wi-Fi.

Another accomplishment was getting the device to connect to Wi-Fi as long as a network
is available, making the device extremely portable. The size of the device also contributed
to its portability. Because we 3D printed the chassis, we were able to iterate upon the
design to better fit the hardware. We were also able to load in more complex custom E-
ink Designs to the display, allowing for a more professional aesthetic on the device. Our
accompanying web-app and extension was also a major success. Adding tasks became
quick and efficient. The web-app provided an interface to view environmental data.

5.2 Uncertainties

Unfortunately we were unable to meet our third requirement which was to determine if a
user was present within 5 minutes of the current status changing. This was a direct result
of being unable to tune the motion sensors satisfactorily. The radar motion sensor works
by sending a high signal if it detects movement and a low signal if it doesn’t. Changing
from high to low or low to high gave us rising and falling edges to detect. If an edge is
detected, we know that the user’s status has changed. We were taking advantage of this
by setting an interrupt to call certain actions when that detection happens. Unfortunately,
the signal initialized at a high signal and never fell. The sensor we were using had 360
degree vision and could work through plastic. This meant that it was extremely easy for
it to detect movement from anywhere, not just the user sitting in front of it. Because the
signal never changed to low, the interrupt would never be called and therefore nothing
would ever happen. The documentation for the device indicated that we could adjust the
sensitivity range by adding a resistor. We determined that the motion sensing was a nice
feature that ultimately wasn’t as important to the MVP as some of the other features we
included. However, in the future we would likely find a more adaptable radar motion
sensor or use a different type of motion sensor such as infrared instead. In order to make
the motion sensing work, we needed something that is less sensitive and can have distinct
states that determine if a user is present or not.

We also were unable to implement the ambient light detector into the circuit. This was
purely a procurement issue as our first sensor detected only infrared light, which is use-
less for detecting visible light. The replacement sensor we ordered two weeks before our
demonstration never arrived. Because we didn’t have the component, we were unable to
make the circuit.

14

We also found our 12V power plug was unreliable. Although it successfully delivered
12V, there were occasional power surges. This resulted in two filtering capacitors con-
nected to the 12V power rail to fry. This caused our PCB to stop working, as it directly
shorted our 12V power rail to ground. We determined that the rest of the circuit was fine
by directly delivering 5V from the test point and found everything else was working fine.
After replacing the capacitors, the circuit worked correctly again. However, we decided
to no longer use the 12V power supply. We later discovered that the power supply was
discontinued for its unreliability, so an easy solution would be to use a higher quality
power supply.

5.3 Ethical Considerations

The user of our project will be directly involved with the operation of the device; We ad-
hered to the guidelines from Section I.1 of the IEEE Code of Ethics that “to hold paramount
the safety, health, and welfare of the public. . .” [16] and the safety regulation in Sections
1910.302 - Electric utilization systems by Occupational Safety and Health Administration
[16]. It is important that we must ensure a safe and reliable product. There are several
components in our product that, if mishandled or constructed poorly, might pose a risk
to the user’s safety. The power supply and circuits are some of the most important com-
ponents to consider. The risks associated with the unstable power supply will be reduced
by a rigorous power electronics design, and we would make sure that the users use our
product in a safe environment. After testing the power delivery for 12V, 5V, and 3.3V,
we felt that we met regulations. Furthermore, we considered that our product must be
available to everyone per Section II of the IEEE Code of Ethics [16] and that our users
can equally operate our device. The mission of our project is to give people a better way
to monitor their daily tasks and their working environment. The idea behind our device
was to provide a simple, accessible, and tactile solution to task management. This, by
its very nature, should make it available to everyone as actually using requires very little
work on the users end.

5.4 Further Work

5.4.1 Device

Much of our future work on the device consists of further refining and polishing our de-
sign. We can use a frame with different materials and better form to hold the hardware
better, be visually more aesthetic, and feel more professional upon use. Adding Screen
Protection (perhaps an acrylic sheet) would also be nice to make the device last longer un-
der heavy use. Adding a battery to the device instead of a plug would make it even more
portable than it currently is. Another potential improvement is to have better protection
against faulty 12V adaptors. Also, there is a short delay when the device retrieves data
from the database, which can be improved by having faster response time. In addition,
we want to add more visually satisfying cues for users. For example, we could have a
line cross out a completed task as well as the LED indicating its completed.

15

5.4.2 Web Application and Chrome Extension

Because we only have one device, we didn’t develop any user authentication. User au-
thentication would allow users to use multiple devices. We could verify the user’s iden-
tity and limit the access to the resources in the database. Integrating third party APIs
with our device would make it even more useful to many people by naturally becom-
ing an already existing system. For example, we could have tasks added in the web-app
show up in Google Calendar as events while still being synchronized to the user’s other
devices. If more users and devices are connected, we can use AWS Elastic Load Balancing
and AWS EC2 to spread user traffic across many instances to decrease the possibility of
performance issues. Currently, only the real time environmental data is rendered in the
web-app. It would be more useful to show the trends of environment data so that we can
make meaningful connections to productivity. For example, we can associate the percent-
age of task completion with each environmental factor over a large period of time. We
could define optimal conditions for each individual by recommending conditions where
that percentage was highest. Another possible feature is to have a chatbot to add a task,
which can be implemented by AWS Lex and AWS Lambda Function. For the Chrome
extension, only adding tasks are supported. It would be more convenient to users if they
can update/delete tasks through the extension. We believe that making the task adding
functionality as non-invasive to your regular workflow is extremely important. That was
why we created the extension. That being said, a quick improvement could be to create
automatic hotkeys that quickly open the extension so you could add a task quickly and
without leaving the page you are currently on.

16

References

[1] J. G. Allen, P. MacNaughton, U. Satish, S. Santanam, J. Vallarino, and J. D. Spen-
gler, “Associations of cognitive function scores with carbon dioxide, ventilation,
and volatile organic compound exposures in office workers: A controlled exposure
study of green and conventional office environments,” Environmental Health Per-
spectives, vol. 124, no. 6, pp. 805–812, 2016. DOI: 10.1289/ehp.1510037.

[2] S. S. Lang. “Study links warm offices to fewer typing errors and higher productiv-
ity.” (Oct. 2004), [Online]. Available: https://news.cornell.edu/stories/2004/10/
warm-offices-linked-fewer-typing-errors-higher-productivity.

[3] A. Hedge, Linking environmental conditions to productivity - cornell university, Jun.
2004. [Online]. Available: http://ergo.human.cornell .edu/Conferences/EECE
IEQ%5C%20and%5C%20Productivity ABBR.pdf.

[4] R. A. HENNFNG, S. L. SAUTER, G. SALVENDY, and E. F. KRIEG, “Microbreak
length, performance, and stress in a data entry task,” Ergonomics, vol. 32, no. 7,
pp. 855–864, 1989. DOI: 10.1080/00140138908966848.

[5] Esp32-wroom-32e datasheet, v1.4, Espressif, 2022. [Online]. Available: https://cdn-
shop.adafruit.com/product-files/1138/SK6812+LED+datasheet+.pdf.

[6] “7.5inch e-Paper HAT.” (2022), [Online]. Available: https://www.waveshare.com/
wiki/7.5inch e-Paper HAT (visited on 03/28/2022).

[7] Sk6812 technical data sheet, SK6812, Rev. No. 01, Adafruit, 2022. [Online]. Available:
https://cdn-shop.adafruit.com/product-files/1138/SK6812+LED+datasheet+
.pdf.

[8] Pec11r series - 12 mm incremental encoder, PEC11R, REV. 01/22, Bourns, 2022. [On-
line]. Available: https://www.bourns.com/docs/Product-Datasheets/PEC11R.
pdf.

[9] Datasheet sht4x, SHT40, Version 3, Sensirion, 2022. [Online]. Available: https : / /
sensirion.com/media/documents/33FD6951/624C4357/Datasheet SHT4x.pdf.

[10] Datasheet sgp40, SGP40, Version 1.2, Sensirion, 2022. [Online]. Available: https://
sensirion.com/media/documents/296373BB/6203C5DF/Sensirion Gas Sensors
Datasheet SGP40.pdf.

[11] Rcwl-0516 information, RCWL-0516, IC Station, 2021. [Online]. Available: https://
github.com/jdesbonnet/RCWL-0516.

[12] Nonsynchronous step-down regulators, adp2302, Rev. A, Analog Devices, 2012. [On-
line]. Available: https://www.analog.com/media/en/technical-documentation/
data-sheets/adp2302 2303.pdf.

[13] H. W. Ben Xie Pranav Goel. “Productivity Enhancement Device (TimeTable).” (2022),
[Online]. Available: https://courses.engr.illinois.edu/ece445/getfile.asp?id=20031
(visited on 03/28/2022).

[14] T. Carmody, How e ink’s triton color displays work, in e-readers and beyond, Nov. 2010.
[Online]. Available: https://www.wired.com/2010/11/how-e-inks-triton-color-
displays-work-in-e-readers-and-beyond/.

[15] ZinggJM, Gxepd2, https://github.com/ZinggJM/GxEPD2, 2022.
[16] IEEE. “IEEE Code of Ethics.” (2016), [Online]. Available: https://www.ieee.org/

about/corporate/governance/p7-8.html (visited on 02/08/2020).

17

https://doi.org/10.1289/ehp.1510037
https://news.cornell.edu/stories/2004/10/warm-offices-linked-fewer-typing-errors-higher-productivity
https://news.cornell.edu/stories/2004/10/warm-offices-linked-fewer-typing-errors-higher-productivity
http://ergo.human.cornell.edu/Conferences/EECE_IEQ%5C%20and%5C%20Productivity_ABBR.pdf
http://ergo.human.cornell.edu/Conferences/EECE_IEQ%5C%20and%5C%20Productivity_ABBR.pdf
https://doi.org/10.1080/00140138908966848
https://cdn-shop.adafruit.com/product-files/1138/SK6812+LED+datasheet+.pdf
https://cdn-shop.adafruit.com/product-files/1138/SK6812+LED+datasheet+.pdf
https://www.waveshare.com/wiki/7.5inch_e-Paper_HAT
https://www.waveshare.com/wiki/7.5inch_e-Paper_HAT
https://cdn-shop.adafruit.com/product-files/1138/SK6812+LED+datasheet+.pdf
https://cdn-shop.adafruit.com/product-files/1138/SK6812+LED+datasheet+.pdf
https://www.bourns.com/docs/Product-Datasheets/PEC11R.pdf
https://www.bourns.com/docs/Product-Datasheets/PEC11R.pdf
https://sensirion.com/media/documents/33FD6951/624C4357/Datasheet_SHT4x.pdf
https://sensirion.com/media/documents/33FD6951/624C4357/Datasheet_SHT4x.pdf
https://sensirion.com/media/documents/296373BB/6203C5DF/Sensirion_Gas_Sensors_Datasheet_SGP40.pdf
https://sensirion.com/media/documents/296373BB/6203C5DF/Sensirion_Gas_Sensors_Datasheet_SGP40.pdf
https://sensirion.com/media/documents/296373BB/6203C5DF/Sensirion_Gas_Sensors_Datasheet_SGP40.pdf
https://github.com/jdesbonnet/RCWL-0516
https://github.com/jdesbonnet/RCWL-0516
https://www.analog.com/media/en/technical-documentation/data-sheets/adp2302_2303.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adp2302_2303.pdf
https://courses.engr.illinois.edu/ece445/getfile.asp?id=20031
https://www.wired.com/2010/11/how-e-inks-triton-color-displays-work-in-e-readers-and-beyond/
https://www.wired.com/2010/11/how-e-inks-triton-color-displays-work-in-e-readers-and-beyond/
https://github.com/ZinggJM/GxEPD2
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html

Appendix A Tables

Table 1: Cost Breakdown of each Part.

Cost

Description Part # Manufacturer Quantity Cost

0.1uF Capacitor 581-08056D104KAT2A Kyocera AVX 2 $0.60

0.01uF Capacitor 77-VJ08Y100V103K Vishay 4 $1.16

3.0 Amp 30 Volt Diode 625-B330LA-E3/61T Vishay 2 $0.94

10uF Capacitor 963-
TMK212BBJ106MGHT Taiyo Yuden 2 $0.64

1uF Capacitor 581-08053C105JAT2A Kyocera AVX 4 $1.44

22uF Capacitor 963-
JMK212BBJ226MG8T Taiyo Yuden 6 $1.62

Ambient Light Sensors 720-SFH3711 ams OSRAM 2 $1.50

0.1uF Capacitor 581-08056D104KAT2A Kyocera AVX 20 $4.12

ESP32-WROOM 356-
ESP32WRM32E164PH Espressif 4 $13.20

Tactile Switches 506-FSM12JH TE Connec-
tivity 8 $1.20

Lighting Series 1528-1709-ND Adafruit In-
dustries LLC 4 $23.80

2POS 2.54MM Connec-
tors WM4111-ND Molex 2 $0.58

Phototransistors
850nm 475-1419-ND

OSRAM
Opto Semi-
conductors
Inc.

2 $1.84

4.7 Ohms Resistors RNCP0805FTD4R70CT-
ND

Stackpole
Electronics
Inc

2 $0.20

10K Ohms Resistors RNCP0805FTD10K0CT-
ND

Stackpole
Electronics
Inc

24 $2.40

18

Cost Continued (Table 1)

Description Part # Manufacturer Quantity Cost

680 Ohms Resistors RNCF0805DTE680RCT-
ND

Stackpole
Electronics
Inc

2 $0.38

220 Ohms Resistors RMCF0805FT220RCT-
ND

Stackpole
Electronics
Inc

2 $0.20

470 Ohms Resistors P470AZCT-ND
Panasonic
Electronic
Components

12 $9.72

Red 625nm LED 28-LSM0805412VCT-
ND

Visual Com-
munications
Company -
VCC

6 $2.28

30 V 3A Diode B330-FDICT-ND Diodes In-
corporated 2 $1.16

8POS 2.54MM Connec-
tors WM4117-ND Molex 2 $1.34

6.8 µH Inductor 445-180836-1-ND TDK Corpo-
ration 2 $1.12

100K 1/8W Ohms Re-
sistors

RMCF0805FT100KCT-
ND

Stackpole
Electronics
Inc

2 $0.20

100 1/4W Ohms Resis-
tors

RNCP0805FTD100RCT-
ND

Stackpole
Electronics
Inc

10 $1.00

1.2M Ohms Resistors P1.2MGCT-ND
Panasonic
Electronic
Components

2 $0.20

Air Quality Gas Sensor 1649-SGP40-D-R4CT-
ND Sensirion AG 2 $21.00

Humidity Tempera-
ture Sensor

1649-SHT40-AD1B-
R3CT-ND Sensirion AG 2 $6.00

LDO Voltage Regula-
tors AZ1117IH-3.3TRG1 Diodes In-

corporated 10 $3.21

19

Cost Continued (Table 1)

Description Part # Manufacturer Quantity Cost

10 Ohms Resistors CRCW080510R0FKEAC Vishay 10 $0.67

Rotary Encoder PEC11R-4220F-S0024 Bourns Inc. 2 $3.50

Switching Voltage Reg-
ulators ADP2302ARDZ-5.0-R7 Analog

Devices Inc. 2 $6.92

E-ink display B07Z25LWTS Waveshare 1 $73.02

Filament B08SM24833 JAYO 3D
Store 1 $22.88

Table 2: ECE 445 Semester Schedule

Schedule

Week Ben Xie Pranav Goel Hongru Wang

01/31/2022
Brainstorm project
ideas and write
proposal

Brainstorm project
ideas and write
proposal

Brainstorm project
ideas and write
proposal

02/07/2022
Find parts for de-
vice and start pre-
liminary BOM

Create the Block
Diagram and Vi-
sual aid for Project

Create tolerance
analysis

02/14/2022 Create schematic
draft for main PCB

Gather supple-
mentary materials
(research) for De-
sign Document
and calculate re-
quirement values

Start web front
end developing

02/21/2022

Start working on
Firmware - Get
firebase/WiFi
working

Create PCB Lay-
out for main board

Create Schemat-
ics/PCB design
for side LED
module

02/28/2022
Create prelim-
inary physical
design

Verify PCB Layout
with TAs Order parts

20

Schedule Continued (Table 2)

Week Ben Xie Pranav Goel Hongru Wang

03/07/2022
Get CO2 sensor
working and test
accuracy

Get LEDs to work
with Sensor Read-
ings/Modes

Connect front end
to firebase, write
APIs

03/14/2022
Spring Break
- Catch up to
schedule

Spring Break
- Catch up to
schedule

Spring Break
- Catch up to
schedule

3/21/2022
Design and fabri-
cate enclosure, sol-
der PCB

Get E-Ink display
working, debug
first circuit, solder
PCB

Get Motion Sensor
working

3/28/2022 Clean up codebase
Verify Design
Document Re-
quirements

Debug web app

4/04/2022 Polish/Clean up
mechanical design

Polish Front End
on both Device
and Website

Polish client side
for better user in-
terface design

4/11/2022 Work on presenta-
tion, debugging

Work on presenta-
tion

Work on presenta-
tion

4/18/2022 Mock Demo - Fix
last minute issues

Mock Demo - Fix
last minute issues

Mock Demo - Fix
last minute issues

4/25/2022
Demo/Mock Pre-
sentation/Start Fi-
nal Paper

Demo/Mock Pre-
sentation/Start Fi-
nal Paper

Demo/Mock Pre-
sentation/Start Fi-
nal Paper

5/02/2022 Presentation/Final
Paper

Presentation/Final
Paper

Presentation/Final
Paper

21

Appendix B Diagrams

Figure 10: Multi-core Implementation Flowchart

22

Figure 11: OTA Implementation Flowchart

23

Appendix C Requirements And Verification

Requirement Verification

The buck converter provides fixed
5.0V ± 5% from a 12V source

Measure the output voltage using an
oscilloscope, test operations that can
use power such as screen update
and sensor usage and ensure the out-
put always stays within the expected
range.

The LDO regulator provides fixed
3.3V ± 2%

Measure the output voltage using an
oscilloscope, test operations that can
use power such as screen update
and sensor usage and ensure the out-
put always stays within the expected
range.

Table 3: Power Requirements & Verification

24

Requirement Verification

The e-ink display must be able to
completely refresh in under 15 sec-
onds.

Trigger an update manually and mea-
sure the amount of time it takes to fin-
ish refreshing

The e-ink display must be able to
show at least 12 tasks.

Add 12 tasks to the database, verify
that all of them show up on the dis-
play

Each RGB LED needs to be able to
show at least 6 colors (Red, Orange,
Yellow, Green, Blue, Violet)

Run the sample NeoPixel code on the
ESP-32 and verify that all colors show

The speaker must be able to produce
a sound above 50 dB

Measure the volume of the speaker
using a Decibel Meter

The device must be able to detect each
detent of the rotary encoder as it turns

Write a simple program that changes
the LED that is lit based on the rotary
encoder and verify that each detent
changes the LED by one.

The device must be able to register
button presses both from the encoder
and the tactile button

Write a simple program that turns
the LEDs on and off based on button
presses, verify that each button works

Table 4: User Interface Requirements & Verification

25

Requirement Verification

The air quality sensor must be able to
detect changes in air quality that may
affect humans. (A CO2 change of 500
ppm.)

Bring the sensor outside, take a note
of the readings. Bring it back inside,
and verify it on the air quality scale
(Figure 7). A normal CO2 reading out-
doors is 400ppm, and complaints of
drowsiness start at around 1000ppm
[1].

The measured temperature needs to
be within ±1°C of the actual temper-
ature between 10°C and 40°C.

Compare measured temperature with
a thermometer.

The measured relative humidity
needs to be within ±3% between 25%
and 75% relative humidity.

Compared measured humidity with a
hygrometer.

The motion sensor must be able to de-
tect movement within 2 meters of the
device.

Output a message via Serial output
when motion is detected. Verify
that happens when someone moves
within 2 meters of the device.

The ambient light sensor needs to be
able to output a value proportional to
the actual light intensity.

Put the device in a room with a
dimmable light bulb. Output the am-
bient light level via serial output and
ensure it changes as the light bulb
dims.

Table 5: Sensing Requirements & Verification

Requirement Verification

The MCU must be able to receive
server information within 2 minutes
of data sent

Write code so that the ESP-32 outputs
any data received from the server
over Serial and ensure it meets the
time requirements

The MCU must be able to send rele-
vant data to other subsystems within
2 minutes of it being called for

Ensure that the server updates within
2 minutes of a task status update on
the device.

Ensure that the e-ink display up-
dates within 2 minutes of receiving
new tasks.

Table 6: Processing and Communication Requirements & Verification

26

Requirement Verification

The server must be able to store at
least 12 tasks simultaneously.

Verify by performing adding tasks
through the client-side and check if
the tasks count is 12 in firebase.

The server must be able to store at
least 24 hours of sensor data.

Check if the tasks are stored in the
firebase real-time database or check
the dashboard.

Table 7: Web App Requirements & Verification

27

	Introduction
	Purpose
	Problem
	Solution and Function

	Subsystem Overview

	Design
	Subsystem Design Considerations
	Processing and Communication
	User Interface
	Sensing
	Power
	Software and Server

	Cost and Schedule
	Cost
	Parts
	Labor
	Total

	Schedule

	Design Verification
	Processing and Communication
	User Interface
	Sensing
	Power
	Web Application, Server, and Chrome Extension

	Conclusion
	Accomplishments
	Uncertainties
	Ethical Considerations
	Further Work
	Device
	Web Application and Chrome Extension

	References
	Appendix Tables
	Appendix Diagrams
	Appendix Requirements And Verification

