
Self-Adjusting Monitor Stand

ECE 445 Final Report

Team 14: Anna Miller (annam4), Jake Nickel (jnicke7), Iris Xu (iris2)

Professor: Victoria Shao

TA: Jamie Xu

Spring 2022

Abstract
The goal of this project was to construct a reliable, easily adjusted monitor stand that can center
itself on the user’s face upon command. Face detection was utilized to determine the current
position of the user relative to the center of the monitor and to calculate how far the motors in the
stand must rotate to be centered on the user. Additionally, manual vertical adjustment options
were implemented for each user to set the height to his or her preference. The design of this
project consisted of three electrical and software-based subsystems, a mechanical system, and a
wired “remote” module. The finished product was capable of adjusting the height according to
the request of the user, accurately detecting the user’s face in most conditions, converting the
offset of the face from the center to a number of encoder steps the motor must turn, and centering
itself on the user upon command all in a reasonable amount of time.

ii.

Table of Contents

1. Introduction..………………….………………………………………………..…..……... 1
1.1. Purpose…………………………………………………………………………… 1
1.2. Visual Aid………………………………………….………………….………..… 1
1.3. High-Level Requirements…………………………………………….….…..….… 1
1.4. Block Diagram………………………………………………………….………… 2
1.5. Subsystems Overview………………………………………………..….…………. 3

2. Design……………………………………………………………………….……………. 4
2.1. Power Subsystem……………………………………………….………………... 4
2.2. Location Detection Subsystem…………………………………….….……….….. 4
2.3. Processing and Motor Control……………………………………………....….… 5
2.4. Mechanical Components and Wired “Remote” Module…...….….…..…………… 8

3. Verification………………………………………………………………………….…... 10
3.1. High-Level Functionality……………………………………………….……..… 10
3.2. Power Subsystem……………………………………………….………………. 10
3.3. Location Detection Subsystem…………………………………….….……….… 10
3.4. Processing and Motor Control…………………………………….………....….. 11
3.5. Mechanical Components and Wired “Remote” Module…...….….….………….. 13

4. Cost……………....………………………………………………………………..…..… 14
4.1. Cost Analysis…………………………………………………………………… 14
4.2. Schedule………………………………………………………………………… 14

5. Conclusions………………………………………………………………………….….. 15
5.1. Successes and Challenges………………………………………………….…… 15
5.2. Future Work……………………………………………………………….……. 15
5.3. Ethics and Safety………………………………………………………….…….. 16
5.4. Broader Impacts……………………………………………………………….… 16

6. References……………………………………………………………………………….. 18
7. Appendix A: PCB Layout and Schematic…..………………………………………….. 20
8. Appendix B: Requirements and Verification Tables……………………………………. 22
9. Appendix C: Parts Cost Table and Schedule………………………….…………..…….. 26

10. Appendix D: Face Detection Code and Flowchart………………………….…….…….. 28

iii.

1. Introduction

1.1. Purpose
Many monitors used today have fairly tight viewing angles, and viewing a
computer screen from more than 30-45 degrees off the normal can introduce visual
artifacts that make it difficult to read [1]. However, most consumer monitor stands
are not easily adjustable, and it is time-consuming to constantly tweak the position
to match every viewing angle. Additionally, many workplaces require the use of
privacy screens that are designed to limit the field of view, which exacerbates this
problem. To provide both screen privacy and viewer ease in a user-friendly
package, we implemented a monitor stand as shown in Figure 1 that automatically
adjusts the monitor to the user’s position. This monitor stand has both automatic
and manual components. The automatic function uses the user’s position as
detected by a camera and adjusts the angle of the monitor to be centered on the
user. The height of the monitor is manually adjusted to the user’s preference by a
linear actuator.

1.2. Visual Aid

Figure 1. Front and side view of the finished monitor stand.

1.3. High-Level Requirements
○ Adjustment to User Input: If the “adjust” button is pressed, the monitor stand

should automatically pan and tilt the monitor to be centered on the user within 10
degrees both vertically and horizontally. See Figure 2. When the “up” or “down”
button is pressed, the system should raise or lower the monitor at a minimum rate
of 2 cm/s until the button is released, or the linear actuator reaches the maximum
or minimum height.

1

Figure 2. Depiction of desired accuracy in the vertical direction.

○ Face Detection: The camera must be able to detect its surroundings with a
minimum of 15 FPS so that the user can adjust the monitor without pausing for the
camera to process an accurate image of their current location. The detection system
must also identify a face within the frame using a Haar cascade classifier.

○ Reasonable Response Speed: The system must adjust the angle of the monitor to
be centered on the user (according to the first listed requirement) within 8 seconds.
This time was chosen to ensure the system is capable of properly adjusting the
monitor more quickly than the average time it would take a user to stand up, adjust
the monitor by hand, check that it was adjusted to the desired angle, and readjust as
needed.

1.4. Block Diagram

Figure 3. High-level block diagram of the monitor stand and remote module.

2

1.5. Subsystems Overview
The primary subsystems in this product can be seen in Figure 3. The monitor stand
is powered using a wall adapter, which invoked the need for this subsystem. The
power subsystem converts the input from 120 VAC to DC 12 V and 5 V to
accommodate the different voltage requirements of each component using an
AC/DC converter and a buck converter.

A core aspect of this project is the ability to detect the user and use that location to
adjust the monitor. The location detection subsystem consists of a USB camera and
a computer vision (CV) processor. We used a Raspberry Pi 3 Model B to serve as
the processor in this project. The camera connects to the processor by USB, and
the processor sends data to the microcontroller in the processing and motor control
subsystem using the serial peripheral interface (SPI) protocol. One change that
was made to this subsystem from the initial design was the method used to power
it. Originally, we planned to use an ODROID XU4 as the CV processor, which
would be powered using the 5 V rail at 4 A. However, a switch was made to the
Raspberry Pi due to certain microcontroller voltage level requirements. This
introduced different powering requirements compared to the ODROID, so instead
we powered the CV processor directly from the wall.

The processing and motor control subsystem uses data from the user and the CV
processor to control the motors. The main components in this subsystem are the
microcontroller and MOSFET motor drivers. The microcontroller is powered using
a low-dropout regulator (LDO), which will step-down 5V from the power
subsystem to 3.3V. If the microcontroller receives a signal to move the monitor up
or down, it will communicate that information to the vertical motor driver. If the
signal to adjust the angle of the monitor is received, the motor drivers will move
the motors based on the data from the CV processor, while receiving data from the
encoders on the motors to ensure the monitor is adjusted appropriately.

The mechanical subsystem is the main body of the product and consists of three
motors. A linear actuator is used to adjust the height of the monitor in the vertical
direction. Two identical gearmotors are used for the pan and tilt motors, which
rotate the monitor about a vertical axis and horizontal axis respectively. The
remote module serves as the user interface of the project and simply sends a signal
to the microcontroller in the motor control subsystem based on which button the
user pressed. There are three buttons: “up”, “down”, and “adjust”. The “adjust”
button communicates to the microcontroller that it should use the data from the
location detection subsystem to adjust the monitor angle, while the “up” and
“down” button will cause the microcontroller to drive the linear actuator
accordingly.

3

2. Design

2.1. Power Subsystem
Design Procedure
In the primary design of the monitor stand, it was decided that the best method for
powering the system was by wall-plug. Any internal powering system such as a
battery would have a limited lifetime and would introduce the inconvenience of
replacing or recharging the system. To use a wall-plug, the project required the
ability to convert an AC voltage to a DC voltage. For the purposes of this project,
the voltage and current ratings of an AC/DC converter and buck converter found
from a retail store were sufficient.

Design Details
Since the project used off-the-shelf components for the power subsystem, the only
values that were considered were the desired voltage and current ratings. The
monitor stand requires a 12 V rail to run the motor drivers and H-bridges and
power the motors. The two gearmotors and the linear actuator are all rated for a
stall current of 1.8 A. In the initial design, a 5 V rail was used to power the CV
processor, the camera, and the microcontroller. The ODROID XU4 is rated to
require 4 A, and the camera and microcontroller together are rated to draw less
than 1 A. To create two separate rails with these current ratings, we chose to
convert the 120 VAC from the wall to a DC 12 V source. Then, a buck converter
was trimmed to step-down the 12 V to create a 5 V source. Based on the current
ratings of each component, the 12 V rail must be capable of supporting 10 A, and
the 5 V rail must be capable of supporting 5 A. These current ratings informed the
selection of the components in the power subsystem.

2.2. Location Detection
Design Procedure
We wrote a Python script to run for facial detection and angle calculations. Python
was an appropriate choice because it is a high-level programming language, and
the speed and memory consumption for this project were not major concerns.
Python also has very thorough documentation and prebuilt packages on computer
vision and SPI communication using the Raspberry Pi. We chose to use a base
code that detected the general location of a face and circle it, because we did not
need extreme specificity or recognition of individual monitor users. For this
project, the lab inventory webcam was an affordable and sufficient option.

Design Details
The algorithm from OpenCV uses Haar features to distinguish backgrounds from
faces. These features are better for recognizing edges, as long as the user’s face is

4

not obscured. This allows us to create a classifier with a smaller dataset and
decreases the time the program needs to detect the face with the camera. The Haar
Cascade uses integral images, which allows us to calculate the angle in O(1) time
rather than O(n) time, where n is the number of pixels in the window. Finally, the
algorithm also uses Adaboost, an ensemble learning method that repeatedly
changes the weights of the Haar features until a minimum error rate is met. There
is also a final classifier of the weighted sum of the weak Haar Cascade classifiers.
As a result, we can use as few as 200 features with a 95% accuracy [7]. After the
face is detected, we use a function that takes in the aperture size of the camera and
average width of a face to convert the number of pixels the user is offset from the
center of the frame to a corresponding angle. The script then multiplies the angle
by a factor of 434.22 to convert the angle to a number of encoder steps the motor
should move and sends a 16-bit signed integer equivalent to the microcontroller.
This value was measured by commanding the pan motor assembly to move exactly
10,000 encoder ticks in the clockwise direction, then determining the angle
traveled during this move using calibrated pictures taken before and after. For
10,000 ticks, 23.03 degrees were traveled, which resulted in an angle-encoder
conversion factor of 434.22 ticks per degree.

A flowchart for the software, as well as the code used in the final product, can be
found in Appendix D.

2.3. Processing and Motor Control
Design Procedure
The type of microcontroller was the primary design decision made during the
development of the processing and motor control subsystem. Popular choices are
often from the Atmel ATMega line, due to the ease of programming with Arduino
utilities. However, it was determined that greater processing speeds and more
memory would be required for this project, so rather than an Atmel chip, an
STM32G0 series microcontroller was selected. This microcontroller was also
selected because of its included hardware timers, which make high precision
timing of PWM signals and the reading of encoders simpler.

Other design decisions for this subsystem revolved around the H-bridge motor
drivers. It was decided that a symmetrical N-channel MOSFET design would be
the most suited for this application. The alternative would be a P-channel
MOSFET to drive the high side of each half bridge and an N-channel MOSFET
driving the low side. This is a simpler design to drive, as the source terminal of
each MOSFET would be held at a constant reference voltage. However, P-channel
MOSFETs have slower response times and are higher on resistance than equivalent

5

N-channel devices. Thus, a symmetrical design was chosen. However, this means
that the high side MOSFET’s source is not held at a constant voltage, as it is on the
output of the half bridge. Thus, in order to meet the Vgs threshold voltage, the gate
voltage of this MOSFET must be higher than the supply voltage of 12 V. As a
greater supply voltage is not readily available to us, the easiest solution is to use a
bootstrap circuit, as described in more detail in the following section.

Design Details
The circuit schematics for one half-bridge motor driver can be seen in Figure 4.
This consists of the motor driver and the bootstrap circuitry.

Figure 4. Circuit schematic of one half-bridge motor driver for the H-bridge configuration.

The basic function of the bootstrap circuit shown is to provide a voltage boost to
the gate of Q1 during the operation of the high side of the half bridge. As shown in
Figure 5, during the low side on time, Cboot is charged to the supply level of 12 V.
In order to activate the high side (Q1), the bootstrap IC routes the Cboot voltage to
Q1’s gate terminal. However, since Cboot is biased relative to the source terminal of
Q1, a constant Vgs is maintained throughout the process of switching Q1 on,
ensuring it stays active. The value of Cboot must be chosen such that it is not
discharged before the low side is activated again to restore its voltage. Because of
this requirement, this circuit cannot stay in the high side activation state for too
long, thus limiting the maximum duty cycle of the half bridge to approximately
85%.

6

Figure 5. Charging and discharging path of the bootstrap circuit. Source: Adapted from [4].

The most critical component value in the half bridge circuit is that of the bootstrap
capacitor, Cboot. (C7 in Figure 4) Calculation of this component value depends on
the gate capacitance of the high side MOSFET, which can be calculated by the
following equations from [4].

(1)𝐶
𝑔

=
𝑄

𝑔

𝑉
𝑄1𝑔

(2)𝐶
𝑏𝑜𝑜𝑡

≥ 10 × 𝐶
𝑔

where is the gate charge of the MOSFETs used and is the difference𝑄
𝑔

𝑉
𝑄1𝑔

between the and the forward voltage across the boot diode. Applying this𝑉
𝐷𝐷

equation gives a gate capacitance of 0.994 nF. This yields an optimal value of 10nF
for Cboot.

7

2.4. Mechanical Components and Wired “Remote” Module
Design Procedure
The mechanical subsystem was designed over a couple of conversations with the
ECE Machine Shop. The goal of this subsystem was to have the monitor capable
of vertical adjustment and the adjustment of the angle of the monitor. For the
vertical adjustment, we decided that the best motor to use would be a linear
actuator. For the angular adjustment of the monitor, gearmotors were selected as
the most practical option. In the conversations with the Machine Shop, it was
decided that the linear actuator would push the monitor up and down along a
physical rail and that the gearmotors would be used in conjunction with a worm
gear each to rotate the monitor mount about a horizontal and a vertical axis.

The remote was designed to send a signal to the microcontroller when a button is
pressed. The remote consists of two buttons for vertical adjustment and one for the
automatic adjustment. See Figure 6. When initially designing the project, we
considered different ways to implement the remote, including wireless methods.
Ultimately, it was decided that a wired remote would be the best method as it
would ensure the remote would not be separated and lost. A wired remote also
simplifies the implementation and reduces the chances of additional errors and
bugs. We used a phone cable because it is safer than using a USB cable.

Figure 6. The remote module of the monitor stand.

Design Details
When choosing the motors, we calculated the torque that was required to hold up a
typical monitor so the monitor does not weigh the motors down when they are not
running. Our original monitor weighs approximately 10 pounds, or 44.4 Newtons.
Assuming a reasonable moment arm length of 0.1m, the gravitational torque on the
motor will be ~4.5 Nm.

The tilt motor is also driven using a worm drive system, so as to prevent
back-driving the motor with gravity. This system introduces an approximate 4:1
reduction in gearing, so our motor should be able to output ~1.2 Nm.

For a good safety factor, and to account for frictional losses, our motor's stall

8

torque should ideally be roughly 4 times this value. This gives us an approximate
motor torque requirement of 5 Nm. The gearmotor we selected also fits this
requirement within the current limit of 10 A continuous draw.

9

3. Verification
3.1. High-Level Functionality

Ultimately, the monitor stand satisfied all of the high-level requirements. It
appropriately adjusted itself in response to user input, it was able to detect faces
with reasonable accuracy, and it was able to finish repositioning itself in under 8
seconds from the time a command was sent. The requirements and verifications for
each of the subsystems can be found in Appendix B.

3.2. Power Subsystem
The measurements and verifications for this subsystem were taken by probing the
two power rails with a multimeter. Table 1 displays the output voltage and the
current drawn from the power subsystem. The measured values were within the
stated tolerances of our requirements, and the subsystem was able to effectively
power our project.

Table 1. Recorded multimeter readings from the power subsystem.

DC Output Voltage (V) Current Drawn (A)

12 V Rail 12.001 1.58

5 V Rail 4.998 0.11

3.3. Location Detection
The location detection subsystem was capable of analyzing a frame at 15 FPS and
calculating the degree offset of the user relative to the monitor from the target
position. In most situations, the camera was able to accurately identify faces in the
frame. Figure 7a, 7b, and 7c demonstrate this. These images were obtained by
annotating the faces detected in the frame in the Python script. Figure 7a shows a
face properly identified in front of a background with other objects. Figure 7b
shows the user’s face selected and identified when other faces are present. Figure
7c shows a face with glasses properly identified. However, occasionally, the
processor recognized non-faces as shown in Figure 7d.

(a) (b) (c) (d)

Figure 7. Annotations in Python to demonstrate face detection of (a) a single face, (b) the largest
face in the frame, (c) a single face with glasses, and (d) a false positive face.

After completing the software aspect of the project, we attempted to quantify the

10

number of false positives the processor identified. To do this, we ran the code and
camera for 1 minute in a room with a clean background and good lighting as
shown in Figure 7c. Then, we ran the code for 2 minutes in the same room with
poor lighting that made it more difficult to see the contrast in a person’s face. For
both of these conditions, a face was present in the frame for the first minute and
the blank wall was shown alone for the second minute. In good lighting, we found
that 50 detections were processed by the code for the minute where the face was
present, and two detections were processed when the face was removed. After
analyzing the images, we concluded that only one of the first 50 detections were
incorrect in addition to the two false positives. In dim lighting, 38 detections were
made in the first minute, while two detections were made in the second minute.
From the images, we found four of the first 38 detections were inaccurate in
addition to the false positives. Finally, we ran the code for one minute with frames
of objects that were not faces such as the sweater shown in Figure 7d in the same
lighting conditions as the first test. In that first minute, there were 14 detections
processed, which were all false positives. Based on this data, we concluded that the
environmental factors such as lighting and background objects played a heavy role
in inaccurate detections. Overall, however, the facial detection was accurate often
enough for our purposes.

3.4. Processing and Motor Control
Verification of the PWM motor control signal requirement was carried out using an
oscilloscope. The motor driver software was activated at a target duty cycle of
20%. The high side and low side control signals were probed simultaneously to
ensure proper synchronization, PWM frequency, duty cycle, and dead time. Results
are shown below.

Figure 8. Motor driver PWM control signals.

11

Figure 9. Motor driver 12 V output.

Figure 8 clearly shows a measured PWM frequency of 19.994 kHz, which meets
our frequency requirement. Figure 9 shows the 12 V output of the half bridge
being driven with the above control signals. The same 20% duty cycle is present in
the full voltage output.

Figure 10. Full duty cycle operation of the half bridge.

Figure 10 shows the half bridge operating at maximum duty cycle. In our design,
this maximum duty cycle was 85%. This meets our requirement of 80%.

In order to meet the encoder requirement for this subsystem, some minor design
changes had to be made. In our original PCB layout, encoder 1’s “A” channel

12

followed a path to the microcontroller that ran over the 12 V copper plane used for
powering the motor drivers. When these drivers were running, high switching
currents injected noise into this encoder line, which would occasionally trigger the
rising edge interrupt monitoring that encoder. In order to solve this issue, this noisy
trace was severed, and a jumper wire soldered in its place. This ensured that the
noisy copper plane was bypassed, and noise reduced greatly. After this design
change was made, we observed no missed encoder steps at any operational speed
tested.

In order to meet our response time requirement, data must be transferred quickly
from the Location Detection subsystem to the Processing and Motor Control
subsystem. In our original design, the communication protocol selected was I2C,
which was selected for its small number of required pins and relatively high
baudrate. However, after extensive testing of the STM32’s integrated I2C
peripheral, proper operation was not able to be achieved. The STM32 appeared to
be constantly driving the I2C clock line low, as if it was attempting to perform
“clock stretching” on the bus. Clock stretching is when the peripheral device is not
ready to accept data from the controller, and pulls the clock line low to signal this.
However, even after disabling this feature on the STM32, the symptoms persisted.
Rather than spend excessive time attempting to solve this issue, it was decided to
switch to the Serial Peripheral Interface (SPI). This was a simple change, as only
the clock and MOSI lines were required for our project. Simply soldering jumper
wires from the SPI microcontroller pins to the board’s external communication
port was enough to solve this issue.

3.5. Mechanical Components and Wired “Remote” Module
Before installation of the linear actuator with the monitor mounting box, we
verified the total linear motion of the actuator to be 6 inches. However, the
mounting box reduces this movement to a total of 4 inches instead.

As for the pan and tilt motors, due to the availability of parts, the worm gears
cause the motors to stall if the monitor is too heavy. By slowly increasing the
weight on the monitor mount, we found it currently supports the weight of 2 lbs
before the motor is unable to move and starts stalling.

13

4. Costs
4.1. Cost Analysis

Labor
In this project, the cost of labor can be attributed to that of the team and the
Machine Shop. The average annual salary for an electrical engineering graduate of
the University of Illinois at Urbana-Champaign (UIUC) was $79,714 as of the
2018-19 academic year [8]. Assuming a 40 hour work week for 52 weeks in a year,
this salary can be converted to an hourly rate of around $38.32/hr. This project will
take approximately 100 hours to complete.

Total Team Labor = hrs) = $22,9923 × ($38. 32 × 2. 5 × 100

Labor and material rates for engineering machine shops at UIUC range from
$35/hr to $60/hr depending on the department [9, 10, 11]. Therefore, a reasonable
rate assumption of $50/hr can be made. This project will take approximately 18
hours for the Machine Shop.

Total Machine Shop Cost = $50/hr hrs = $900× 18

Parts
The total cost of all parts is $265.37. The calculation of the cost is performed in the
Parts Cost Table in Appendix C.

Total Cost
Sum of Costs = Total Labor Cost + Machine Shop Cost + Cost of Parts

= $22,992 + $900 + $265.37
= $24,157.37.

4.2. Schedule
See Appendix C.

14

5. Conclusions
5.1. Successes and Challenges

Successes
The project was able to satisfy the major requirements and high-level goals. This
monitor detects faces with reasonable accuracy and converts it into an angle that is
within our ±10° tolerance. It also has all three types of motion: automatic pan and
tilt and user-input vertical adjustment. Finally, it is fully integrated, as the script is
able to communicate with the microcontroller and does not require any
reprogramming to adjust the viewing angle.

Challenges
Our current camera used for facial detection has an approximate field of view of 30
degrees. This is acceptable for our proof of concept, but an actual product would
require a much greater field of view. A wide angle camera would serve this
purpose well. Integration of such a camera into our system would be trivial, as
only the focal length would need to be updated for proper camera frame to world
frame conversion.

The current facial detection algorithm exhibits occasional false detections, which
cause incorrect movement of the monitor. This could be iterated upon by selecting
a higher resolution camera, or by using more computationally heavy face detection
algorithms.

5.2. Future Work
Given more time to work on our project, there are a few changes that would
increase its overall effectiveness and stability. As it currently stands, our
mechanical subsystem does not meet the 15 lb weight requirement, and as such
cannot support the full weight of a true monitor attached. Improving the weight
handling capacity of this subsystem would allow for a real monitor to be attached,
thus completing our project.

Regarding the current motor control method, there are improvements that could be
made here as well. The current microcontroller software utilizes rapid polling of a
hardware timer to ensure outgoing signals are switched at the proper time. This
means that when the software polling rate slows down, the PWM control signals
are not switched in time, resulting in incorrect operation of the motors. In order to
rectify this, we would like to switch to an interrupt-based approach, which would
operate regardless of the computational load placed on the microcontroller by other
functions. This would improve the overall stability of our motor control solution.
In addition, our facial detection algorithm could be iterated upon to yield slightly
more accurate results. As it stands, the number of Type 1 and Type 2 detection
errors are acceptable, but could be reduced further with the use of a higher
resolution camera. Use of a more powerful CV processor than a Raspberry Pi 3B
would also allow for more computationally heavy face detection methods to be

15

used, which may yield more robust results.

Finally, a more robust angle-encoder tick conversion factor would lead to higher
accuracy in the target position. Our current measuring method relied on visual cues
to determine the traveled angle for a known number of encoder ticks. This method
may not be the most accurate, as camera distortion and other confounding factors
could lead to inaccuracies. A more robust method would rely on the use of a
gyroscope or accelerometer to determine this angle.

5.3. Ethics and Safety
One of the major ethical concerns in our system is the potential for privacy
invasion. The monitor stand uses a camera that is constantly running to identify
where the user is sitting and processes the image data to determine how the
monitor should be moved. Section I.1 of the IEEE Code states that we must
“protect the privacy of others” [12] and Section 1.6 of the ACM Code of Ethics
states that “an essential aim…is to minimize negative consequences of computing,
including threats to health, safety, personal security, and privacy” [13]. To ensure
the privacy of the user is protected, the camera image is only accessed internally
by the processor and deleted once the calculation is complete. There is no
long-term storage of any image data, and the images are not used for any purpose
other than calculating the necessary monitor adjustments.

Another ethical consideration related to the detection of the user. A common issue
in detection and facial recognition is the disparity of detection between races and
skin tones. It is our responsibility to treat everyone fairly and avoid engaging in
any kind of discrimination based on color or race [12, 13]. We shall do our best to
address this problem by selecting training datasets that contain faces of various
races and skin tones.

Additionally, there are safety considerations that must be made regarding the
system. The IEEE Code of Ethics states in Section I.1 that we must “hold
paramount the safety, health, and welfare of the public” [12]. Section II.9 also
states that we must consider how our system could injure others or their property.
In our design, we are limiting the speed at which the motors move the monitor to
prevent damage, and we are addressing user safety concerns by requiring that the
surface temperature of the entire device remain below 115℉ and by controlling the
current through the motor. The linear actuator also includes electromechanical
endstops to prevent motor stalls when the end of travel is reached.

5.4. Broader Impacts
This project demonstrated an application that can be used at home or in the
workplace to help the user create a more efficient, convenient, and ergonomic

16

workstation. However, the technology can be adapted to further applications. One
way the self-adjusting nature of the device can be used is to improve accessibility.
By circumventing the need for manual adjustment, it becomes easier for people
with disabilities or limited mobility to use the monitor. The self-adjusting
technology can also be useful for face scanners that require a person to be
well-aligned with the scanner such as the thermal scanners recently deployed in
some hospitals to screen people for COVID-19 symptoms [14].

Acknowledgements
Our project would not have been possible without the support of numerous people. We would like
to thank our TA, Jamie Xu, and David Null for their assistance throughout the project, as well as
Professor Victoria Shao for her support. We would also like to thank Gregg Bennett, David
Switzer, and the ECE Machine Shop for helping us to design the mechanical components of our
project and building a prototype for us.

17

References

[1] Kaelee Nelson, “Why Do I Need a Computer Privacy Screen?” HP Development Company,
L.P.,11-Jan-2019. [Online]. Available:
https://www.hp.com/us-en/shop/tech-takes/why-do-i-need-computer-privacy-screen.
[Accessed: 5-Feb-2022].

[2] “Basic rules for a successful facial biometrics project,” RecFaces, 11-Aug-2021. [Online].
Available:
https://recfaces.com/articles/basic-rules-for-a-successful-facial-biometrics-project.
[Accessed: 10-Feb-2022].

[3] “Driving a high current DC motor using an H-bridge,” Driving a high current DC Motor using
an H-bridge - Northwestern Mechatronics Wiki, 03-Nov-2009. [Online]. Available:
http://hades.mech.northwestern.edu/index.php/Driving_a_high_current_DC_Motor_using
_an_H-bridge. [Accessed: 22-Feb-2022].

[4] Mamadou Diallo, “Bootstrap Circuitry Selection for Half-Bridge Configurations,” Texas
Instruments Incorporated, 2018. [Online]. Available:
https://www.ti.com/lit/an/slua887/slua887.pdf?ts=1645368266361. [Accessed:
21-Feb-2022].

[5] A. Rowe, “Safe Workplace Touching Temperatures,” ​Safety Action​, 5-Jul-2018. [Online].
Available: https://www.safetyaction.com.au/blog/safe-workplace-touching-temperatures.
[Accessed: 8-Feb-2022].

[6] Gupta, Rohan. “Breaking Down Facial Recognition: The Viola-Jones Algorithm.” Medium,
Towards Data Science, 12-Feb-2020. [Online]. Available:
https://towardsdatascience.com/the-intuition-behind-facial-detection-the-viola-jones-algori
thm-29d9106b6999. [Accessed: 10-Feb-2022]

[7] “Using AdaBoost to Minimize Training Error.” MIT Press. [Online]. Available:
https://mitpress.mit.edu/sites/default/files/titles/content/boosting_foundations_algorithms/
chapter003.html. [Accessed: 10-Feb-2022].

[8] “Salary Averages,” Ece.illinois.edu, 2022. [Online]. Available:
https://ece.illinois.edu/admissions/why-ece/salary-averages .[Accessed: 22-Feb-2022]

[9] “Machine Shop,” Scs.illinois.edu, 2022. [Online] Available:
https://scs.illinois.edu/resources/cores-scs-service-facilities/machine-shop [Accessed:
22-Feb-2022].

[10] “MechSE Master Maker Shop,” Machineshop.mechanical.illinois.edu, 2022.[Online]
Available: https://machineshop.mechanical.illinois.edu/home. [Accessed: 22-Feb-2022].

18

[11] "Machine Shop," Physics.illinois.edu, 2022. [Online]. Available:
https://physics.illinois.edu/research/facilities/machine-shop. [Accessed: 22- Feb-2022]

[12] “IEEE Code of Ethics,” IEEE, Jun-2020. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 1-Feb-2022].

[13] “ACM Code of Ethics and Professional Conduct,” ACM, 22-Jun-2018. [Online]. Available:
https://www.acm.org/code-of-ethics. [Accessed: 1-Feb-2022].

[14] R. Ali, R. Blaszkiewicz, T. Schuessler, and J. Stuteville, “Thermal scanners Provide
No-touch COVID Screening at Franciscan Health Hospital Entrances,” Franciscan
Health, 6-Aug-2020. [Online]. Available:
https://www.franciscanhealth.org/about/news-and-media/thermal-scanners-provide-no-tou
ch-covid-screening-at-franciscan-health-hospital-entrances. [Accessed: 03-May-2022].

19

Appendix A: PCB Schematic and Layout
A.1. Schematic.

20

A.2. PCB layout.

21

Appendix B: Requirements and Verification Tables
B.1. Power subsystem requirements and verifications.

Requirements Verification Result?

1. Must convert 120
VAC to 12 V±1
V and 5 V±1 V
power rails.

1. a) Connect the subsystem to a 120 VAC voltage
source from the wall.
b) Probe the 5 V rail using a digital multimeter
(DMM) and ensure the measurement remains
between 4 V and 6 V.
c) Probe the 12 V rail using a DMM and ensure
the measurement remains between 11 V and 13
V.

Passed.

2. The 5 V rail
should have a
5 A capacity, and
the 12 V rail
should have a 10
A capacity.

2. a) Use electronic load testing equipment to
verify current requirements.
b) Load should be placed on each rail and run for
10 minutes to ensure stability. While the load test
is occurring, a DMM should be used to measure
the voltages of both the 12V and 5V rails. These
rails should not deviate from their designed
voltages by more than the design specification
(±1V).
c) The maximum voltage deviation from nominal
should be recorded in the notebook.

Passed, but
ultimately
these current
maximums
were never
drawn by our
project.

B.2. Location detection subsystem requirements and verifications.

Requirements Verification Result?

1. Image processing must
occur at 15 FPS to
ensure accurate face
detection without
excessively heavy
computation [2].

1. a) The image processing algorithm should be
developed with an integrated FPS tracker.
b) The system should be run in various lighting
and facial conditions, while recording the
framerate.
Lighting conditions:

- Normal lighting measure in a lit
workspace.

- Low light in the same workspace, but
with the light turned off.

- High light in the workspace with an
additional bright lamp directed at the
face.

Facial Conditions:
- Neutral expression looking into the

camera
- Neutral expression turned slightly away

from the camera.
- Contorted facial expressions (e.g. angry)

looking into the camera

Acceptable.
The face
detection is
reliable a
majority of
the time as
shown in
Section 3.3.

22

- Faces with glasses or accessories
c) The minimum framerate
should be recorded in the notebook.

2. The calculated ray
from the camera to the
detected facial position
should be within 10
degrees of the actual ray
from camera to user.

2. a) The image processing algorithm should
include reporting on the target position (vector
coordinates).
b) Define the true camera-face vector by
measuring the distance from the camera to the
user’s face (x1) and measuring the distance that
the face is horizontally from the center of the
camera (x2). The angle between the camera-face
vector and a ray normal to the monitor can be
calculated as
θ = sin-1(x2/x1).
c) The system should be run in a variety of
lighting conditions and environments, and the
true camera-face vector should be compared
against the calculated.
d) The maximum deviation of the calculated
position from the actual position should be
recorded in the notebook.

Passed.

B.3. Processing and motor control requirements and verifications.

Requirements Verification Result?

1. Must convert the
voltage from the 5 V rail
to 3.3 V±0.2 V to be
used by the
microcontroller.

1. a) Connect the input of the LDO to a 5 V source.
b) Probe the output of the LDO using a DMM
and ensure the measurement remains between
3.1 V and 3.5 V.
c) The maximum deviation from 3.3 V should be
recorded in the notebook.

Passed.

2. The microcontroller
must not miss encoder
steps at normal
operational speeds
between 2 RPM and 10
RPM.

2. a) Connect the motor/encoder Clk to an Arduino
board.
b) Program the board to output a counter that
increases when the encoder is rotated CW, and
decreases CCW. Manually rotate the encoder
assembly, then attempt to return it to the original
position as closely as possible. Measure the
encoder’s reported new position.
c) The average position drift should be recorded
in the notebook.

Passed.

3. The motor drivers
must supply 3 A without
exceeding 140℃.

3. a) Use an electronic load to simulate the motors
and input a square wave (Vpp = 10 V) using a
function generator.
b) Using a DMM, probe the output of the
half-bridge driver configuration to measure the

Passed.

23

current.
c) While the motor is operating in Test 1,
measure the temperature of the assembly using
an infrared thermometer.
d) Ensure the temperature never rises above
140℃.

4. The motor control unit
must output a 12 V
PWM with a minimum
of a 80% duty cycle at 20
KHz.

4. a) Power the PCB containing the motor control
circuits using 12 V and 5 V from a power
supply.
b) Using an oscilloscope, probe the output of the
half-bridge driver configuration to measure the
output PWM.

Passed.

B.4. Wired remote control module requirements and verifications.

Requirements Verification Result?

1. The remote must send
a signal to the
microcontroller in the
processing unit via a
minimum 3-ft cable.

1. a) A DMM should be used to verify the signal at
the PCB is detectable by the microcontroller.
b) The voltage received by the microcontroller
should be above the minimum logic 1 level (0.7
* VDD or 2.31 V). This will be measured with the
DMM under various operating conditions.
c) The average voltage at the microcontroller
should be measured and recorded in the
notebook.

Passed.

B.5. Vertical mechanics requirements and verifications.

Requirements Verification Result?

1. The linear actuator
assembly must have a
minimum of 6 inches of
travel while supporting a
load of 15 lbs.

1. a) Place a 15 lb load to simulate a monitor on
the stand. A ruler should be used to measure
travel length.
b) A fixed point on the linear actuator
mechanism should be chosen, and the system
driven to its lower and upper end stops. The
difference between the height of this point at
these lower and upper stops should be
calculated.
c) This travel distance should be recorded in the
notebook.

Partially
passed, the
stand was
unable to
support the
weight of a
monitor due
to the limited
availability of
mechanical
components.

2. The surface
temperature of the
assembly must not
exceed 115℉ [5].

2. a) While the motor is operating in Test 1,
measure the temperature of the assembly using
an infrared thermometer.
b) Ensure the temperature never rises above
115℉.

Passed.

24

B.6. Pan mechanics requirements and verifications.

Requirements Verification Result?

1. The pan motor
assembly must be capable
of traveling 45° in either
direction when measured
from the center position.

1. a) Using a ruler, draw a straight line out from
the front of the motor assembly base.
b) Align a protractor with the 90 marking on°
top of the line drawn in Step a). Draw rays
originating from the same point as the initial
line to mark out 45 to the left and right.°
c) With the monitor mount and pan motor in the
center position, mark a position of the rotating
assembly that is in line with the center line.
d) Drive the motor to rotate to the left. Check
that the mark made in Step c) is now aligned
with or past the leftmost 45 line. Return the°
assembly to the center position.
e) Repeat Step d), this time rotating the motor to
the right.

Passed.

2. The surface
temperature of the
assembly must not
exceed 115℉ [5].

2. a) While the motor is operating in Test 1,
measure the temperature of the assembly using
an infrared thermometer.
b) Ensure the temperature never rises above
115℉.

Passed.

B.7. Tilt mechanics requirements and verifications.

Requirements Verification Result?

1. The tilt motor
assembly must have 15°
of travel upward and
downward when
measured from the center
position.

1. a) Start the monitor perpendicular to the
mounting box.
b) Set up a stable vertical clamp with a
protractor whose flat edge aligns with the edge
of the monitor.
c) Have the tilt motor go to maximum
downwards position and measure the new angle
with the stable protractor.
d) Repeat for maximum upwards position.

Passed, but
the assembly
was unable to
support a
monitor’s
weight.

2. The surface
temperature of the
assembly must not
exceed 115℉ [5].

2. a) While the motor is operating in Test 1,
measure the temperature of the assembly using
an infrared thermometer.
b) Ensure the temperature never rises above
115℉.

Passed.

25

Appendix C: Parts Cost Table and Schedule
C.1. Parts Cost Table.

Part Number Description Manufacturer Quantity
Price/
Unit

Retail
Cost

Paid
Cost

LM200-10B12-C AC/DC Converter
Mornsun America,

LLC 1 $24.06 $24.06 $24.06

200217 5A Voltage Regulator DROK 1 $9.99 $9.99 $9.99

VA-139-52 3A Voltage Regulator Valefod 6 $1.83 $10.99 $10.99

926-LP2986AIM
X33NOPB

LDO Voltage
Regulators Texas Instruments 1 $2.28 $2.28 $2.28

STM32GO61C8
T6

Mainstream Arm
Cortex-M0+ 32-bit

MCU STMicroelectronics 1 $4.05 $4.05 $4.05

490-TB007-508-
02BE

Fixed Terminal
Blocks 2 CUI Devices 5 $0.85 $4.25 $4.25

NCP51530BDR2
G Half Bridge Driver onsemi 6 $2.03 $12.18 $12.18

IRFZ24NPBF N-Channel MOSFET
Infineon

Technologies 12 $0.65 $7.84 $7.84

1655-1354-1-ND
Diode Schottky 45V

15A
SMC Diode

Solutions 12 $0.80 $9.60 $9.60

4869

227:1 Gearmotor
25Dx71L with

encoder Pololu 2 $34.95 $69.90 $69.90

L11TGF1000NB
150HW-T-1

8-inch Linear
Actuator Motor ECO LLC 1 $41.99 $41.99 $41.99

RASPBERRY PI
3

Raspberry Pi 3 Model
B BCM2837 Raspberry Pi 1 $41.25 $41.25 $0.00

Tecknet C016
720P Web

Camera USB Camera iNassen 1 $26.99 $26.99 $0.00

Total $265.37 $197.13

26

C.2. Schedule.

Week Anna Jake Iris

2/28 Finish PCB design Finish PCB design Finish PCB design

3/7 Research face-detection
algorithms

Research and code
half-bridge control

Research face-detection
algorithms

3/14 BREAK BREAK BREAK

3/21 Continue research and
come up with test cases

for face detection and start
soldering

Work on communication
between camera and CV

processor and start
soldering

Continue research and
begin coding face
detection and start

soldering

3/28 Finish soldering and start
debugging the power

subsystem

Finish soldering and start
debugging the power

subsystem

Finish soldering and start
debugging the power

subsystem

4/4 Test and debug the remote
module

Debug the motor control Debug the location
detection subsystem

4/11 Finish any remaining
debugging

Finish any remaining
debugging

Finish any remaining
debugging

4/18 Mock Demo Mock Demo Mock Demo

4/25 Address any issues and
finalize project for Demo

Address any issues and
finalize project for Demo

Address any issues and
finalize project for Demo

5/2 Work on Final Report Work on Final Report Work on Final Report

27

Appendix D: Face Detection Code and Flowchart
D.1. Software flowchart.

D.2. Face detection code.
from __future__ import print_function
import cv2 as cv
import argparse
import numpy as np
import os
from scipy.spatial import distance as dist
from imutils import perspective
from imutils import contours
import imutils
import math
import spidev
import time

Global variables representing the encoder steps for the pan/tilt motors
panenc = 0
tiltenc = 0

28

Find a face in the frame from the webcam
def detectFace(frame):

frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
frame_gray = cv.equalizeHist(frame_gray)
faces = face_cascade.detectMultiScale(frame_gray)
maxRect = 10000 # define the minimum area for a detected face
face = 0
If a face is detected, save the image
if len(faces) > 0:

img_name = "opencv_frame.png"
cv.imwrite(img_name, frame)
face = 1

return face

Analyze the saved frame (still image)
def analyzeFrame(imagePath):

midpoint = [0,0] # midpoint between eyes
eye_cnt = 0 # keep track of how many eyes
frame = cv.imread(imagePath)
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
frame_gray = cv.equalizeHist(frame_gray)
#-- Detect faces
faces = face_cascade.detectMultiScale(frame_gray)
maxRect = 0 # define the minimum area for a detected face
for each face detected:
for i in range(len(faces)):

(x,y,w,h)=faces[i]
area = np.pi*(faces[i][2]*faces[i][3])/4
work with the "biggest" face in the frame to avoid adjusting to

a
background person
if area > maxRect:

maxRect = area
center = (x + w//2, y + h//2)
faceROI = frame_gray[y:y+h,x:x+w]
Detect eyes for the closest/largest face
eyes = eyes_cascade.detectMultiScale(faceROI)
for j in range(len(eyes)):

(x2,y2,w2,h2) = eyes[j]
target = (x + w//2, y + h//2 - h//4)

Determine conversion of pixels to physical space
d, pixeld = pixToDim(w)

Find the pixel offset between the center of the screen and the
target on

the person's face
offset = [310-target[0], 240-target[1]]
phys_offset = [offset[0]*pixeld, offset[1]*pixeld] #mm
determine the angle the monitor must rotate
pan = np.arctan(phys_offset[0]/d) #radians
tilt = np.arctan(phys_offset[1]/d) #radians
return pan, tilt

Using perceived value of F, calculate the distance the user is from the
camera and mm/pixel using the similar triangles method

29

def pixToDim(width_pix):
focalLength = 3.85 #mm
avg_width = 142.5 #mm
F = 1080#(width_pix*600)/avg_width
d = (avg_width*F)/width_pix #mm
pixeld = avg_width/width_pix #mm
return d, pixeld

function for sending data by SPI
def write_targets(t1, t2):

msb1 = (t1 >> 8) & 0xFF
lsb1 = t1 & 0xFF
msb2 = (t2 >> 8) & 0xFF
lsb2 = t2 & 0xFF
spi.writebytes([msb1, lsb1, msb2, lsb2])

parser = argparse.ArgumentParser(description='Code for Cascade Classifier
tutorial.')
parser.add_argument('--face_cascade', help='Path to face cascade.',
default='data/haarcascades/haarcascade_frontalface_alt.xml')
parser.add_argument('--eyes_cascade', help='Path to eyes cascade.',
default='data/haarcascades/haarcascade_eye_tree_eyeglasses.xml')
parser.add_argument('--camera', help='Camera divide number.', type=int,
default=0)
args = parser.parse_args()
face_cascade_name = args.face_cascade
eyes_cascade_name = args.eyes_cascade
face_cascade = cv.CascadeClassifier()
eyes_cascade = cv.CascadeClassifier()

#-- 1. Load the cascades`
if not face_cascade.load(face_cascade_name):

print('--(!)Error loading face cascade')
exit(0)

if not eyes_cascade.load(eyes_cascade_name):
print('--(!)Error loading eyes cascade')
exit(0)

Set up SPI
spi = spidev.SpiDev()
spi.open(0, 0)
spi.max_speed_hz = 50000
spi.mode = 0

#-- 2. Read the video stream
cap = cv.VideoCapture(-1)
while(1):

face = 0 # flag to indicate if face was detected
offset = (100,100)
Code for finding the face and calculating offset
if not cap.isOpened:

print('--(!)Error opening video capture')
exit(0)

while face == 0:

30

ret, frame = cap.read()
if frame is None:

print('--(!) No captured frame -- Break!')
break

face = detectFace(frame)

#-- 3. Analyze the saved image
path = r'opencv_frame.png'
Determine the difference between face and the target position
pan, tilt = analyzeFrame(path)
panenc = int(math.degrees(pan)*434.22)
tiltenc = int(math.degrees(tilt)*434.22)
Send data to the MCU
write_targets(panenc, tiltenc)

Delete image when finished
os.remove(path)

31

