
MEDICAL KIT DISPENSER

By

Matthew Mitchell Chung

Dylan Edbert Hartato

Josh Leeman

Final Report for ECE445, Senior Design, Spring 2022

TA: Qingyu Li

May 4, 2022

Project 42



Abstract

To address the shortening of operational hours of many convenience and drug stores due

to the COVID-19 pandemic and the inaccessibility of the free medical supplies made available by

the McKinley health center, our group created a medical dispensing device targeted to university

students. The device is modular in design so that capacity can be increased depending on the

foot traffic of the device location, and is integrated to online databases to keep track of a user’s

dispensing history and the available inventory.

The project successfully demonstrates the feasibility of this dispensing kit by

implementing a single tray and showing that the design is generalizable to 2
n

trays for a system

using n-BUS lines. An issue encountered in using a RFID-based user identification is the

encryption involved in an iCard; the ID of an iCard will change with every scan, and only readers

with equipped with the proper decryption key with the user is able to correctly identify the user;

this can be easily remedied if to be implemented in the U of I system.

ii



Table of Contents

1. Introduction………………………………………………………………………………………………. 1

1.1 Problem………………………………………………………………………………………………………………….. 1

1.2 Solution…………………………………………………………………………………………………………………..1

1.3 Visual Aid………………………………………………………………………………………………………………. 2

1.4 High-Level Requirements List…………………………………………………………………………………. 2

2. Design………………………………………………………………………………………………………. 3

2.1 Block Diagram…………………………………………………………………………………………………………3

2.2 Physical Design……………………………………………………………………………………………………….4

2.3  Subsystem Requirements………………………………………………………………………………………..4

2.3.1 Control Subsystem…………………………………………………………………………………………..4

2.3.2 Sensing Subsystem…………………………………………………………………………………………. 5

2.3.3 Motor Subsystem…………………………………………………………………………………………….5

2.3.4 User Interface Subsystem……………………………………………………………………………….. 6

2.3.5 Power Subsystem…………………………………………………………………………………………….6

2.3.6 Database Subsystem………………………………………………………………………………………. 6

2.4 Supporting Figures and Descriptions……………………………………………………………………….. 7

2.5 Circuit Diagram……………………………………………………………………………………………………… 8

2.6 Tolerance Analysis…………………………………………………………………………………………………10

3. Verification……………………………………………………………………………………………… 12

3.1 Control Subsystem………………………………………………………………………………………………… 12

3.2 Sensing Subsystem……………………………………………………………………………………………….. 12

3.3 Motor Subsystem……..…………………………………………………………………………………………… 13

3.4 User Interface Subsystem……………………………………………………………………………………….13

3.5 Power Subsystem………………………………………………………………………………………………….. 13

3.6 Database Subsystem……………………………………………………………………………………………… 14

4. Cost and Schedule……………………………………………………………………………………..15

4.1 Cost Analysis………………………………………………………………………………………………………….15

4.1.1 Labor……………………………………………………………………………………………………………. 15

4.1.2 Parts……………………………………………………………………………………………………………..15

4.2 Schedule………………………………………………………………………………………………………………. 17

5. Conclusion………………………………………………………………………………………………. 18

5.1 Accomplishments………………………………………………………………………………………………….. 18

5.2 Uncertainties…………………………………………………………………………………………………………18

5.3 Future Work………………………………………………………………………………………………………….19

5.4 Ethical and Safety Considerations……………………………………………………………………………19

References………………………………………………………………………………………………….. 21

Appendix A: Verification Table………………………………………………………………………22

iii



Appendix B: Software Charts…………………………………………………………………………25

Appendix C: Firmware Code…………………………………………………………………………. 27

Appendix D: Database Code…………………………………………………………………………..36

iii



1. Introduction

1.1 Problem

There have been instances during which medical necessities have been in need but are

inaccessible, either due to how far the closest drug store is or the time of day during which such

necessities are needed. For example, cold medicine is something that you often do not have at

home and will only need when you are having a severe case of the sniffles––but circumstances

are that you likely would not get such drugs if they are not relatively immediately available.

Another scenario is when sometimes, the straps in our mask would snap off. Most people do not

carry around a spare mask in their bag, which requires them to get another one from a store. In

the era that we are currently in, addressing our illnesses and the safety of others as soon and as

effectively as possible is out of everybody’s best interest.

1.2 Solution

What we would like to do to address such issues is to build a modular vending machine

that is targeted towards UIUC students and can be placed around campus. Our implementation

of this machine is unlike any other vending machine that you can find either at ECEB or

anywhere else for that matter. We would like to make it modular so that it can be as small (so

that it can be placed in low-traffic areas) or as large (conversely, in high traffic areas) as it needs

to be. A consequence of the modular design is that the trays that store inventory can be

expanded vertically or horizontally to accommodate for every product size––a feature that is not

found in any vending machine.

In addition, as this product is intended to serve the user more than to benefit the owner,

the design of such device will be focused on ensuring that the user is able to obtain whatever

product it is that they have ordered through a series of motion detectors. The vending machine

is intended to provide goods that current students are able to obtain for free, either from

McKinley or otherwise; however, such goods are often distributed to students on a quota. That

is, students are able to dispense certain goods after some time period has elapsed. The software

related to this device will thus serve two purposes: to track the user’s past transactions to ensure

that they are eligible to dispense a certain product, and to track inventory of the machine. Due to

the required internet connection, an Arduino or Raspberry Pi will be used to make

implementing the database-to-machine connection feasible for this project; however, the

implementation of the actual machinery and any failsafe system will require at least 2 PCB

boards; one to unify the BUS that connects to all the dispensing trays, the motion sensor, and

the arduino so that the machine functions as intended, and the other to ensure that the

individual trays dispenses an item when commanded.

Due to the modularity of the design and the implementation of the software, this

machine can also serve as an all-in-one distribution center for goods that are often handed over

to students as needed. While this machine is initially intended for distributing necessities, it can

also be stocked with other items depending on where they are. For example, a machine at the

ARC can also be used to vend sanitation wipes or some injury-related remedies.

1



1.3 Visual Aid

Figure 1. Physical Design of Medical Kit Dispenser

1.4 High-Level Requirements List

The motion sensor should be able to detect if an item is dispensed by checking that the

signal sent will be high, and should send a signal to the control module PCB. It should

then update the user and inventory databases after it successfully dispenses a product

but before dispensing the next product.

The microcontroller should be able to read a user’s identification using the RFID and

successfully interpret the user ID, which prompts the LCD screen to show what the user

can dispense; the user should be able to choose the product using the four buttons.

When a product is chosen, the correct signal should be sent by the microcontroller to the

BUS, and the corresponding module should activate the motor to dispense a product for

five seconds before repeating up to three times.

2



2. Design

2.1 Block Diagram

(*) All our user I/O components will communicate with the 32-bit controller using generic I/O

handling.

Figure 2. Block Diagram of Medical Kit Dispenser

For the project to be successful, the Medical Kit Dispenser will require two components:

a hardware and a software component. The components board will be divided into five main

units: controlling subsystem, motor subsystem, sensing subsystem, user subsystem, and the

power subsystem. The control unit will consist of a 32-bit microcontroller. The power subsystem

consists of a 5v power supply and a stepper that will power the control, sensing, motor and user

subsystem. The user interface unit will consist of an RFID, LCD, buttons, and a line sensor. The

RFID, LCD, buttons and line sensor will be connected to the 32-bit microcontroller in the

control unit through wires to be connected to the PCB. The dispensing unit will consist of a

motor  through a 4-bit BUS. The software components will consist of two items: user database

and inventory. They both will be connected to the 32-bit microcontroller in the control unit

through wires and connected to the internet through wifi.

3



2.2 Physical Design

Figure 3. Physical Dimension and Design of Medical Kit Dispenser

2.3 Subsystem Requirements

2.3.1 Control Subsystem

This is the primary subsystem that ensures that the whole machine functions as

intended. The microcontroller ensures that when a valid RFID signal is received, the user is able

to select and receive products that they are eligible to dispense. This involves accessing the user

database (subsystem 2.2.6) to ensure eligibility, and to display the eligible entries to the LCD

screen (subsystem 2.2.4). When a valid input signal is received, a BUS signal is sent to the

motors (subsystem 2.2.3) through a BUS, and when a signal is registered from the sensing

modules (subsystem 2.2.2), the whole cycle repeats.

This subsystem primarily consisted of a Wifi-enables ESP-32 running firmware

(Appendix C & Appendix B Figure 11) which receives input from the user subsystem, sensing

subsystem and software subsystem and gives output towards the software subsystem, user

subsystem and motor subsystem. The device first starts in the setup function. The device first

blocks until it connects to wifi and detects that the RFID card reader is connected. It will then

turn on the LCD screen with a welcome sign and initialize the input ports of 15, 18, and 19 and

the output ports of 12, 13, 14, 27. With this the setup function is complete and the

microcontroller moves on to the loop function.

The loop function is responsible will constantly be looping itself during the lifetime of the

machine and does the main computation of the device. The first thing the device does is it resets

all the output pins and the LCD display. Then the device blocks up and waits until a user taps an

I-card on the RFID reader. When this occurs, the uin of the user is stored as a variable. The

device then connects to the database online, sets up a JSON object with the users UIN inside

and does a post request to the server. This post request creates a new row in the users database

and users inventory database if the user has never used the vending machine before and else

does nothing. The device then does a get request to the server with the endpoint of the devices

location and users uin. The get request goes through the database and returns a list of items that

4



the user has quota on and the vending machine has inventory of in that specific location. This

list is returned to the device as a string which is then parsed and its contents placed in an array.

Given the array of objects the user can dispense, the device checks whether the user is

not able to dispense any items. If the user is not able to dispense any items, the device returns

from the loop function and restarts the loop. However, if the user is able to dispense at least one

item, a loop is entered. This loop allows the user to use the buttons in the user subsystem to

control the device. The left and right buttons when pressed changes the item printed on the

LCD. The enter button breaks out of the loop and proceeds with the user's chosen item and the

cancel button breaks out of the loop and restarts the loop function.

The device then takes the object selected by the user and finds the corresponding bus

signal given the object. The signal is then sent through the bus to the motor until either a signal

from the IR sensor is received signifying that the object has been dispensed or the motor tries to

dispense the object 3 times. Depending on these outcomes, the device then connects to the

server again and does a post request either updating the user inventory database for the users

quota and inventory database for the stock of the item if the item is successfully dispensed or the

request clears the stock of the item in the item database if the item could not be dispensed. The

loop then ends and restarts waiting for an I-card to be tapped again.

2.3.2 Sensing Subsystem

The sensing subsystem will compromise all the sensors used. These sensors will detect

whether an item has been properly dispensed. If an item has been properly dispensed, the object

will pass through the line sensor and notify the microcontroller that the object has been

dispensed, if not the microcontroller will know to retry. The sensing subsystem is basically an IR

sensor that can detect within a certain range if there is an object that goes through. If it detects,

it will send a high voltage, and this high voltage will be sent through logic gates so that it can

send the appropriate signal to the microcontroller. The signal being sent to the microcontroller

is always going to be three bits, so the information from the IR sensor is going to be compressed

into a three bit information, which the microcontroller  will process.

2.3.3 Motor Subsystem

The motor subsystem is in charge of dispensing items. A signal will be sent by the

microcontroller through the bus to the motor and will push the object down for dispensing. The

signal sent by the microcontroller to the BUS will be four bits. This four bit information is going

to contain the information on which tray to activate. The four bit information is going to be

relayed to all the trays, and if the four bit information corresponds to that tray ID, it will then

dispense that product. Overall, the motor subsystem is going to receive information from the

microcontroller and check if the information corresponds to the tray ID through a series of logic

and if it does, it will activate the motor.

5



2.3.4 User Interface Subsystem

The user subsystem comprises all the parts that the user will interact with including the

LCD screen, RFID and buttons. The LCD screen is used so that users will be able to see what

items they are able to dispense or choose what items to be dispensed. The LCD screen will

connect to the control subsystem and what will be shown on the screens will be controlled by

firmware. The buttons will be used for users to interact with the LCD screen and choose which

product they would like to be dispensed. There are 4 buttons: left, right, enter and cancel. Each

button when pressed will send a 3-bit signal to the control module which would be used in the

firmware to determine the actions taken by the control module. The RFID module will be used

to read the i-cards of users to identify who they are. The module will send the uin of the i-card to

the control subsystem when tapped to be used and stored in the user database.

2.3.5 Power Subsystem

The power subsystem will be plugged into a standard wall plug and convert it to a 5V DC

power supply. This will be used to power the user subsystem, the sensing subsystem and also the

motor subsystem. From there the 5V power supply will be stepped down to 3V to power the

32-bit microcontroller. This subsystem basically contains a transformer that steps down 120V

AC into a 5V DC. This 5V DC power is going to be routed to two different PCBS - the control PCB

and the Motor PCB. The motor PCB operates at 5V, so it is going to power the entire PCB. The

control PCB is going to operate at both 3.3V and 5V. The 5V is first going to be used to power the

logic gates and LCD. Then the 5V power will be stepped down to 3.3V to power the

microcontroller and the RFID module.

2.3.6 Database Subsystem

The software subsystem will compromise two parts: inventory and user database. The

inventory component tracks the current items and corresponds that information to the LCD and

the user database. The user database identifies users who are using the dispenser and inform the

microcontroller to display what items can be dispensed based on the user quota. Another

database is also used to connect these two databases. This database called the user inventory

database will consist of information about the quota a user has on a specific item. These three

databases are designed and implemented on SQL based on the db diagram (Appendix B Figure

13). Based on these three databases, a server is created on heroku which will house the databases

and API calls can be made to update the databases or receive information from the databases.

The API calls are broken down into two endpoints: the inventory endpoint and user

endpoint (Appendix D and Appendix B Figure 12). Within the inventory endpoint, a device can

either call a get request or a post request. The get request will, given data on a users uin and

device location, will run a query that will go through the inventory database and users inventory

database and return a list of all the items on the machines location that has stock and the user

has quota. The post request on the other hand can do two things. Receiving a JSON object

consisting of information of the user's UIN, the chosen item and an item flag, the post request

will first check the item flag. If the item flag is 1, a query will be made to the users inventory

database and inventory database to decrement the quota of the user by 1 and the stock of the

6



item by 1. On the other hand, if the item flag is 0, a query will be made to clear the stock of the

item in the inventory database.

The other endpoint used is the user endpoint which consists of a post request. This post

request receives a JSON object consisting of a user's UIN. From there a query will be made to

check if the user already exists in the user database. If the user already exists, nothing will

happen and a bad request will be sent. However, if the user does not exist, a query will be made

to create a new row in the user database and a new row in the user inventory database for every

item available in the vending machine.

2.4 Supporting Figures and Descriptions

Figure 4. Brownout and Blackout Conditions of Microcontroller
[2]

The supplied voltage must be above 2.1V but below 5V at all times to prevent brownout

and blackout operation; as live data transmission is required for our device, it is imperative that

the device does not enter the two aforementioned conditions.

7



Figure 5. Electrical Characteristics of the 5V to 3.3V stepper
[4]

The stepper is able to output a stable voltage of above 3V under a 5V input voltage.

Assuming proper functionality, this ensures that the microcontroller is always active.

Figure 6. IV Curves of the Line Sensor as a function of distance and VCE

[3]

The line sensor will be designed to be active low; that is, it will have a “high” output when

no item is dispensed and “low” when otherwise. As the device operates using a phototransistor,

it will detect an object by an instantaneous lack of reflectivity that causes the photocurrent to

decrease. The current can be passed through a resistor and connected to the microcontroller to

probe a “high” or “low” state.

2.5 Circuit Diagram

Figure 7: Circuit Diagram of Relevant Electronic Components Requiring Logic Design

8



Figure 8: Functional Block Diagram of Circuit in Figure 7

Figure 7 shows the logic implementation required for our device; our microcontroller has

24 general I/O pins, and 16 pins will be dedicated to the LCD screen and four pins to the BUS.

Consequently, we have four pins to drive the remaining logic; therefore, a series of states will be

used to break down the signals from each device. The circuit diagram in Figure 7 shows how

three input pins and one output select pin is sufficient to drive the remaining logic, which

involves the input from the RFID sensor, the buttons, and the motion sensor, as facilitated by a

series of multiplexers and logic gates. We will be implementing an I2C protocol for

communications between the RFID module and the microcontroller, and the pins compatible for

such communication have been assigned as such.

Figure 9: Circuit Diagram of Controller Module; Implementation and Integration of

Circuit in Figure 7

The circuitry required to implement the dispenser module and activating the motors is

relatively simple; if the appropriate signal is being transmitted across the BUS, then a series of

NXOR gates should transmit a 1 signal; if all four signals are active, then the motor should

9



detect a high signal and run for one cycle, which will be directly clocked by the 32-bit

microcontroller across the BUS.

Figure 10: Circuit Diagram of the Dispenser Module

2.6 Tolerance Analysis

The most prominent software issues will likely be errors in communication between the

machine’s microcontroller and an online database; an example would be an unsuccessful update

of the inventory database and the user database. However, as the reliability of the internet

connection that the device will rely on to communicate with the online database is out of our

control, our tolerance analysis will simply be that an update to inventory and the user

information will be done prior to the next dispensing cycle.

For hardware, the voltage response of the line motion sensor depends on reflectivity,

which itself depends on the distance between the object and the sensor and of the material being

dispensed. The VCE of the phototransistor saturates at 0.3V; as such, assume that the target

voltage entering the photoresistor is 0.5V during the “on” state. To that end, as we are using a 20

Ohm resistor to pin down the voltage under flowing current, and as shown in Figure 6, choose

the collector voltage to be 0.2A. When the reflectivity is measured to be low, assume that the

reflectivity can yield a normalized current within the range of , implying a current 𝐼
𝑛

∈  [0, 0. 3] 

of when an item is sensed to have dispensed.
[3]

Therefore, during the “low” state 𝐼 ∈  [0, 0. 06] 𝐴 
of the motion sensor, the voltage being transmitted to the logic will be calculated below:

By design, choose VC = 5V and R = 20 Ohms. Assume that I = 0.06A as the upper current limit

during the off state and I = 0.2A during the on state. Then using V = IR, during the on state, the

voltage should be V = 5 - (20*0.2) = 1V, and during the off state V = 5 - (20 * 0.2 * 0.3) = 3.8V.

The trigger voltage for the AND gates is 3V, meaning that the logic gates are able to differentiate

between ON and OFF states well within our tolerance ranges.
[5]

There can also exist a time delay in communication between the hardware components

that are difficult to determine ahead of time. For example, the time required for the RFID reader

to completely read an ID card and transmit the time to the microcontroller is a function of

clocking speed, the size of data to be transmitted, and processing time by both the

microcontroller and the RFID reader. As such, while we are predicting that the operation should

10



take five seconds, we will need to determine the total processing time; the processing time

should be consistent and we expect that the variance should be in a range of +/- 1 second.

11



3. Verification

3.1 Control Subsystem

There are four requirements for the control subsystem, the first one being that the

correct bus signal be sent when a product is chosen. To verify this requirement, the motor

subsystem is set to the signal 1001 corresponding to a mask. Then the mask is chosen on the

vending machine and tested to see if the motor turns on, which it did. Then a different item is

chosen on the vending machine to test whether the motor would still turn on. Thus a pill was

chosen to be dispensed on the machine and the vending machine motor did not turn on,

determining that the correct bus signal is being sent to the motor when a product is chosen.

The other requirement of the control subsystem is the correct products should be

displayed on the LCD screen. To verify this requirement, the inventory database is stocked with

10 items, 5 of which had stock,  and a user was set up on the user database with a quota on half

of the items. Then the machine was started with that user and using the buttons we went

through all the items that were displayed on the LCD screen. To our avail, 3 items were shown

on the LCD screen corresponding to the items which had inventory and the user had quota on,

demonstrating that the LCD screen displayed the correct products the user could display.

The third requirement of the control subsystem is that an RFID signal be received and

correctly interpreted by the microcontroller. To do this we connected the RFID module to the

microcontroller and tapped an I-card to the device. From there we could see that the uid of the

i-card could be displayed and obtained demonstrating that the RFID module is able to obtain

data from I-cards and that data be correctly interpreted by the microcontroller.

The final requirement of the control subsystem is that when a product is dispensed or

indispensable, the databases be updated accordingly. To verify this requirement, an item is

dispensed twice, once with the IR sensor being tripped and one without the IR sensor being

tripped. When the item was dispensed while the IR sensor was tripped, a change could be seen

in the inventory database that the stock of that item decremented by 1 and the quota of the user

corresponding to the item decremented by 1. When the IR sensor was not tripped, a change

could be seen in the inventory database where the stock for the given item was set to 0, thus

demonstrating that the databases were updated correctly when an item is

dispensed/indispensable.

3.2 Sensing Subsystem

With the sensing subsystem, we had to try and verify whether the IR sensor is behaving

as expected by using LCDs. To do so, we tested the circuitry of the signals delivered by the IR

sensor using 3 LCDS that are connected to the MUX. If a signal is delivered from the IR sensor,

the LCD should show a 011. This means that the LCD should be off - on - on in that specific

order. When we tested out the logic and connected the sensor to the MUX, it displayed the

correct signals through the LCDs.

We then try to connect the signals from the sensor to the microcontroller and try to

dispense a product. As it tries to dispense, sending a signal from the IR sensor should stop the

motor and update the inventory. Initially, sending a signal from the IR sensor did not stop the

12



motor. Since we know that it is sending the correct signal based on the verification beforehand,

we know that the problem is in the software and we were able to fix that in the end.

3.3 Motor Subsystem

To verify whether our motor subsystem works, what we have done is artificially send

BUS signals from a power source and also set the Tray ID to a specific ID by setting it to high

and low as well. We connected all the high pins with jumper cables to the power source and all

the low pins with a jumper cable to ground. With this, we were able to simulate the bus signals

and tray IDs. For example, to check whether our motor subsystems work as intended, we tried to

match the tray ID and BUS signal to be 1001. When the BUS signal and tray ID match, the motor

activates. To check this, we also tried when the BUS signal and tray ID mismatches, and the

motor does not turn on. Hence, it is working as intended. To ensure that it works completely, we

tried it with all the possible 4 bit combinations, and the motor only turns on when the BUS

signal and the tray ID match.

3.4 User Interface Subsystem

With the user interface subsystem, there are two devices that we have to check for, the

RFID and the LCD. With the LCD, we want it to show the available products that users can

dispense. To do this, we first try to establish a connection with the microcontroller and try to

print “Hello World”. After a connection has been established and “Hello World” can be seen on

the display, we then try to see if it can communicate with the database and print the items

properly. To do this, we populate the database with data and try to see if the objects are printed

onto the LCD screen. We were able to populate the data with 3 items and the LCD screen will

display the items that the user is eligible for and the items that the machine has inventory on.

With the RFID system, we want to know if each user will be identified correctly. To do

this, we first establish a connection between the RFID and the microcontroller. After a

connection has been established, we then try to print out the ID of each card whenever it is

tapped. Everytime a user taps a card, we check if the ID is constant and see if it is sent over to

the database correctly. We found that the I-Card has some encryption issues so we decided to

test and verify the RFID reader through other RFID compatible cards. All other cards that we

tested send over their corresponding ID to the database correctly. The only cards that have their

UID constantly changed is the I-Card, and we believe this is because there are some encryption

protocols put into place. After having a user tap their card, we try to dispense a product and

check with the database if it behaves accordingly. There are two scenarios that we tested. The

first scenario is when a user successfully dispenses a product; the database should update the

machine’s inventory and decrement the user’s quota. The second scenario is when a user

dispenses a product, but the item fails to dispense; the database should update the inventory to

zero and make sure to not decrement the user’s quota.

3.5 Power Subsystem

To verify whether our power subsystem is able to convert from a 120V wall power into a

5V power using a transfer, we used a multimeter to check the voltage that is being delivered by

13



the transformer. We put one end to the output voltage of the transformer and the other end unto

ground. We confirmed that the voltage output being read by the multimeter is indeed 5V.

After confirming that the voltage output is 5V, we used a multimeter again to check the

voltage output after stepping it down. We connected one end of the multimeter on the output

after the step-down voltage and the other end on ground. We confirmed that the voltage output

is indeed 3.3V and we moved on to the other parts of the project.

3.6 Database Subsystem

There is one requirement to verify that the database subsystem works properly, which is

that when a product is dispensed or indispensable, the databases be updated accordingly. To

verify this requirement, an item is dispensed twice, once with the IR sensor being tripped and

one without the IR sensor being tripped. When the item was dispensed while the IR sensor was

tripped, a change could be seen in the inventory database that the stock of that item

decremented by 1 and the quota of the user corresponding to the item decremented by 1. When

the IR sensor was not tripped, a change could be seen in the inventory database where the stock

for the given item was set to 0, thus demonstrating that the databases were updated correctly

when a item is dispensed/indispensable.

14



4. Cost and Schedule

4.1 Cost Analysis

4.1.1 Labor

Assume that an electrical engineer responsible for designing and assembling the circuitry

and electronics of this project is paid $45/hour in compensation. A time estimate for the

construction and assembly of this implementation of this machine is 3 hours. The PCB design

and assembly of this machine, which includes compatibility testing and simulations, will likely

take 12 hours per partner. The software design component will likely take 48 hours to

implement and debug, and integrating the microcontroller with the software will take 24 hours.

It is expected that it should take around 2 hours of labor for the machine shop to create the

housing for the dispensing machine; it is reasonable to assume that they are paid $40/hour in

compensation.

4.1.2 Parts

Item (linked) Quantity Cost (USD)

ESP32 MCU 1 8.95

RFID Module 1 39.95

Metal Pushbutton 4 19.8

120V to 12 and 5V Transformer 1 20

5V to 3.3V Stepper 1 2.10

16x2 LCD Screen 1 9.95

Object Reflection Sensor 1 2.95

12V DC Motor 1 16.95

Vending Machine Spirals 1 8

Spiral Adapter 1 2

MUX 1 0.53

Inverter 1 1.32

XOR Gate 1 0.64

4-Input AND Gate 1 0.37

2-Input AND Gate 2 0.37

15

https://www.adafruit.com/product/3320
https://www.adafruit.com/product/364
https://www.adafruit.com/product/481
https://www.jameco.com/z/RD-50A-MEAN-WELL-54W-Dual-Output-5V-6A-and-12V-2A-Enclosed-Switching-Power-Supply_323425.html
https://www.sparkfun.com/products/526
https://www.adafruit.com/product/181
https://www.digikey.com/en/products/detail/sparkfun-electronics/SEN-11769/5768367?utm_adgroup=xGeneral&utm_source=google&utm_medium=cpc&utm_campaign=Dynamic%20Search_EN_Product&utm_term=&utm_content=xGeneral&gclid=CjwKCAjwloCSBhAeEiwA3hVo_QrnM12tIZUmeWOHesrVPchKS1v1E93_TWyLnhVS9ZxJH7wAhd0y3xoC-IEQAvD_BwE
https://www.jameco.com/z/38-008-Jameco-Reliapro-DC-Motor-with-Gearhead-12VDC-76mA_253518.html
https://www.veii.com/SEAGA-VENDING-MACHINE-SPIRAL-BLACK-30-COUNT-RIGHT-HAND
https://www.veii.com/SPIRAL-ADAPTER-20966-FOR-AMS
https://www.digikey.com/en/products/detail/texas-instruments/SN74LS158DR/1590348
https://www.digikey.com/en/products/detail/texas-instruments/SN74LVC2G04DBVT/1592245
https://www.digikey.com/en/products/detail/texas-instruments/SN74LS86ADR/562889
https://www.mouser.com/ProductDetail/Texas-Instruments/SN74HCS21PWR?qs=GedFDFLaBXETYHCH97WONA%3D%3D
https://www.mouser.com/ProductDetail/Texas-Instruments/SN74HCS09DR?qs=sPbYRqrBIVmB2xFmKT0c5A%3D%3D


Item (linked) Quantity Cost (USD)

ESP32 MCU 1 8.95

RFID Module 1 39.95

Metal Pushbutton 4 19.8

120V to 12 and 5V Transformer 1 20

5V to 3.3V Stepper 1 2.10

16x2 LCD Screen 1 9.95

Object Reflection Sensor 1 2.95

12V DC Motor 1 16.95

Vending Machine Spirals 1 8

Spiral Adapter 1 2

MUX 1 0.53

Inverter 1 1.32

OR Gate 1 0.37

Purchasing Total (assuming 10% tax) 134.25 (147.68)

Labor 4980

Grand Total 5128

16

https://www.adafruit.com/product/3320
https://www.adafruit.com/product/364
https://www.adafruit.com/product/481
https://www.jameco.com/z/RD-50A-MEAN-WELL-54W-Dual-Output-5V-6A-and-12V-2A-Enclosed-Switching-Power-Supply_323425.html
https://www.sparkfun.com/products/526
https://www.adafruit.com/product/181
https://www.digikey.com/en/products/detail/sparkfun-electronics/SEN-11769/5768367?utm_adgroup=xGeneral&utm_source=google&utm_medium=cpc&utm_campaign=Dynamic%20Search_EN_Product&utm_term=&utm_content=xGeneral&gclid=CjwKCAjwloCSBhAeEiwA3hVo_QrnM12tIZUmeWOHesrVPchKS1v1E93_TWyLnhVS9ZxJH7wAhd0y3xoC-IEQAvD_BwE
https://www.jameco.com/z/38-008-Jameco-Reliapro-DC-Motor-with-Gearhead-12VDC-76mA_253518.html
https://www.veii.com/SEAGA-VENDING-MACHINE-SPIRAL-BLACK-30-COUNT-RIGHT-HAND
https://www.veii.com/SPIRAL-ADAPTER-20966-FOR-AMS
https://www.digikey.com/en/products/detail/texas-instruments/SN74LS158DR/1590348
https://www.digikey.com/en/products/detail/texas-instruments/SN74LVC2G04DBVT/1592245
https://www.mouser.com/ProductDetail/Texas-Instruments/SN74HCS32DR?qs=7MVldsJ5Uay%2FXLwyM20zFg%3D%3D


4.2 Schedule

Week Josh Leeman Dylan Hartato Matthew Chung

1 Design Document.

Design the PCB for the

Module.

Design Document.

Design the PCB for the

Control Module.

Design Document.

Design the idea and skeleton

for the backend software.

2 Design Document is Due. Get the PCB design

approved so that it can start. Start the PCB design on

KiCad.

Design Document is Due. Fill

out Google form to place an

order, so that we can start

early.

4 Test PCB functionality

and of individual

components.

PCB Soldering. Complete Software Code to

work with Backend. When

finished, help assemble the

housing and slots

5 Integration of hardware

components, error

testing.

Integration of hardware

components with

microcontroller

Integration of databases with

microcontroller, error testing.

6 Assembly of final build

and combine the

hardware subsystem

into a single packaging

Make the different

subsystems work and

debug the problems

related to integration

Final software debugging,

ensure compatibility of analog

signals with microcontroller.

7 Finish up and make

sure everything works

for the Mock Demo. Try

to keep on testing. This

week is generally kept

empty just in case

something happens and

extra time is needed.

Finish up and make sure

everything works for the

Mock Demo. Try to keep

on testing. This week is

generally kept empty just

in case something

happens and extra time is

needed.

Finish up and make sure

everything works for the Mock

Demo. Try to keep on testing.

This week is generally kept

empty just in case something

happens and extra time is

needed.

8 Mock Demo

9 Final Demonstration. Work on presentation and Final Paper.

10 Final Demonstration and Final Paper Due

17



5. Conclusion

5.1 Accomplishments

After working on this project throughout the semester, we have successfully completed

all the high level requirements that we have set for ourselves. Although we did not end up using

our PCB, we were able to mimic our PCB design onto the breadboard and make it work. Firstly,

we successfully connected and integrated the RFID and LCD with the database and backend. We

successfully used the RFID system to identify a user, and send that data over to the database.

With the LCD, we got it to communicate with the database to display the available items

depending on the information that it receives from the database. The server also worked as

intended, as it keeps track of each user’s data and inventory consistently during each GET and

POST request. Second, we successfully implemented our tray PCB properly and it was working

as intended. When the signal sent over by the BUS matches the tray’s ID, it will activate the

motor as intended. We tested the behavior of this PCB using different tray IDs and different BUS

signals. We concluded that the PCB works as intended as the motor turns on only when the BUS

signal and tray ID matches.

5.2 Uncertainties

With our project, we have three problems, which are the IR sensor, the University’s

I-Card, and the PCB’s design. The IR sensor that we implemented in our project worked as

intended; it will stop the motor from dispensing when the sensor is triggered. However, the IR

sensor only has a working range of 1 cm. Because of this, we could not implement it based on our

original design as a 1cm range will not work in a dispenser. We successfully implemented the

functionality of it in our project, but we had to manually tap the sensor for it to trigger. Initially,

we thought that by changing the resistor values we could increase the range of the IR sensor. We

were only able to extend the range from 5 mm to 1cm.

Secondly, the University of Illinois’s I-Card does not work as intended with the RFID

reader. After running numerous tests, we noticed that the information being sent in the I-card is

encrypted. The card’s ID is always scrambled and random everything it comes into contact with

the RFID reader. To test our theory, we tested it with numerous other cards that contain an

RFID chip and it reads the data consistently every time. Other cards that we used will always

send the same ID, but the University’s I-card always has the numbers scrambled. As a result, we

were unable to make it work with an I-card, but it works with any other RFID compatible cards.

Lastly, a problem that we encountered was in our PCB design. After soldering all our

components onto the PCB, we tried to flash the MCU but it did not work. After going through

various forums and asking around, we found that we needed to set PIN 3 in the ESP32 MCU to

be High while we flash the code, then set it to low when it is done flashing. Our PCB design sets

PIN 3 to an Active HIGH by connecting it to the power source. Because of this, our MCU is

always in a flashing state and it can never exit that state. As a result, we cannot use our PCB in

the final product.

18



5.3 Future Work

If this project is to be continued after the class, some next steps that we could do is to

first fix the problems that we had. That is to first tackle the I-Card encryption issue. The I-Card

encryption issue can be fixed by using a card swipe instead of a RFID reader. With a card swipe,

the user’s information can be parsed properly and it will not be encrypted. This will allow the

program to take in the user's ID consistently. Another problem that we can improve upon is the

IR sensor. As mentioned before the IR sensor only has a small working range. To fix this, a

bigger and stronger IR sensor can be used for it to detect if an object has been dispensed.

However, with a stronger IR sensor, it will take a larger footprint and it will cost more to

implement as it is a more expensive part. Lastly, some future work that could be added unto this

is to have a mobile application. The mobile application can be used to show where these

machines are located and what stock each machine has. This can help fully integrate everything

together and it can also help provide information to people on whether they can dispense a

product they are looking for.

5.4 Ethical and Safety Considerations

Every piece of technology has its risks, and such risks can range from abuse of collected

information or risk of injury to the user from unintentional misuse. While the implementation of

our device requires us to collect some data regarding the user’s vending history, none of the

information should be considered sensitive. However, user information should not be divulged

unless absolutely necessary to ensure privacy, and as such the user information database and

inventory database should be implemented independently to ensure that those who have access

to inventory are not able to access user information without proper credentials.

The primary safety concern is primarily electrical; the machine will house a 120v to 5v

and 12v stepper, and a lower 5v to 3.3v stepper. To ensure that high voltage electrical hazards

are minimized, the 120v stepper is enclosed and will be isolated from the majority of the

electronics and human-to-machine contact points. In addition, the wattage of the whole

machine is sufficiently low (~120W) such that the likelihood of a fire hazard from a malfunction

of the transformer is very low.

Any wiring carrying the 12V voltage will run in the back of the machine from the

transformers to the modules and then the motors, and thus the risk posed to the user is very

small. The user interfaces are all going to be made from insulating material (such as plastics) to

prevent any electrical injuries from occurring to the users.  The 5v and 3.3v electronics will be

primarily housed on the PCB board, which itself is isolated from the buttons and screen that the

user may touch; even so, the voltage is sufficiently low that it does not pose a significant hazard

to the user.

In regards to the IEEE code of ethics, we are ensuring that we are going to follow the

code of conduct, specifically in Article I, number 1 [1]. Our device is going to keep the privacy of

others because we are going to only collect when a certain person has dispensed an item. Each

user is going to be stored as an ID, not by their names, so user information is going to be

ambiguous. Furthermore, the information is going to be held in the database, which is not

accessible by anyone. Another article that we will follow is on the idea that we are not going to

discriminate against others as stated in  Article II number 7 [1]. We are following this by

19



ensuring that we are not going to purposely hand out more supplies to certain individuals. Since

we are ensuring that everyone will have a quota on supplies, no one is going to have more than

the others, at least purposefully.

20



References

[1] “IEEE code of ethics,” IEEE, Jun-2020. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 10-Feb-2022].

[2] “CC3220R, CC3220S, and CC3220SF SimpleLinkTM Wi-Fi® Single-Chip Wireless MCU

Solutions,” Texas Instruments, May-2021. [Online]. Available:

https://www.ti.com/lit/ds/symlink/cc3220sf.pdf?ts=1644333019728&ref_url=https%253A%25

2F%252Fwww.ti.com%252Fproduct%252FCC3220SF . [Accessed: 17-Feb-2022].

[3] “Miniature Reflective Object Sensor” ON Semiconductors, 2019. [Online] Available:

https://www.onsemi.com/pdf/datasheet/qre1113-d.pdf . [Accessed: 17-Feb-2022].

[4] “LOW DROP FIXED AND ADJUSTABLE POSITIVE VOLTAGE REGULATORS”

STMicroelectronics, 2005. Available: https://www.sparkfun.com/datasheets/

Components/LD1117V33.pdf. [Accessed: 17-Feb-2022].

[5] M. #570786, “Sparkfun Line Sensor Breakout - QRE1113 (analog),” ROB-09453 - SparkFun

Electronics. [Online]. Available: https://www.sparkfun.com/products/9453. [Accessed:

24-Feb-2022].

21



Appendix A: Verification Table

Control System

Requirement Verification Verification

Status

1. The correct BUS

signal should be

emitted when a

product is

chosen;

1. Connecting leads from the BUS to a series of

LCDs on a breadboard and configuring the

LCD’s the different motors for the different

products and testing if sending the correct

signal will light up the LCD corresponding to

the correct motor.

Yes

2. The correct

products should

be displayed to

the LCD screen;

2. Tapping an ID card and adding various items

to the inventory (both dispensable and

indispensable) verifying that the correct

product is shown on the LCD screen.

Yes

3. An RFID signal

should be

received and

correctly

interpreted by the

microcontroller.

3. Scan an id-card through the RFID signal,

dispensing an object and verifying that the

database for the correct user is being updated.

Yes

4. When a product

is dispensed or

indispensable, the

microcontroller

should update the

inventory and

user database

correspondingly.

4. Put in a fake entry into the inventory database

assigned to a non-existent tray. An attempt to

dispense that item should fail after three

attempts, and the inventory should be cleared.

Yes

22



Sensing Subsystem

Requirement Verification Verification

Status

1. When motion is

detected by the

sensor, an active

signal should be

sent to the

microcontroller.

1. Try to dispense an object and verify that the

inventory of the object is being updated. To

test the circuitry if the correct signal is being

dispensed, consider below; attach 3 LCDs to

the input of the MUX as shown. If the correct

signal is being transmitted, the LCD should

signal 0 1 1 from top to bottom, where 0 is

“off” and 1 is “on.”

Yes

Motor Subsystem

Requirement Verification Verification

Status

1. When the correct

signal is delivered

across the BUS,

the motor should

activate for

exactly one cycle

on a rising edge.

1. One can artificially send a BUS signal by

connecting leads to the BUS entry ports of the

dispenser module and either connecting it to

3V power or to ground to represent a “1” or

“0” bit. Then, attach an LCD to the wires

connected to the motor; if the LCD illuminates

upon the correct signal being transmitted

across the BUS, the device is deemed to be

functional.

Yes

23



User Interface Subsystem

Requirement Verification Verification

Status

1. The correct

products should

be displayed to

the LCD screen

1. Adding products to the inventory and

verifying that the correct product is shown on

the LCD screen

Yes

2. An RFID signal

should be

received and

correctly

interpreted by the

microcontroller

2. Scan an id-card through the RFID signal, try

to dispense an object through that account

and verify through the database if it labels that

account as having dispense the object.

Yes

Power Subsystem

Requirement Verification Verification

Status

1. The power system

must take in 120V

and output a 5V

DC current to the

PCB

1. Use a voltmeter to detect the output voltage

from the power system and verify if it is 5V

Yes

2. The power system

must transform

the 5V DC current

and step it down

to a 3.3V DC

current

2. Use a voltmeter to detect the output voltage

from the step-down power converter and

verify that it is 3.3V

Yes

Database Subsystem

Requirement Verification Verification

Status

1. When a product is

dispensed or

indispensable, the

microcontroller

should update the

inventory and user

database

correspondingly.

1. Scan an id-card, try to dispense an object and

see if the database gets updated correctly.

Yes

24



Appendix B: Software Charts

Firmware Flowchart

Figure 11: Circuit Diagram of the Dispenser Module

25



Database Flowchart

Figure 12: Circuit Diagram of the Dispenser Module

Database Table

Figure 13: Circuit Diagram of the Dispenser Module

26



Appendix C: Firmware Code

Code to firmware: https://github.com/chunghwaa/Medical-Dispenser-Kit.git

#include <WiFi.h>

#include <HTTPClient.h>

#include <ArduinoJson.h>

#include <StreamUtils.h>

#include <LiquidCrystal_I2C.h>

#include <Wire.h>

#include <SPI.h>

#include <Adafruit_PN532.h>

#define PN532_SCK  (4)

#define PN532_MOSI (17)

#define PN532_SS   (5)

#define PN532_MISO (16)

#define PN532_IRQ   (2)

#define PN532_RESET (3)

int leftbit = 19;

int midbit = 18;

int rightbit = 15;

int bus1 = 13;

int bus2 = 27;

int bus3 = 14;

int bus4 = 12;

Adafruit_PN532 nfc(PN532_SCK, PN532_MISO, PN532_MOSI, PN532_SS);

int lcdColumns = 16;

int lcdRows = 2;

LiquidCrystal_I2C lcd(0x27, lcdColumns, lcdRows);

const char* ssid = "**********";

const char* password = "**********";

const char* serverName = "https://ec-board.herokuapp.com/user";

String geti_path = "https://ec-board.herokuapp.com/inventory?location=eceb&uid=";

27

https://github.com/chunghwaa/Medical-Dispenser-Kit.git


void setup() {

Serial.begin(9600);

WiFi.begin(ssid, password);

Serial.println("Connecting");

while(WiFi.status() != WL_CONNECTED) {

delay(500);

Serial.print(".");

}

Serial.println("");

Serial.print("Connected to WiFi network with IP Address: ");

Serial.println(WiFi.localIP());

nfc.begin();

uint32_t versiondata = nfc.getFirmwareVersion();

if (! versiondata) {

Serial.print("Didn't find PN53x board");

while (1); // halt

}

Serial.print("Found chip PN5"); Serial.println((versiondata>>24) & 0xFF, HEX);

Serial.print("Firmware ver. "); Serial.print((versiondata>>16) & 0xFF, DEC);

Serial.print('.'); Serial.println((versiondata>>8) & 0xFF, DEC);

nfc.SAMConfig();

lcd.init();

lcd.backlight();

pinMode(leftbit, INPUT);

pinMode(midbit, INPUT);

pinMode(rightbit, INPUT);

pinMode(bus1, OUTPUT);

pinMode(bus2, OUTPUT);

pinMode(bus3, OUTPUT);

pinMode(bus4, OUTPUT);

digitalWrite(bus1, LOW);

digitalWrite(bus2, LOW);

digitalWrite(bus3, LOW);

digitalWrite(bus4, LOW);

28



}

void loop() {

lcd.clear();

lcd.setCursor(0, 0);

lcd.print("WELCOME");

digitalWrite(bus1, LOW);

digitalWrite(bus2, LOW);

digitalWrite(bus3, LOW);

digitalWrite(bus4, LOW);

uint8_t success;

uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 };

uint8_t uidLength;

Serial.println("Waiting for a RFID Card");

success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength);

if (success) {

Serial.println("Found an ISO14443A card");

Serial.print("  UID Length: ");

Serial.print(uidLength, DEC);Serial.println(" bytes");

Serial.print("  UID Value: ");

nfc.PrintHex(uid, uidLength);

Serial.println("");

int uin = uid;

Serial.print(uin);

Serial.println("Posting JSON data to server...");

if (WiFi.status()== WL_CONNECTED) {

HTTPClient http;

http.begin("https://ec-board.herokuapp.com/user");

http.addHeader("Content-Type", "application/json");

StaticJsonDocument<200> doc;

doc["uid"] = uin;

String requestBody;

serializeJson(doc, requestBody);

int httpResponseCode = http.POST(requestBody);

29



if(httpResponseCode>0){

String response = http.getString();

Serial.println(httpResponseCode);

Serial.println(response);

}

else {

Serial.printf("Error");

}

}

else{

break;

}

String dataArr[20];

int counter = 0;

Serial.println("Getting JSON data from server...");

if (WiFi.status() == WL_CONNECTED) {

HTTPClient http;

Serial.println("getting inventory data");

geti_path = geti_path + uin;

Serial.println(geti_path);

http.begin(geti_path.c_str());

int httpResponseCode = http.GET();

if(httpResponseCode>0){

String response = http.getString();

Serial.println(httpResponseCode);

Serial.println(response);

int flag = 0;

String temp = "";

30



for (int i = 0; i < response.length(); i++){

char c = response[i];

if (c == ':'){

flag = 1;

continue;

}

if (flag == 1){

if (c == '}'){

temp[temp.length() - 1] = '\0';

temp.remove(0,1);

Serial.println(temp);

flag = 0;

dataArr[counter] = temp;

counter += 1;

temp = "";

}

else{

temp += c;

}

}

}

}

else {

Serial.printf("Error");

}

}

else {

Serial.println("WiFi Disconnected");

break;

}

if (counter == 0){

lcd.print("No Valid Items");

return;

}

String command = "";

int item_chosen = 0;

31



while(1){

command = "";

if (digitalRead(leftbit) == LOW){

if (digitalRead(midbit) == LOW){

if (digitalRead(rightbit) == HIGH){

command = "enter";

}

}

else{

if (digitalRead(rightbit) == LOW){

command = "right";

}

}

}

else{

if (digitalRead(midbit) == LOW){

if (digitalRead(rightbit) == LOW){

command = "left";

}

}

else{

if (digitalRead(rightbit) == HIGH){

command = "cancel";

}

}

}

lcd.setCursor(0, 0);

lcd.clear();

lcd.print(dataArr[item_chosen]);

if (command == "cancel"){

return;

}

else if (command == "enter"){

break;

}

else if (command == "left"){

if (item_chosen > 0){

item_chosen -= 1;

}

}

32



else if (command == "right"){

if (item_chosen < counter -1 ){

item_chosen += 1;

}

}

delay(100);

}

lcd.clear();

lcd.print("Dispensing");

Serial.println(dataArr[item_chosen]);

int item_flag = 0;

unsigned long startTime;

for (int i = 0; i < 3; i++){

startTime = millis();

if (dataArr[item_chosen] == "mask"){

digitalWrite(bus1, HIGH);

digitalWrite(bus2, LOW);

digitalWrite(bus3, LOW);

digitalWrite(bus4, HIGH);

}

else if (dataArr[item_chosen] == "advil"){

digitalWrite(bus1, LOW);

digitalWrite(bus2, LOW);

digitalWrite(bus3, LOW);

digitalWrite(bus4, HIGH);

}

else if (dataArr[item_chosen] == "pill"){

digitalWrite(bus1, LOW);

digitalWrite(bus2, LOW);

digitalWrite(bus3, HIGH);

digitalWrite(bus4, HIGH);

}

while(millis() - startTime <= 5000){

if ((digitalRead(leftbit) == HIGH && digitalRead(midbit)

== HIGH) && digitalRead(rightbit) == LOW){

item_flag = 1;

break;

}

33



}

if (item_flag == 1){

Serial.println("done");

break;

}

startTime = millis();

digitalWrite(bus1, LOW);

digitalWrite(bus2, LOW);

digitalWrite(bus3, LOW);

digitalWrite(bus4, LOW);

while(millis() - startTime <= 2000){

if ((digitalRead(leftbit) == HIGH && digitalRead(midbit) ==

HIGH) && digitalRead(rightbit) == LOW) {

item_flag = 1;

break;

}

}

if (item_flag == 1){

Serial.println("done");

break;

}

}

lcd.clear();

if (item_flag == 1){

lcd.print("Item Dispensed");

}

else{

lcd.print("Dispense Fail");

}

delay(1000);

Serial.println("Posting JSON data to server...");

34



if (WiFi.status()== WL_CONNECTED) {

HTTPClient http;

http.begin("https://ec-board.herokuapp.com/inventory");

http.addHeader("Content-Type", "application/json");

StaticJsonDocument<200> doc;

doc["uid"] = uin;

doc["flag"] = item_flag;

if (dataArr[item_chosen] == "pill"){

doc["item_name"] = "pill";

}

else if (dataArr[item_chosen] == "advil"){

doc["item_name"] = "advil";

}

else if (dataArr[item_chosen] == "mask"){

doc["item_name"] = "mask";

}

String requestBody;

serializeJson(doc, requestBody);

int httpResponseCode = http.POST(requestBody);

if(httpResponseCode>0){

String response = http.getString();

Serial.println(httpResponseCode);

Serial.println(response);

}

else {

Serial.printf("Error");

}

}

}

}

35



Appendix D: Database Code

Code to database code: https://github.com/chunghwaa/Medical-Dispenser-Kit.git

Code for user endpoint:

const router = require("express").Router();

const client = require("../db.js");

router.post("/", async (req, res) => {

const uid = req.body.uid;

console.log(uid);

try {

const new_user = await client.query(

"INSERT INTO UserData(uid) VALUES($1) ON CONFLICT DO NOTHING

RETURNING id",

[uid]

);

let id;

if (new_user.rows.length > 0) {

id = new_user.rows[0].id;

} else {

const user_id = await client.query(

"SELECT id FROM userdata WHERE uid=$1",

[uid]

);

id = user_id.rows[0].id;

}

const inventory_items = await client.query(

"SELECT id FROM inventory LIMIT 1;"

);

console.log(inventory_items.rows);

const new_useritem = await client.query(

"INSERT INTO usersinventory(inventory_id, quota, user_id)

VALUES($2, 2, $1), ($3, 2, $1), ($4, 2, $1)",

[

id,

inventory_items.rows[0].id,

36

https://github.com/chunghwaa/Medical-Dispenser-Kit.git


inventory_items.rows[0].id + 1,

inventory_items.rows[0].id + 2,

]

);

res.status(201).send("Created User");

} catch (err) {

res.status(400).send("Bad Request");

console.log(err.message);

}

});

module.exports = router;

37



Code for inventory endpoint:

const router = require("express").Router();

const client = require("../db.js");

router.get("/", async (req, res) => {

const location = req.query.location;

const uid = req.query.uid;

try {

const user_id = await client.query(

"SELECT id FROM userdata WHERE uid=$1;",

[uid]

);

const inventory = await client.query(

"SELECT item_name FROM inventory WHERE id IN (SELECT inventory_id

FROM UsersInventory WHERE quota > 0 AND user_id=$2) AND location=$1

AND stock > 0;",

[location, user_id.rows[0].id]

);

res.status(200).send(inventory.rows);

} catch (err) {

res.status(400).send("Bad Request");

console.log(err.message);

}

});

router.post("/", async (req, res) => {

const uid = req.body.uid;

const item_name = req.body.item_name;

const flag = req.body.flag;

console.log(uid);

console.log(item_name);

console.log(flag);

38



if (flag == 1){

try {

const user_id = await client.query(

"SELECT id FROM userdata WHERE uid=$1;",

[uid]

);

const item_taken = await client.query(

"UPDATE inventory SET stock = ( CASE WHEN (stock > 0) THEN

(stock - 1) ELSE 0 END) WHERE item_name = $1 RETURNING id;",

[item_name]

);

const inven_id = item_taken.rows[0].id;

const u_id = user_id.rows[0].id;

const quota_updated = await client.query(

"UPDATE usersinventory SET quota = ( CASE WHEN (quota > 0) THEN

(quota - 1) ELSE 0 END) WHERE inventory_id = $1 AND user_id = $2",

[inven_id, u_id]

);

res.status(201).send("Updated Inventory");

} catch (err) {

res.status(400).send("Bad Request");

console.log(err.message);

}

}

else{

try {

const item_taken = await client.query(

"UPDATE inventory SET stock = 0 WHERE item_name = $1;",

[item_name]

);

39



res.status(201).send("Updated Inventory");

} catch (err) {

res.status(400).send("Bad Request");

console.log(err.message);

}

}

});

module.exports = router;

40


