
 Bubble Tea Machine

 ECE 445 Final Report

 Team 30: Emily Hall, Saisita Maddirala, Tracy Tang

 Professor: Pengfei Song

 TA: Hojoon Ryu
 Spring 2022

 Abstract

 This report introduces an automated Bubble Tea Machine. This device

 allows users to order a drink from a button pad, and then it

 automatically dispenses the drink according to the user’s choices. The

 device uses food-safe components that make the final product (a bubble

 tea drink) safe to consume. This report contains the development of

 this machine and discusses the produced working model. Future work

 that could be done to better the product is discussed. Additionally,

 challenges met in creating the prototype are listed alongside

 modifications that could remedy these problems.

 Table of Contents

 Introduction 1
 1.1 Statement of Purpose 1
 1.2 Solution Overview 1
 1.3 Visual Aid 1
 1.4 Objectives & High-Level Requirements 3

 Design 4
 2.1 Block Diagram 4
 2.2 Subsystem Descriptions 4

 2.2.1 Power System 4
 2.2.2 I/O System 5
 2.2.3 Ingredient Dispensing System 5
 2.2.4 Control System 6

 2.3 Design Adjustments 7
 2.3.1 Load Cell 7
 2.3.2 Single Pump 8
 2.3.3 One LED No analog inputs 8

 Design Verification 9
 3.1 Power System 9
 3.2 I/O System 10
 3.3 Ingredient Dispensing System 12
 3.4 Control System 13

 Cost & Schedule 15
 4.1 Cost Analysis 15

 4.1.1 Labor 15
 4.1.2 Parts 15

 4.2 Schedule 16

 Conclusion 19
 5.1 Accomplishments 19
 5.2 Uncertainties 19
 5.3 Ethical Considerations 19
 5.4 Future Work 20

 References 21
 Appendix A: Requirements and Verification Tables 23
 Appendix B: Circuit Schematics 28
 Appendix C: Code 31

 Introduction
 1.1 Statement of Purpose

 This project aims to produce a durable, food-safe device for the

 storage and dispensing of bubble tea. Bubble tea is typically a

 mixture of black tea, milk, flavoring, and tapioca pearls (called boba

 or bubbles). Bubble tea shops are immensely popular on the UIUC

 campus. While incredibly tasty to drink, they are not cheap. An

 average person can expect to spend about $6 for their drink. This

 project aimed to provide a more affordable option for students around

 campus.

 1.2 Solution Overview

 The created prototype allows the user to select the type of drink

 desired. A blinking LED guides the user through the selection process

 and there are options for the size and the presence of boba in the

 drink. In further iterations of the design, these options could be

 extended to flavoring for tea, flavoring for boba pearls, and types of

 milk. Once selections are made, boba is dispensed by a valve

 controlled by a servo. The liquid is dispensed by a peristaltic pump.

 1.3 Visual Aid

 Figures 1 and 2 display the initial concept and the completed machine,

 respectively. Figure 1 shows the milk and tea in separate reservoirs

 as well as the boba being in a reservoir with a valve on the side;

 whereas in the finished product, the boba is held in a reservoir with

 a valve at the base of a funnel that acts as the reservoir.

 1

 Figure 1: Preliminarily Sketch of Device.

 2

 Figure 2: Completed Prototype.

 1.4 Objectives & High-Level Requirements

 ● The device must provide the user with many combinations of size

 and ingredients. We will have two size options (10 oz, and 14

 oz), and an option for no boba. Each combination will be allowed,

 giving the user 4 possible drink options.

 ● The device must be able to dispense pre-calculated amounts of

 liquid and boba into the cup.

 Boba Milk & Tea

 10 oz 35-42g 160-175g

 14 oz 35-42g 270-300g

 Table 1. Drink Size Measurements.

 ● The device must start/cancel under the appropriate conditions. It

 should start only if the “start” button is pressed. The machine

 should stop the order if the “cancel” button is pressed.

 3

 Design

 2.1 Block Diagram

 Figure 3: Block Diagram

 2.2 Subsystem Descriptions

 2.2.1 Power System

 The prototype requires a 5V power source and a 12V power source.

 The device uses a power adapter to step down from 120V (from the

 4

 grid) to 12V. The system utilizes a 5V linear voltage regulator

 to step down from 12V to 5V.

 2.2.2 I/O System

 The input and output system consists of an LED and 6 buttons.

 These 6 buttons consist of two size options: 10oz and 14oz,

 Yes/No options for Boba, Start Drink, and Restart Order. The

 buttons and the LED require 5V. The signals from the buttons are

 passed to the microcontroller. The LED flashes at different rates

 as the user moves through the button options. To signal that the

 machine is ready to take a new order, the button flashes slowly.

 Once the user has made a size selection it flashes more quickly.

 After the user makes a boba selection, it flashes very quickly to

 signify that the user should press “start”. If at any point the

 user selects “restart”, the LED flashes slowly indicating that a

 size selection should be made.

 2.2.3 Ingredient Dispensing System

 The liquid ingredients are dispensed with a peristaltic pump. The

 liquid is held in a reservoir made from a plastic bottle that is

 turned upside down. The cap of the bottle has been affixed with a

 watertight seal around a silicon tube and the liquid is pumped

 through the tube. The tubes are food-safe.

 The tapioca pearls were more difficult to dispense. To maintain a

 pleasant texture they need to be covered in syrup. While insuring

 their texture from becoming mushy, the syrup ensures that they

 stick to one another. The solution to dispensing the boba was to

 hold them in enough syrup that we were essentially dispensing a

 liquid. A valve at the bottom of the funnel opened for 1 second.

 This allowed about 1-2oz of boba and syrup to escape into the

 cup.

 5

 2.2.4 Control System

 An ATmega328p microcontroller is the heart of the control system.

 Figure 4 depicts the state machine that the control system passes

 through as it receives input from the user. Table 2 describes the

 states, their inputs, and their outputs. Once powered on, the

 machine begins in state 1. This is the idle state. It will be in

 this state anytime it is not taking input from a user or making a

 drink. Once a user begins an order by selecting a drink size, the

 machine moves to state 2, waiting on a boba choice. Once a boba

 option is selected it moves into state 3. In both states 2 and 3,

 if “restart” is pressed, the system will return to the idle

 state. If the machine is in state 3 and “start” is pressed, the

 system will begin to prepare a drink. Once completed the machine

 will return to the idle state.

 Figure 4: State Machine

 State Description Inputs accepted Outputs

 1 - Machine is powered

 on

 - Ready for size

 - Size

 choice

 - Cancel

 - Size LEDs

 - Cancel LED

 6

 choice

 2 - Ready for boba

 choice

 - Ready for cancel

 button press

 - Boba

 choice

 - Cancel

 - Boba LEDs

 - Cancel LED

 3 - Ready for start

 button press

 - Ready for cancel

 button press

 - Start

 button

 press

 - Cancel

 - Start LED

 - Cancel LED

 4 - Dispense boba,

 milk, and tea

 _____________ - Boba motor

 - Milk pump

 - Tea pump

 Table 2: Control System State Descriptions

 2.3 Design Adjustments

 2.3.1 Load Cell

 The initial design of the Bubble Tea Machine included a load cell

 that was used to measure the amount of boba and liquid dispensed

 into the cup. This element of the design was not implemented into

 the current prototype as there was a communication issue between

 the load cell amplifier and the ATmega328p. The amplifier (Hx711)

 outputs 24 bits of 2’s complement numbers. Data about the weight

 placed on the load cell is outputted from the amplifier serially.

 The microcontroller must be able to read this data from the Hx711

 under the right conditions. The data is outputted when the DOUT

 (Figure 5) goes low (meaning “data is ready for retrieval” [2]).

 There should also be 25-27 clock pulses sent to the PD_SCK pin

 (Figure 5). This is so that the 24 bits can shift out. We

 manually tried to get these conditions met. We placed condition

 statements to make sure DOUT goes low and manually sent 27 clock

 pulses (Figure 28 of appendix C)[9]. These condition statements

 were connected to an LED that should turn on once all conditions

 7

 are met, indicating that the bits of data were all sent to the

 microcontroller. However, the LED never went on. We think there

 needs to be more initialization that may have needed to be done

 to connect the amplifier to the microcontroller. Perhaps the

 Hx711 needed to be powered on and off first, maybe a different

 library needed to be installed, etc.

 Figure 5. Hx711 Schematic

 2.3.2 Single Pump

 Furthermore, the preliminary designs had separate liquid

 dispensing mechanisms for the milk, tea, and flavors of syrup. In

 the prototype, only a single liquid dispenser was used. This is

 because a single pump requires a whole h-bridge chip for current

 to be dissipated evenly across the chip. This would significantly

 crowd the printed circuit board, and also be redundant. A single

 liquid dispenser demonstrates the feasibility of dispensing

 additional liquids.

 2.3.3 One LED No analog inputs

 Finally, the design included an LED for each button. These were

 supposed to help guide the user through using the button pad. In

 8

 order to have enough pins on the microcontroller to have these 6

 outputs meant we needed to use the analog inputs to take input

 from the buttons. This greatly complicated the I/O system.

 Troubleshooting the analog inputs and the buttons became a

 bottleneck in designing the system so we chose to put it aside.

 The single LED on our current prototype is sufficient to guide a

 user through the button pad.

 Design Verification
 3.1 Power System

 The power system needs to provide power within a threshold so that all

 the parts run (but also do not burn them out). We initially built our

 power system on a breadboard and only once we were sure that the

 voltage was within our threshold (refer to Table 1 in Appendix A) did

 we test the power system on our PCB. We double-checked that the

 incoming voltage (from the power adapter) is 12v (Figure 7) and that

 the regulator steps down the voltage to 5v (Figure 8).

 Figure 6. Power System on Breadboard

 9

 Figure 7. Incoming Voltage Figure 8. Stepped Down Voltage

 3.2 I/O System

 We arguably had the most immediate trouble with the I/O system.

 Getting the buttons to react when they were pressed was really

 difficult because a lot of the buttons were set as analog pins on our

 microcontroller. However, after switching our buttons to digital pins,

 they reacted better. Again, we tested our buttons on the breadboard

 first (Figure 9). Once the LEDs reacted to the button presses

 consistently (with negligible delay), we connected the button pad to

 the PCB. Figures 10 and 11 show the button signal when they were

 connected to the analog and digital pins on the microcontroller

 respectively. Once all the buttons were moved to the digital pins, the

 button pad worked effectively and all of our requirements were met

 (refer to table 2 in appendix A).

 10

 Figure 9. Button Pad and LED on Breadboard

 Figure 10. Button Analog Input Figure 11. Button Digital Input

 11

 3.3 Ingredient Dispensing System

 Our group also faced some challenges with the ingredient dispensers.

 Starting with the liquid pumps, the H-bridge produced a little

 conflict. As usual, we tested the H-bridge on a breadboard. As

 mentioned before, the H-bridge could not evenly distribute the current

 across the chip, [8] so we decided to eliminate the extra, redundant

 pump. However, our requirements regarding the H-bridge were still met

 (refer to table 3 in appendix A). The pump for the combined milk and

 tea dispenser still ran and there was an accurate PWM signal sent to

 the H-bridge (Figure 12).

 The servo motor that releases the boba was initially supposed to be

 powered by a servo motor trigger. This trigger has 3 potentiometers

 that set the positions of where the servo stops. However, we

 accidentally burnt out the trigger so we ended up using a servo

 library on the Arduino IDE. The library allowed us to set the time and

 positions the servo should move to (Figure 23, 27 of appendix C).

 Although we did not use a servo trigger, we were still able to power

 and control the servo boba motor, checking off another requirement.

 Figure 12. H-Bridge PWM Signal Figure 13. Servo PWM Signal

 12

 Figure 14. Servo controlled with button pad

 3.4 Control System

 The microcontroller that we used (ATMega328P) proved to be extremely

 helpful in integrating each of the parts together. The code that is

 programmed onto the microcontroller (Figures 25, 26 of appendix C)

 assures that requirements 1 and 2 are met (Table 4 of appendix A).

 Looking at the state diagram that the code goes through (Figure 4), it

 is set so that the machine will not start making the drink until the

 “start” button is pressed. In addition, the “cancel” button can be

 pressed at any other state except when the “start” button is pressed.

 This is clear with the LED output as well.

 With the load cell, however, we faced a lot of problems. The 1kg load

 cell that we used recognizes changes in weight based on the

 differences in resistance (output in volts). However, these voltages

 have very negligible differences, requiring us to use an amplifier.

 The amplifier had a tough time communicating with the microcontroller

 (as mentioned before) so we, unfortunately, could not configure the

 13

 load cell within the time frame to complete this project. This is the

 only requirement/feature that we could not implement. Although we

 could not utilize the load cell to control when each dispenser would

 release their respective ingredients, we were still able to implement

 this functionality through time delays in our code. Figure 15 shows

 the number of ounces produced with the time that the pumps are on (in

 seconds). Using this data, we ended up leaving the pumps on for 143

 seconds for a 10 oz drink and 258 seconds for a 14 oz drink. The boba

 motor is a bit less consistent, but we decided to leave the servo open

 for 1 second. This releases about 1-2 ounces of boba with the right

 amount of syrup and agitation. With these delays in time, the weight

 of the final drink is pretty close to the desired ounces (Figure 16).

 Figure 15. Plot Showing Number of Liquid Ounces with Number of Seconds

 14

 Figure 16. Weight of 10 oz Drink

 Cost & Schedule
 4.1 Cost Analysis
 4.1.1 Labor

 According to the Illini Success Annual Report 2019-2020, a

 Computer Engineer would make an average of $99,145. This leaves us

 with an hourly wage of $47.67. Assuming we each work around 14 hours a

 week, with 8 weeks remaining (112 total hours) and using the formula

 ($/hour) * 2.5 * hours to complete, the total labor cost of a computer

 engineer would be $13,347.60. Each of us would average around

 $5,339.04 for labor costs.
 4.1.2 Parts

 Module Product ID Price per Unit Quantity Price

 12V Power

 Adapter

 1470-3113-ND $11.66 1 $11.66

 5v Voltage

 Regulator

 MC7805CTG-ND $0.65 3 $1.95

 15

 ATMega328

 Microcontroller

 Bootloader Uno

 X000048 $5.87 2 $11.74

 Peristaltic

 Pumps

 1150 $24.95 2 $49.90

 Silicone Tubing 3659 $3.50 1 $3.50

 1kg Load Cell

 Sensor

 1528-4540-ND $3.95 1 $3.95

 500g Load Cell

 Sensor

 1568-1899-ND $11.25 1 $11.25

 HX711 Amplifier 1568-1436-ND $9.95 1 $9.95

 Load Sensor
 Combinator

 474-BOB-13878
 (Mouser)

 $1.95 1 $1.95

 H-Bridge Motor Bridgold-31 $8.99 1 $8.99

 Servo Motor 900-00005-ND $16.72 1 $16.72

 WIG - 13118 Servo
 Motor Trigger

 1568-1363-ND $17.95 1 $17.95

 Total:

 $149.51

 4.2 Schedule

 Week Tasks Emily Saisita Tracy

 2/21 Design Doc

 Check, Finalize

 + Order Parts

 Complete

 Design

 Document,

 Complete

 Design

 Document,

 Complete

 Design

 Document,

 16

 Draft+Finalize

 PCB layout

 Draft+Finalize

 PCB layout

 Draft+Finalize

 PCB layout

 2/28 Design Review,

 PCB Board

 Review

 Complete

 Design Review,

 Finalize parts

 order

 Complete

 Design Review,

 Finalize PCB

 layout and get

 board approved

 (first-round

 order)

 Complete

 Design Review,

 Finalize PCB

 layout and get

 board approved

 (first-round

 order)

 3/7 Order PCB and

 request machine

 shop work

 Buy components

 for the build

 of the design

 (mechanical

 components),

 Test load

 sensor output

 (reference

 voltage) to

 determine

 resistor

 values, bring

 project to the

 machine shop

 (if we’ve

 received

 parts)

 Buy components

 for the build

 of the design

 (mechanical

 components),

 Test load

 sensor output

 (reference

 voltage) to

 determine

 resistor

 values, bring

 project to the

 machine shop

 (if we’ve

 received

 parts)

 Buy components

 for the build

 of the design

 (mechanical

 components),

 Test load

 sensor output

 (reference

 voltage) to

 determine

 resistor

 values, bring

 project to the

 machine shop

 (if we’ve

 received

 parts)

 3/14 Spring Break - - - - - - - - - - - - - - - - - - - - -

 3/21 Finish

 Soldering PCB

 and write out

 microcontroller

 Write out

 microcontrolle

 r code, work

 on individual

 Solder PCB,

 work on

 individual

 progress

 Write out

 microcontrolle

 r code, Help

 Tracy Solder

 17

 code progress

 report

 report PCB, work on

 individual

 progress

 report

 3/28 Individual

 Progress

 Reports Due

 Test input and

 output from

 load cell

 Test output to

 the servo

 motor. Make

 sure servo

 motor and

 motor trigger

 powers the

 servo

 appropriately.

 Test output to

 pumps. Test

 pumps with

 load cell

 sensor and

 check that the

 motor driver

 powers the

 motor

 appropriately.

 4/4 Test all

 components

 Test all

 inputs and

 outputs

 together

 Test all

 inputs and

 outputs

 together

 Test all

 inputs and

 outputs

 together

 4/11 Complete all

 tests

 Finish

 testing,

 create mock

 demo

 Finish

 testing,

 create mock

 demo

 Finish

 testing,

 create mock

 demo

 4/18 Mock Demos Mock Demo,

 begin final

 demonstration

 (last-minute

 touch-ups)

 Mock Demo,

 begin final

 demonstration

 (last-minute

 touch-ups)

 Mock Demo,

 begin final

 demonstration

 (last-minute

 touch-ups)

 4/25 Demonstrations Final

 demonstration,

 start working

 Final

 demonstration,

 start working

 Final

 demonstration,

 start working

 18

 on final paper on final paper on final paper

 5/2 Final Paper Due Finish Final

 Paper, add

 last-minute

 touch-ups

 Finish Final

 Paper, add

 last-minute

 touch-ups

 Finish Final

 Paper, add

 last-minute

 touch-ups

 Conclusion
 5.1 Accomplishments

 The prototype created throughout this project was ultimately

 successful: it automated the Bubble Tea making process. The pumps

 accurately and reliably dispensed liquid according to our objectives.

 With marginal agitation, the boba could also be reliably dispensed.

 The control system stably moved through the states. The button presses

 were correctly ignored or registered by the microcontroller according

 to the system’s current state.

 5.2 Uncertainties

 The primary uncertainty with the design is dispensing the boba. If the

 texture of the syrup is too thin or thick, or a single pearl gets

 jammed, the amount of boba that is dispensed can vary wildly.

 5.3 Ethical Considerations

 The primary ethical consideration in developing this prototype was

 food safety. The food remains in sealed and food-safe containers while

 inside the machine. The silicon tubing is food-safe. Additionally,

 after every use, we advise that warm, soapy water is run through the

 machine to clear any food particles that might allow mold to grow

 within the device.

 19

 5.4 Future Work

 This device has the potential to be catered to many different

 environments. For example, adding a payment system would allow this

 device to act as a Bubble Tea vending machine. However, several

 elements would require refinement before it would be useful.

 Dispensing the boba remains the most significant issue. In our

 testing, we discovered that agitating the boba gently while the valve

 is open reliably moves the boba through the valve. In the future, a

 small motor could be placed above the boba reservoir to stir the boba

 whenever the valve is open. Furthermore, implementing the load cell

 would greatly aid in the boba problem. The feedback from the scale

 would allow the system to wait until enough boba has been dispensed.

 With the current method of timing, the amount of boba dispensed can

 vary.

 Additionally, adding options for other types of milk, and offering a

 wide variety of syrups would enhance the consumer appeal of the

 machine. This would require adding a system to maintain a cool

 temperature for the milk.

 20

 References

 [1] Quadruple half-H drivers (rev. C) - adafruit industries . (n.d.).

 Retrieved March 17, 2022, from

 https://cdn-shop.adafruit.com/datasheets/l293d.pdf

 [2] Description features AVDD . (n.d.). Retrieved March 18, 2022, from

 https://cdn.sparkfun.com/assets/b/f/5/a/e/hx711F_EN.pdf

 [3] VCC: 2.7-5.5V VBG = 1.25V. (n.d.). Retrieved April 15, 2022, from

 https://cdn.sparkfun.com/assets/f/5/5/b/c/SparkFun_HX711_Load_Cell.pdf

 [4] IEEE Code of Ethics. IEEE Code of Ethics. (n.d.). Retrieved February

 02, 2022, from https://www.ieee.org/about/corporate/governance/p7-8.html

 [5] Direct PIN IO (Arduino) | Marc’s Blog. (n.d.). Retrieved April 2,

 2022, from

 http://blog.marcsymonds.me/arduino-code/direct-pin-io-arduino/

 [6] Servo Motor Basics with Arduino | Arduino Documentation. (n.d.).

 Docs.arduino.cc. Retrieved April 23, 2022, from

 https://docs.arduino.cc/learn/electronics/servo-motors

 [7] Blink. (n.d.). Www.arduino.cc. Retrieved April 13, 2022, from

 https://www.arduino.cc/en/Tutorial/BuiltInExamples/Blink

 [8] Can L293D really be put in parallel? (2015, July 28). Arduino Forum.

 Retrieved April 17, 2022, from

 https://forum.arduino.cc/t/can-l293d-really-be-put-in-parallel/326439

 [9] What kind of protocol does the HX711 use? (2018, November 24).

 Arduino Forum. Retrieved April 20, 2022, from

 21

https://cdn-shop.adafruit.com/datasheets/l293d.pdf
https://cdn.sparkfun.com/assets/b/f/5/a/e/hx711F_EN.pdf
https://cdn.sparkfun.com/assets/f/5/5/b/c/SparkFun_HX711_Load_Cell.pdf
https://www.ieee.org/about/corporate/governance/p7-8.html
http://blog.marcsymonds.me/arduino-code/direct-pin-io-arduino/
https://docs.arduino.cc/learn/electronics/servo-motors
https://www.arduino.cc/en/Tutorial/BuiltInExamples/Blink
https://forum.arduino.cc/t/can-l293d-really-be-put-in-parallel/326439

 https://forum.arduino.cc/t/what-kind-of-protocol-does-the-hx711-use/4024

 74/5

 [10] How to read and display 24 bit two’s compliment in decimal form.

 (2013, October 31). Arduino Forum. Retrieved April 22, 2022, from

 https://forum.arduino.cc/t/how-to-read-and-display-24-bit-twos-complimen

 t-in-decimal-form/191457/3

 [11] USB - cdn.sparkfun.com. (n.d.). Retrieved April 18, 2022, from

 https://cdn.sparkfun.com/assets/0/4/5/1/9/SparkFun_openScale_schematic.p

 df

 [12] Fluctuation value at loadcell 10000kg + hx711. (2021, January 4).

 Arduino Forum. Retrieved April 23, 2022, from

 https://forum.arduino.cc/t/fluctuation-value-at-loadcell-10000kg-hx711/6

 89238/6

 22

https://forum.arduino.cc/t/what-kind-of-protocol-does-the-hx711-use/402474/5
https://forum.arduino.cc/t/what-kind-of-protocol-does-the-hx711-use/402474/5
https://forum.arduino.cc/t/how-to-read-and-display-24-bit-twos-compliment-in-decimal-form/191457/3
https://forum.arduino.cc/t/how-to-read-and-display-24-bit-twos-compliment-in-decimal-form/191457/3
https://cdn.sparkfun.com/assets/0/4/5/1/9/SparkFun_openScale_schematic.pdf
https://cdn.sparkfun.com/assets/0/4/5/1/9/SparkFun_openScale_schematic.pdf
https://forum.arduino.cc/t/fluctuation-value-at-loadcell-10000kg-hx711/689238/6
https://forum.arduino.cc/t/fluctuation-value-at-loadcell-10000kg-hx711/689238/6

 Appendix A: Requirements and Verification Tables

 Requirement Verification

 1. Bubble Tea Machine

 must plug into the

 wall and receive

 12VDC ± 5% from the

 power supply.

 1A. Cut off the end of the power supply and

 use an oscilloscope to check that the

 output voltage of the power supply stays

 within 5% of 12V.

 2. Voltage regulator

 must send 5v ±

 (1.5-4)% to the

 microcontroller,

 Servo Motor, and

 load cell

 sensor/Hx711

 amplifier.

 2A. Voltage regulator must send 5v ±

 (1.5-4)% to the microcontroller, Servo

 Motor, and load cell sensor/Hx711

 amplifier.

 3. Voltage regulator

 must supply 150-300

 mA to Peristaltic

 Pumps and

 microcontroller.

 3A. Vin in Figure 17.

 3B. Change R1 from Figure 17 so that the

 output current is the appropriate amount

 for each component.

 3C. Probe Vo from figure 17 and measure

 current with the adjusted resistors to

 ensure the current supplied is 150-300 mA.

 Table 1. Power System RV Table

 Requirement Verification

 23

 1. The push-button

 switches must send

 accurate signals to

 the appropriate

 ingredient

 containers.

 1A. Connect the start signal from figure 18

 (J19) to an oscilloscope and the start

 signal (pin 28) from figure 19 to a

 different channel on the oscilloscope.

 Check that these signals match.

 1B. Check that the start_led from figure 19

 turns on.

 1C. Repeat 1A. For the 10oz button (J14),

 and the 14oz button (J16) from figure 18 to

 their respective signals/LEDs from figure

 19.

 2. The push-button

 switches receive

 40-60 mA of

 current.

 2A. Connect the 5V for the buttons to a

 100Ω potentiometer.

 2B. Change the potentiometer until it

 reaches 40-60 mA.

 2C. Measure the current with a multimeter.

 Table 2. Button Pad RV Table

 Requirement Verification

 1. Servo motor must

 run when powered by

 the servo trigger.

 1A. Connect servo motor output from servo

 trigger (figure 20) to a multimeter.

 1B. Check that 5v±0.25 is being supplied.

 24

 2. The pumps (DC

 motor) must run

 when powered by the

 H-bridge.

 2A. Connect Vcc2 (pin 8) from figure 21 to

 a multimeter.

 2B. Check that 12v±0.25 is being supplied.

 3. The Servo motor

 trigger should

 leave the door of

 the servo motor

 open for 7-10

 seconds for the

 boba to be dropped.

 3A. Connect the out pin of the servo motor

 trigger pin to the oscilloscope.

 3B. Adjust the time potentiometer

 (potentiometer C) until open for 7-10

 seconds.

 3C. Ensure that the servo motor does not

 shut before the completion of seconds.

 4. PWM signal is

 supplied to

 H-bridge accurately

 (circuit works).

 4A. Connect PWM signal from figure 21 to

 oscilloscope.

 4B. Check that the wave we see on an

 oscilloscope is an accurate PWM wave.

 4C. Connect PWM signal (en1 in h-bridge)

 from figure 21.

 4D. Check that the wave we see on an

 oscilloscope is an accurate PWM wave.

 5. Servo motor

 receives 4-6 mA.

 5A. Connect the 5V for the Servo Motor to a

 100Ω potentiometer.

 5B. Change the potentiometer until it

 reaches 4-6 mA.

 5C. Measure the current with a multimeter.

 25

 6. Peristaltic Pumps

 receive 200-300 mA.

 6A. Connect the 5V for the Peristaltic

 Pumps to a 100Ω potentiometer.

 6B. Change the potentiometer until it

 reaches 200-300 mA.

 6C. Measure the current with a multimeter.

 Table 3. Ingredient Dispenser RV Table

 Requirement Verification

 1. Bubble tea machine

 should only start

 making the drink

 when the “start” is

 pressed.

 1A. Connect boba_motor (pin3) signal

 (figure 19) to the oscilloscope.

 1B. Ensure the signal is high when the

 start signal (figure 19) is high.

 2. Bubble Tea Machine

 should ignore the

 “cancel” button

 once “start” has

 been pressed.

 2A. Connect cancel_button (figure 18) to an

 oscilloscope.

 2B. Connect the start_button (figure 18) to

 a different channel on the oscilloscope.

 2C. Connect the cancel_led signal (figure

 19) to a different channel on the

 oscilloscope.

 2D. Ensure that the cancel_button signal is

 only high when the start signal is low and

 the cancel_led signal is high.

 Alternatively, we can make sure that the

 26

 cancel_led is not on when the start_button

 is high and the cancel_led is on when the

 start_button is low.

 3. Load Cell Sensor

 stays within

 appropriate

 voltages for each

 drink size. 10oz:

 (3mV±.75), 14oz:

 (3.9mV±.75)

 3A. Hook up the green and white wires of

 the load cell sensor to a multimeter.

 3B. Verify that the voltage difference is

 the appropriate amount for each ingredient

 and drink size. 10oz: (3mV±.75), 14oz:

 (3.9mV±.75)

 4. The microcontroller

 receives 100-150mA.

 4A. Connect the 5V for the microcontroller

 to a 100Ω potentiometer.

 4B. Change the potentiometer until it

 reaches 100-150 mA.

 4C. Measure the current with a multimeter.

 Table 4. Control System RV Table

 27

 Appendix B: Circuit Schematics

 Figure 17. Voltage Regulator Schematic

 Figure 18. Button Pad Schematic

 28

 Figure 19. Control System Schematic

 Figure 20. Servo Trigger Pinout

 29

 Figure 21. Ingredient Dispenser Schematic

 Figure 22. Overall Schematic

 30

 Appendix C: Code

 Figure 23. Setup Code

 31

 Figure 24. Code for Size State

 32

 Figure 25. Code for Boba State

 Figure 26. Code for Start State

 33

 Figure 27. Code to Dispense Ingredients

 Figure 28. Code to Manually Connect Hx711 to MCU

 34

