Bubble Tea Machine
ECE 445 Final Report

Team 30: Emily Hall, Saisita Maddirala, Tracy Tang
Professor: Pengfei Song
TA: Hojoon Ryu
Spring 2022

Abstract

This report introduces an automated Bubble Tea Machine. This device
allows users to order a drink from a button pad, and then it
automatically dispenses the drink according to the user’'s choices. The
device uses food-safe components that make the final product (a bubble
tea drink) safe to consume. This report contains the development of
this machine and discusses the produced working model. Future work
that could be done to better the product is discussed. Additionally,
challenges met in creating the prototype are listed alongside
modifications that could remedy these problems.

Table of Contents

Introduction
1.1 Statement of Purpose
1.2 Solution Overview
1.3 Visual Aid
1.4 Objectives & High-Level Requirements

Design

2.1 Block Diagram

2.2 Subsystem Descriptions
2.2.1 Power System
2.2.2 I/0 System
2.2.3 Ingredient Dispensing System
2.2.4 Control System

2.3 Design Adjustments
2.3.1 Load Cell
2.3.2 Single Pump
2.3.3 One LED No analog inputs

Design Verification
3.1 Power System
I/0 System
Ingredient Dispensing System

w w w
A WN

Control System

Cost & Schedule
4.1 Cost Analysis
4.1.1 Labor
4.1.2 Parts
4.2 Schedule

Conclusion
5.1 Accomplishments
5.2 Uncertainties
5.3 Ethical Considerations
5.4 Future Work

References

Appendix A: Requirements and Verification Tables

Appendix B: Circuit Schematics
Appendix C: Code

W = = A m

0 0 N No ook~ b b~ D

10
12
13

15
15
15
15
16

19
19
19
19
20

21
23
28
31

Introduction

1.1 Statement of Purpose

This project aims to produce a durable, food-safe device for the
storage and dispensing of bubble tea. Bubble tea is typically a
mixture of black tea, milk, flavoring, and tapioca pearls (called boba
or bubbles). Bubble tea shops are immensely popular on the UIUC
campus. While incredibly tasty to drink, they are not cheap. An
average person can expect to spend about $6 for their drink. This
project aimed to provide a more affordable option for students around
campus.

1.2 Solution Overview

The created prototype allows the user to select the type of drink
desired. A blinking LED guides the user through the selection process
and there are options for the size and the presence of boba in the
drink. In further iterations of the design, these options could be
extended to flavoring for tea, flavoring for boba pearls, and types of
milk. Once selections are made, boba is dispensed by a valve
controlled by a servo. The liquid is dispensed by a peristaltic pump.
1.3 Visual Aid

Figures 1 and 2 display the initial concept and the completed machine,
respectively. Figure 1 shows the milk and tea in separate reservoirs
as well as the boba being in a reservoir with a valve on the side;
whereas in the finished product, the boba is held in a reservoir with

a valve at the base of a funnel that acts as the reservoir.

y penistatkic pump

kv looord

—_— T
Celect Size:

O 0O

100t yet

Boba:
% ne

L@@

Figure 1: Preliminarily Sketch of Device.

Figure 2: Completed Prototype.
1.4 Objectives & High-Level Requirements

e The device must provide the user with many combinations of size
and ingredients. We will have two size options (10 oz, and 14
oz), and an option for no boba. Each combination will be allowed,
giving the user 4 possible drink options.

e The device must be able to dispense pre-calculated amounts of
liquid and boba into the cup.

Boba Milk & Tea
10 oz 35-42¢ 160-175¢g
14 oz 35-42¢g 270-3009g

Table 1. Drink Size Measurements.

e The device must start/cancel under the appropriate conditions. It
should start only if the “start” button is pressed. The machine
should stop the order if the “cancel” button is pressed.

Design
2.1 Block Diagram

Power System

12V power
8 adapter [°
120 V
outlet ¢
5 volt
regulator
¥
Button Pad Ingredient Dispenser
¥ ¥
—
Push-
button UI LED Pumps Boba
motor
switches
Y F F 4
LED onsoff Pump /motor onsoff
~ — Power (12 V)

— Power (5 V)

User Selections = Data
Microcontroller

Control System

Figure 3: Block Diagram

2.2 Subsystem Descriptions

2.2.1 Power System

The prototype requires a 5V power source and a 12V power source.

The device uses a power adapter to step down from 120V (from the

grid) to 12V. The system utilizes a 5V linear voltage regulator
to step down from 12V to 5V.

2.2.2 I/0 System

The input and output system consists of an LED and 6 buttons.
These 6 buttons consist of two size options: 100z and 140z,
Yes/No options for Boba, Start Drink, and Restart Order. The
buttons and the LED require 5V. The signals from the buttons are
passed to the microcontroller. The LED flashes at different rates
as the user moves through the button options. To signal that the
machine is ready to take a new order, the button flashes slowly.
Once the user has made a size selection it flashes more quickly.
After the user makes a boba selection, it flashes very quickly to
signify that the user should press “start”. If at any point the
user selects “restart”, the LED flashes slowly indicating that a

size selection should be made.

2.2.3 Ingredient Dispensing System

The liquid ingredients are dispensed with a peristaltic pump. The
liquid is held in a reservoir made from a plastic bottle that is
turned upside down. The cap of the bottle has been affixed with a
watertight seal around a silicon tube and the liquid is pumped
through the tube. The tubes are food-safe.

The tapioca pearls were more difficult to dispense. To maintain a
pleasant texture they need to be covered in syrup. While insuring
their texture from becoming mushy, the syrup ensures that they
stick to one another. The solution to dispensing the boba was to
hold them in enough syrup that we were essentially dispensing a
liquid. A valve at the bottom of the funnel opened for 1 second.
This allowed about 1-20z of boba and syrup to escape into the

cup.

2.2.4 Control System

An ATmega328p microcontroller is the heart of the control system.
Figure 4 depicts the state machine that the control system passes
through as it receives input from the user. Table 2 describes the
states, their inputs, and their outputs. Once powered on, the
machine begins in state 1. This is the idle state. It will be in
this state anytime it is not taking input from a user or making a
drink. Once a user begins an order by selecting a drink size, the
machine moves to state 2, waiting on a boba choice. Once a boba
option is selected it moves into state 3. In both states 2 and 3,
if “restart” is pressed, the system will return to the idle
state. If the machine is in state 3 and “start” is pressed, the
system will begin to prepare a drink. Once completed the machine
will return to the idle state.

cancel

cancel

boba choice

Figure 4: State Machine

State |Description Inputs accepted |[Outputs
1 - Machine is powered - Size - Size LEDs
on choice - Cancel LED
- Ready for size - Cancel

choice

2 - Ready for boba - Boba - Boba LEDs
choice choice - Cancel LED
- Ready for cancel - Cancel

button press

3 - Ready for start - Start - Start LED
button press button - Cancel LED
- Ready for cancel press
button press - Cancel
4 - Dispense boba, | _____________ - Boba motor
milk, and tea - Milk pump
- Tea pump

Table 2: Control System State Descriptions

2.3 Design Adjustments
2.3.1 Load Cell

The initial design of the Bubble Tea Machine included a load cell
that was used to measure the amount of boba and liquid dispensed
into the cup. This element of the design was not implemented into
the current prototype as there was a communication issue between
the load cell amplifier and the ATmega328p. The amplifier (Hx711)
outputs 24 bits of 2’'s complement numbers. Data about the weight
placed on the load cell is outputted from the amplifier serially.
The microcontroller must be able to read this data from the Hx711
under the right conditions. The data is outputted when the DOUT
(Figure 5) goes low (meaning “data is ready for retrieval” [2]).
There should also be 25-27 clock pulses sent to the PD_SCK pin
(Figure 5). This is so that the 24 bits can shift out. We
manually tried to get these conditions met. We placed condition
statements to make sure DOUT goes low and manually sent 27 clock
pulses (Figure 28 of appendix C)[9]. These condition statements

were connected to an LED that should turn on once all conditions

are met, indicating that the bits of data were all sent to the
microcontroller. However, the LED never went on. We think there
needs to be more initialization that may have needed to be done
to connect the amplifier to the microcontroller. Perhaps the
Hx711 needed to be powered on and off first, maybe a different
library needed to be installed, etc.

VDD VCC VCC

j_ca :LCS ics vee
In,m: In,m: Ilomt vee Iy

VBG =1.25V
Common Load GND GND GND

Q1
Cell Colors: AVDD = VBG(R1+R2)/IR2 MMBT4403
JP4 L1

VCC

Red E+ 5 DD . Y'Y VSUP DVDD 1 Default: Closed - Data rate set to 10SPS
Black E- -t Open jumper to set to 80SPS
White A- 3 - C3 C7 33uH BASE RATE 4 # Increases noise per read

Green or Blue At 2 + - » VCOVDD
Yellow | Shield pl ! T-IL\FIIOUF 252 — avop X A

L L L (B
P2 GND GND GND e o GND GND 2]
L . DAT VDD: 2.7-5.5V
RS =y N AenD - beut sckelZ | veC 2755V
1 + g S - 50 10: 2.7-5.5V

J1

Cc2
0.1
Fé
el

[=}

Z w
4

) ' GND
G_T\ij —1 INA+ INB-
R3 , 'RET] VCC vs VDD

100 J_Cl VCC is the main supply voltage, while VDD sets the
digital logic voltage reference and should be
R4 Towr connected to microcontroller supply voltage, or
—A—-] shorted to VCC.
100
-

Figure 5. Hx711 Schematic
2.3.2 Single Pump

Furthermore, the preliminary designs had separate liquid
dispensing mechanisms for the milk, tea, and flavors of syrup. In
the prototype, only a single liquid dispenser was used. This is
because a single pump requires a whole h-bridge chip for current
to be dissipated evenly across the chip. This would significantly
crowd the printed circuit board, and also be redundant. A single
liquid dispenser demonstrates the feasibility of dispensing

additional liquids.

2.3.3 One LED No analog inputs

Finally, the design included an LED for each button. These were
supposed to help guide the user through using the button pad. In

order to have enough pins on the microcontroller to have these 6
outputs meant we needed to use the analog inputs to take input
from the buttons. This greatly complicated the I/0 system.
Troubleshooting the analog inputs and the buttons became a
bottleneck in designing the system so we chose to put it aside.
The single LED on our current prototype is sufficient to guide a
user through the button pad.

Design Verification

3.1 Power System

The power system needs to provide power within a threshold so that all
the parts run (but also do not burn them out). We initially built our
power system on a breadboard and only once we were sure that the
voltage was within our threshold (refer to Table 1 in Appendix A) did
we test the power system on our PCB. We double-checked that the
incoming voltage (from the power adapter) is 12v (Figure 7) and that

the regulator steps down the voltage to 5v (Figure 8).

A n E E N ' e
W
E

1 :._‘.

E
N ER
i
L
L

I

- -

x
H
E
E
K

4

T e e

o

P S
..

Figure 6. Power System on Breadboard

Figure 7. Incoming Voltage Figure 8. Stepped Down Voltage

3.2 I/0 System

We arguably had the most immediate trouble with the I/0 system.
Getting the buttons to react when they were pressed was really
difficult because a lot of the buttons were set as analog pins on our
microcontroller. However, after switching our buttons to digital pins,
they reacted better. Again, we tested our buttons on the breadboard
first (Figure 9). Once the LEDs reacted to the button presses
consistently (with negligible delay), we connected the button pad to
the PCB. Figures 10 and 11 show the button signal when they were
connected to the analog and digital pins on the microcontroller
respectively. Once all the buttons were moved to the digital pins, the
button pad worked effectively and all of our requirements were met
(refer to table 2 in appendix A).

10

T L4
GLOB AL ;
sPiCialTies YA Vb

Ve

Figure 10. Button Analog Input Figure 11. Button Digital Input

11

3.3 Ingredient Dispensing System

Our group also faced some challenges with the ingredient dispensers.
Starting with the liquid pumps, the H-bridge produced a little
conflict. As usual, we tested the H-bridge on a breadboard. As
mentioned before, the H-bridge could not evenly distribute the current
across the chip, [8] so we decided to eliminate the extra, redundant
pump. However, our requirements regarding the H-bridge were still met
(refer to table 3 in appendix A). The pump for the combined milk and
tea dispenser still ran and there was an accurate PWM signal sent to
the H-bridge (Figure 12).

The servo motor that releases the boba was initially supposed to be
powered by a servo motor trigger. This trigger has 3 potentiometers
that set the positions of where the servo stops. However, we
accidentally burnt out the trigger so we ended up using a servo
library on the Arduino IDE. The library allowed us to set the time and
positions the servo should move to (Figure 23, 27 of appendix C).
Although we did not use a servo trigger, we were still able to power

and control the servo boba motor, checking off another requirement.

o ey EESRTE

Figure 12. H-Bridge PWM Signal Figure 13. Servo PWM Signal

12

Figure 14. Servo controlled with button pad
3.4 Control System

The microcontroller that we used (ATMega328P) proved to be extremely
helpful in integrating each of the parts together. The code that is
programmed onto the microcontroller (Figures 25, 26 of appendix C)
assures that requirements 1 and 2 are met (Table 4 of appendix A).
Looking at the state diagram that the code goes through (Figure 4), it
is set so that the machine will not start making the drink until the
“start” button is pressed. In addition, the “cancel” button can be
pressed at any other state except when the “start” button is pressed.
This is clear with the LED output as well.

With the load cell, however, we faced a lot of problems. The 1kg load
cell that we used recognizes changes in weight based on the
differences in resistance (output in volts). However, these voltages
have very negligible differences, requiring us to use an amplifier.
The amplifier had a tough time communicating with the microcontroller

(as mentioned before) so we, unfortunately, could not configure the

13

load cell within the time frame to complete this project. This is the
only requirement/feature that we could not implement. Although we
could not utilize the load cell to control when each dispenser would
release their respective ingredients, we were still able to implement
this functionality through time delays in our code. Figure 15 shows
the number of ounces produced with the time that the pumps are on (in
seconds). Using this data, we ended up leaving the pumps on for 143
seconds for a 10 oz drink and 258 seconds for a 14 oz drink. The boba
motor is a bit less consistent, but we decided to leave the servo open
for 1 second. This releases about 1-2 ounces of boba with the right
amount of syrup and agitation. With these delays in time, the weight

of the final drink is pretty close to the desired ounces (Figure 16).

Number of Liquid Ounces with Number of Seconds

== (Ounces 1.05"x + 0.111

Ounces

0

30 50 675 775 90 126 1325 1725 1925 235 2525 310 3475 355

Delay for Pumps (Seconds)

Figure 15. Plot Showing Number of Liquid Ounces with Number of Seconds

14

Cost & Schedule

4.1 Cost Analysis

4.1.1 Labor

Figure 16.

Weight of 10 oz Drink

According to the I1lini Success Annual Report 2019-2020, a

Computer Engineer would make an average of $99,145. This leaves us

with an hourly wage of $47.67. Assuming we each work around 14 hours a

week, with 8 weeks remaining (112 total hours) and using the formula

($/hour) * 2.5 * hours to complete, the total labor cost of a computer

engineer would be $13,347.60. Each of us would average around

$5,339.04 for labor costs.

4.1.2 Parts

Module Product ID Price per Unit | Quantity Price
12V Power 1470-3113-ND $11.66 1 $11.66
Adapter
5v Voltage MC7805CTG-ND $0.65 3 $1.95
Regulator

15

ATMega328 X000048 $5.87 $11.74
Microcontroller
Bootloader Uno
Peristaltic 1150 $24.95 $49.90
Pumps
Silicone Tubing 3659 $3.50 $3.50
1kg Load Cell 1528-4540-ND $§3.95 $3.95
Sensor
500g Load Cell 1568-1899-ND $11.25 $11.25
Sensor
HX711 Amplifier | 1568-1436-ND $9.95 $9.95
Load Sensor 474-BOB-13878 $1.95 $1.95
Combinator (Mouser)
H-Bridge Motor Bridgold-31 $8.99 $8.99
Servo Motor 900-00005-ND $16.72 $16.72
WIG-13118 Servo | 1568-1363-ND $17.95 $17.95
Motor Trigger
Total:
$149.51
4.2 Schedule
Week Tasks Emily Saisita Tracy
2/21 | Design Doc Complete Complete Complete
Check, Finalize |Design Design Design
+ Order Parts Document, Document, Document,

Draft+Finalize |Draft+Finalize |Draft+Finalize
PCB layout PCB layout PCB layout

2/28 |Design Review, Complete Complete Complete
PCB Board Design Review, |Design Review, |Design Review,
Review Finalize parts |Finalize PCB Finalize PCB

order layout and get | layout and get
board approved |board approved
(first-round (first-round
order) order)

3/7 |Order PCB and Buy components |Buy components |Buy components
request machine |for the build for the build for the build
shop work of the design of the design of the design

(mechanical (mechanical (mechanical
components), components), components),
Test load Test load Test load
sensor output sensor output sensor output
(reference (reference (reference
voltage) to voltage) to voltage) to
determine determine determine
resistor resistor resistor
values, bring values, bring |values, bring
project to the |[project to the |project to the
machine shop machine shop machine shop
(if we've (if we've (if we've
received received received
parts) parts) parts)

3/14 |Spring Break |- - - - - - - |- - - - - - - |- - - - - - -

3/21 | Finish Write out Solder PCB, Write out
Soldering PCB microcontrolle |work on microcontrolle
and write out r code, work individual r code, Help
microcontroller |on individual progress Tracy Solder

17

code progress report PCB, work on
report individual
progress
report
3/28 | Individual Test input and | Test output to |Test output to
Progress output from the servo pumps. Test
Reports Due load cell motor. Make pumps with
sure servo load cell
motor and sensor and
motor trigger check that the
powers the motor driver
servo powers the
appropriately. |[motor
appropriately.
4/4 |Test all Test all Test all Test all
components inputs and inputs and inputs and
outputs outputs outputs
together together together
4/11 |Complete all Finish Finish Finish
tests testing, testing, testing,
create mock create mock create mock
demo demo demo
4/18 | Mock Demos Mock Demo, Mock Demo, Mock Demo,
begin final begin final begin final
demonstration demonstration demonstration
(last-minute (last-minute (last-minute
touch-ups) touch-ups) touch-ups)
4/25 |Demonstrations Final Final Final
demonstration, | demonstration, | demonstration,

start working

start working

start working

18

on final paper |on final paper |on final paper
5/2 |Final Paper Due |Finish Final Finish Final Finish Final

Paper, add Paper, add Paper, add

last-minute last-minute last-minute

touch-ups touch-ups touch-ups
Conclusion

5.1 Accomplishments

The prototype created throughout this project was ultimately
successful: it automated the Bubble Tea making process. The pumps
accurately and reliably dispensed liquid according to our objectives.
With marginal agitation, the boba could also be reliably dispensed.
The control system stably moved through the states. The button presses
were correctly ignored or registered by the microcontroller according
to the system’s current state.

5.2 Uncertainties

The primary uncertainty with the design is dispensing the boba. If the
texture of the syrup is too thin or thick, or a single pearl gets

jammed, the amount of boba that is dispensed can vary wildly.

5.3 Ethical Considerations

The primary ethical consideration in developing this prototype was
food safety. The food remains in sealed and food-safe containers while
inside the machine. The silicon tubing is food-safe. Additionally,
after every use, we advise that warm, soapy water is run through the
machine to clear any food particles that might allow mold to grow

within the device.

19

5.4 Future Work

This device has the potential to be catered to many different
environments. For example, adding a payment system would allow this
device to act as a Bubble Tea vending machine. However, several
elements would require refinement before it would be useful.
Dispensing the boba remains the most significant issue. In our
testing, we discovered that agitating the boba gently while the valve
is open reliably moves the boba through the valve. In the future, a
small motor could be placed above the boba reservoir to stir the boba
whenever the valve is open. Furthermore, implementing the load cell
would greatly aid in the boba problem. The feedback from the scale
would allow the system to wait until enough boba has been dispensed.
With the current method of timing, the amount of boba dispensed can

vary.

Additionally, adding options for other types of milk, and offering a
wide variety of syrups would enhance the consumer appeal of the
machine. This would require adding a system to maintain a cool

temperature for the milk.

20

References

[1] Quadruple half-H drivers (rev. C) - adafruit industries. (n.d.).
Retrieved March 17, 2022, from
https://cdn-shop.adafruit.com/datasheets/1293d.pdf

[2] Description features AVDD. (n.d.). Retrieved March 18, 2022, from
https://cdn.sparkfun.com/assets/b/f/5/a/e/hx711F_EN.pdf

[3] vcC: 2.7-5.5V VBG = 1.25V. (n.d.). Retrieved April 15, 2822, from
https://cdn.sparkfun.com/assets/f/5/5/b/c/SparkFun_HX711 Load Cell.pdf

[4] IEEE Code of Ethics. IEEE Code of Ethics. (n.d.). Retrieved February
02, 2022, from https://www.ieee.org/about/corporate/governance/p7-8.html

[5] Direct PIN IO (Arduino) | Marc’s Blog. (n.d.). Retrieved April 2,
2022, from

http://blog.marcsymonds.me/arduino-code/direct-pin-io-arduino/

[6] Servo Motor Basics with Arduino | Arduino Documentation. (n.d.).
Docs.arduino.cc. Retrieved April 23, 2022, from

https://docs.arduino.cc/learn/electronics/servo-motors

[7] Blink. (n.d.). Www.arduino.cc. Retrieved April 13, 2622, from
https://www.arduino.cc/en/Tutorial/BuiltInExamples/Blink

[8] Can L293D really be put in parallel? (2015, July 28). Arduino Forum.
Retrieved April 17, 2622, from
https://forum.arduino.cc/t/can-1293d-really-be-put-in-parallel/326439

[9] What kind of protocol does the HX711 use? (2018, November 24).
Arduino Forum. Retrieved April 20, 2622, from

21

https://cdn-shop.adafruit.com/datasheets/l293d.pdf
https://cdn.sparkfun.com/assets/b/f/5/a/e/hx711F_EN.pdf
https://cdn.sparkfun.com/assets/f/5/5/b/c/SparkFun_HX711_Load_Cell.pdf
https://www.ieee.org/about/corporate/governance/p7-8.html
http://blog.marcsymonds.me/arduino-code/direct-pin-io-arduino/
https://docs.arduino.cc/learn/electronics/servo-motors
https://www.arduino.cc/en/Tutorial/BuiltInExamples/Blink
https://forum.arduino.cc/t/can-l293d-really-be-put-in-parallel/326439

https://forum.arduino.cc/t/what-kind-of-protocol-does-the-hx711-use/4024
74/5

[18] How to read and display 24 bit two’s compliment in decimal form.
(2013, October 31). Arduino Forum. Retrieved April 22, 2622, from
https://forum.arduino.cc/t/how-to-read-and-display-24-bit-twos-complimen
t-in-decimal-form/191457/3

[11] USB - cdn.sparkfun.com. (n.d.). Retrieved April 18, 2022, from
https://cdn.sparkfun.com/assets/8/4/5/1/9/SparkFun_openScale_schematic.p
df

[12] Fluctuation value at loadcell 10000kg + hx711. (2021, January 4).
Arduino Forum. Retrieved April 23, 2622, from
https://forum.arduino.cc/t/fluctuation-value-at-loadcell-10000kg-hx711/6
89238/6

22

https://forum.arduino.cc/t/what-kind-of-protocol-does-the-hx711-use/402474/5
https://forum.arduino.cc/t/what-kind-of-protocol-does-the-hx711-use/402474/5
https://forum.arduino.cc/t/how-to-read-and-display-24-bit-twos-compliment-in-decimal-form/191457/3
https://forum.arduino.cc/t/how-to-read-and-display-24-bit-twos-compliment-in-decimal-form/191457/3
https://cdn.sparkfun.com/assets/0/4/5/1/9/SparkFun_openScale_schematic.pdf
https://cdn.sparkfun.com/assets/0/4/5/1/9/SparkFun_openScale_schematic.pdf
https://forum.arduino.cc/t/fluctuation-value-at-loadcell-10000kg-hx711/689238/6
https://forum.arduino.cc/t/fluctuation-value-at-loadcell-10000kg-hx711/689238/6

Appendix A: Requirements and Verification Tables

Requirement Verification

1. Bubble Tea Machine |1A. Cut off the end of the power supply and
must plug into the |[use an oscilloscope to check that the
wall and receive output voltage of the power supply stays
12VDC + 5% from the |within 5% of 12V.
power supply.

2. Voltage regulator 2A. Voltage regulator must send 5v *

must send 5v + (1.5-4)% to the microcontroller, Servo
(1.5-4)% to the Motor, and load cell sensor/Hx711
microcontroller, amplifier.

Servo Motor, and
load cell
sensor/Hx711

amplifier.

3. Voltage regulator 3A. Vin in Figure 17.
must supply 1560-300 |3B. Change R1 from Figure 17 so that the

mA to Peristaltic output current is the appropriate amount
Pumps and for each component.
microcontroller. 3C. Probe Vo from figure 17 and measure

current with the adjusted resistors to

ensure the current supplied is 1560-360 mA.

Table 1. Power System RV Table

Requirement Verification

23

1. The push-button
switches must send
accurate signals to
the appropriate
ingredient

containers.

TA. Connect the start signal from figure 18
(J19) to an oscilloscope and the start
signal (pin 28) from figure 19 to a
different channel on the oscilloscope.

Check that these signals match.

1B. Check that the start_led from figure 19

turns on.

1C. Repeat 1A. For the 100z button (J14),
and the 140z button (J16) from figure 18 to
their respective signals/LEDs from figure
19.

2. The push-button

switches receive

2A. Connect the 5V for the buttons to a
100Q potentiometer.

40-60 mA of
current. 2B. Change the potentiometer until it
reaches 40-60 mA.
2C. Measure the current with a multimeter.
Table 2. Button Pad RV Table
Requirement Verification

1. Servo motor must
run when powered by

the servo trigger.

1A. Connect servo motor output from servo

trigger (figure 20) to a multimeter.

1B. Check that 5v+0.25 is being supplied.

24

2. The pumps (DC

motor) must run
when powered by the
H-bridge.

2A. Connect Vcc2 (pin 8) from figure 21 to
a multimeter.

2B. Check that 12v%0.25 is being supplied.

. The Servo motor

trigger should
leave the door of
the servo motor
open for 7-10
seconds for the

boba to be dropped.

3A. Connect the out pin of the servo motor

trigger pin to the oscilloscope.

3B. Adjust the time potentiometer
(potentiometer C) until open for 7-10
seconds.

3C. Ensure that the servo motor does not

shut before the completion of seconds.

. PWM signal is
supplied to
H-bridge accurately

(circuit works).

4A. Connect PWM signal from figure 21 to

oscilloscope.

4B. Check that the wave we see on an

oscilloscope is an accurate PWM wave.

4C. Connect PWM signal (en1 in h-bridge)

from figure 21.

4D. Check that the wave we see on an

oscilloscope is an accurate PWM wave.

5. Servo motor

receives 4-6 mA.

5A. Connect the 5V for the Servo Motor to a
100Q potentiometer.

5B. Change the potentiometer until it

reaches 4-6 mA.

5C. Measure the current with a multimeter.

25

6. Peristaltic Pumps 6A. Connect the 5V for the Peristaltic
receive 200-300 mA. | Pumps to a 100Q potentiometer.

6B. Change the potentiometer until it
reaches 200-300 mA.

6C. Measure the current with a multimeter.

Table 3. Ingredient Dispenser RV Table

Requirement Verification

1. Bubble tea machine |[1A. Connect boba_motor (pin3) signal
should only start (figure 19) to the oscilloscope.
making the drink
when the “start” is [1B. Ensure the signal is high when the
pressed. start signal (figure 19) is high.

2. Bubble Tea Machine |2A. Connect cancel_button (figure 18) to an
should ignore the oscilloscope.
“cancel” button
once “start” has 2B. Connect the start_button (figure 18) to

been pressed. a different channel on the oscilloscope.

2C. Connect the cancel_led signal (figure
19) to a different channel on the

oscilloscope.

2D. Ensure that the cancel_button signal is
only high when the start signal is low and
the cancel_led signal is high.

Alternatively, we can make sure that the

26

cancel_led is not on when the start_button
is high and the cancel_led is on when the

start_button is low.

3. Load Cell Sensor
stays within
appropriate
voltages for each
drink size. 10o0z:
(3mVt.75), 14o0z:
(3.9mV+.75)

3A. Hook up the green and white wires of

the load cell sensor to a multimeter.

3B. Verify that the voltage difference is
the appropriate amount for each ingredient
and drink size. 10o0z: (3mVt.75), 14o0z:
(3.9mV+.75)

4. The microcontroller

receives 100-150mA.

4A. Connect the 5V for the microcontroller

to a 1006Q potentiometer.

4B. Change the potentiometer until it
reaches 100-150 mA.

4C. Measure the current with a multimeter.

Table 4.

Control System RV Table

27

Appendix B: Circuit Schematics

5 Volt Regulator

0.1 uF

16 U3
Vin (12V) LM7805_T0220
2 +12V 1 VI va 3
-%'7 | ch = _T_ C5
0.33 uf N‘-”
GND
‘& &
GND
Figure 17. Voltage Regulator Schematic
GND Buttans
ii uf
6
100z button T 1 1 N
= 2 :|o° i
S 2 <L &= GND

1 uF
c7

21|
o]
140z _button I] 1w 2= GND
2 QE & GND
S ii uF
GND
€10
GND T
start_buttan 1 1
1 uf b 2 :I
i o & <
boba_butt 1 o GND
oba_buTrton @
L F = GND
2 QE g
=2 5 B 1 uF
2
o2 GND i ci1
cancel_button I — 1 :I
- = 2
2 M) =
=9 <&
e GND

Figure 18. Button Pad Schematic

28

start no_boba

J17

cancel

J16

J18

+3V

ik
AVR—-ISP-6&

1 uF
+5v
+5V 11
b1 J7 i .
MBRO520 i I
[
GND OO
l’2_1 AREF & : PBO H4 100z LED
o ppifts PWM
3 ppz [L6 cancel LED
= 1 MISO +5V ppzfZ_ MOSI
MisggE—T22 8 MISD
4 MQasI ppa B Mol
MOS|4+—HUSL Ri o SCK
copl3_ SCK Sl ppsf? stk
FeT45 RESET XTALL/PB6 |2
= xTAL2,/PB7 L0
- b3 V_LOAD_SENSOR Crystal
peo (g3 Y-LOAD SENSOR | |
< b1 R4 100z button vi] I:I
PC2 25 14oz_button
GND pcg[6 _ baba_button -
pcy 27 _no_boba_button c2 C3
pcs 28 start button 1 uF 1 uF
RESET/Pcs [L RESET o
PDO 2 cancel_button %
PD1L 3 boba_motor GND
PD2 4 tea_pump
PD3 5 milk_pump
ppL L& 140z LED
ppsfl boba LED
PDE 12 no_boba_LED
PD7 13 start_LED
o
=
w2
il
ATmega328P—-P
uz GND
Figure 19. Control System Schematic
ervo Motor
Power Inputs Output
(in parallel)
Configuration
Trimmers
ATTiny84
Microcontroller .
Programming

Cantral System

C1

Header

Figure 20. Servo Trigger Pinout

29

H Bridge

B

Gi

1
E_ 6
i
—

- o
£ S
3 o
o |
Z 3 &« = % =
o + 5 o + E
ol 9 9 A N o
4 o - BN L293D
ono 4 5 orD & | T | 16 +5V
GND | l veel fe
12 onp veea [B+12v
13 enp
= > > >
= AR ™~ ~
~F : [
1 |
|
=8
E
3
(=R
.
=

tea_pump+ 1
E 1
5

milk_pump—

Figure 21. Ingredient Dispenser Schematic

Buttons &
10F
5
Cantrol System =1 LE0s 100z tution L
LF =]
3B o
rv r{ A2 - ailo
1 N
<o
HBRE520 1002.LeD -
G, a T 10F
11 ppofL 10z LED = =
- 73 L4mz_hutton 3
] 1 €2
g d1 wso sy == R=
nsoLte 240z_LED, GHD 3=
hagi{ & HMOSt 5 gy =l T LD ailn
MR-ISP-5 sc- 10k
. erlaaese » GHD
5 I T +0F
1 boba_LED - e
E e nba_hutton 2
anp I o EE]
Rs 22
1 L0 pn GuD o
1o_boa LD o ii -
anp|2_cancel_button e -
3 boba_motar GhD no_boba_hutton a
o o tee_pump. b EE]
Wountinghole 5 rileoume a3 =
PO E
i T start LED @n . E 5 €
poe L boba LED B stertLED
joH e & £t L
or ey start LED T 10
MountingHnle % CepcaLLED GHD start_button e
j;. | canceLED 125
1z 33 i
. Amega328P-p A2 g
© ntnghoe "2 oo o
10F
c11
cancel_bhutton -
o i
HountingHole a9 a7
“E g

H Bildge
e E 5 Valt Regulatar
£ 5 4zg¢ o s
= & z LiFens 220
988 99 T E
==l u 2 MW AL oIS 48
EIR AN NI S P 1w s Lo
D GhR & herev 0.33 uf 3 04w
5hD {==1 e
D ueea (BH12V
13 cnp ! E= N
¥ 20

tea_pump—

tea_pump+ %
1145

mitk_pump+ E‘Lhi
- 2*
mlb = 4 3y,

Figure 22. Overall Schematic

30

Appendix C: Code

int boba_closed = 10; // variable to store the servo position
int boba_open = T70;

void setup () {
myservo.attach(BOBAﬁMOTOR); // attaches the servo on pin 9 to the servo object

myservo.write (boba closed)

// set LED pin modes to output
pinMode (START LED, OUTPUT) ;

// set motor and pumps pin modes to output
DDRB = BO0000111l; // pumps
PORTB = BOQ000OO0O;

// set button pin modes to input
pinMOde(I_lOOZ_BUTTON, INPUT) ;
pinMOde(I_l40Z_BUTTON, INPUT) ;
pinMode (BOBA BUTTON, TNEPUT) ;
pinMode (NO_BOBA BUTTON, INPUT);
pinMOde(START_BUTTON, INFUT) ;
pinMode (CANCET, BUTTON, TNEUT) ;

// enable internal pullup
digitalWrite(I_1007_ BUTTON, HIGH):;
digitalWrite(I_140% BUTTON, HIGH);
digitalWrite (BOBA BUTTON, HIGH);
digitalWrite (NO_BOBA BUTTON, HIGH);
digitalWrite (START BUTTON, HTGH);
digitalWrite (CANCEL BUTTON, HIGH):;

digitalWrite (START LED, LOW):;
readyiforisize = 1;
ready for boba = 0;
readyiforistart = 0;

ready for dispense = 0;

Figure 23. Setup Code

31

- .
volid loop() {
// myservo.write (boba closed);

PORTB = B00000000; // turn off milkstea

// put your main code here, to run repeatedly:

// init user options

1 value | size choice boba choice
I 0 no selecticon no selection
s 1 10oz boba

s 2 l4oz no_boba
Size_choice = 0; // we are ready to take a new order

boba_choice 0;

start_cheice = 0;

cancel choice = 0;
ready_for_ size = 1;
ready_for boba = 0;
ready for start = 0;
ready for dispense = 0;

// take in user input

// prompt for size buttons

while(ready for size == 1 and cancel_chocice == 0){

digitalWrite (START_LED, LOW);
delay(200); // wait for 1/5 second
digitalWrite (START_LED, HICH);
delay(200); // wait for 1/5 second

// store user size choice

if (digitalRead(I_100Z_BUTTON) == LOW) {

size_choice = 1;

// lock size selection and prepare for boba selection

ready for boba = 1;
ready_for_size = 0;

}

else if(digitalRead(I_140Z BUTTON) == LOW) {

size choice = 2;

// lock size selection and prepare for boba selection

ready_for_boba = 1;

ready_for size = 0;

Figure

24 . Code for Size State

32

start choice
no selection

start
N/A

cancel choice

no_selection
cancel
N/A

// prompt boba buttons
while (ready for boba == 1

digitalWrite (START LED,
delay(100); // wait for
digitalWrite (START LED,
delay(100); // wait for

and cancel choice == 0){

LOW) ;
1/5 second
HIGH);
1/5 second

// store user boba choice
if (digitalRead(BOBA_BUTTON) ==
boba_choice = 1;

LOW) {

// lock boba selection and prepare for start selection
1;
0;

ready for_ start =
ready for boba =

else if(digitalRead(NO BOBA BUTTON) == LOW) {
2;

// lock boba selection and prepare for start selection

boba_choice =

ready_for_start = 1;

ready for boba = 0;

else if(digitalRead(CANCEL BUTTON) == LOW) {
= 1;
0;
ready for start = 0;

ready_for_size
ready for boba =

Size_choice = 0; // we are ready to take a new order
0;

0;

cancel choice = 1;

boba choice =
start_choice =

Figure 25. Code for Boba State

// prompt for start

while({ready_ for_start ==
digitalWrite (START LED, LOW);
delay(50); // wait for 1/5 second
digitalWrite (START LED, HIGH);
delay(50); // wait for 1/5 second
// store user size choice
if (digitalRead(STARTiﬁUTTON) == LOW) {

start_choice = 1;

1 and cancel_choic

0 {

// lock start selection and prepare for drink to be dispense
ready for_ dispense = 1;
ready_ for size = 0;
ready_ for_start = 0;
digitalWrite (CANCEL LED, LOW);

else if(digitalRead(CANCEL BUTTON)
ready_for_ size = 1;

== LOW) {

ready for boba = 0;

ready for start = 0;

size choice = 0; // we are ready tc take a new order
boba_choice = 0;

start_choice = 0;

cancel choice = 1;

Figure 26. Code for Start State

33

// dispense drink
digitalWrite(START_LED, LOW) ;

// dispense boba

if(boba_choice == 1){
myservo.write (boba_open);
delay(1000);
myServo.write(boba_closed);
delav (5000);

// dispense milk and tea

if(size_choice == 1){
PORTB = B00000010; // turn on milkstea
delay(143000);
PORTB = BO000OOOO0O;

if(size choice == 2){
PORTB = B00000010; // turn on milkatea
delayv(258000) ;
PORTB = BO0O0OOOO0O;

// reset all signals (prepare for new drink order)
ready for size = 1;

ready for boba = 0;

ready_for_ start = 0;

Figure 27. Code to Dispense Ingredients

// check out data line and get clock pulses going
while (digitalRead(V_LOAD_ SENSOR) != LOW) // wait until data line is low

{

PORTB = BOO0OOOOOL;

for (int i=0; 1<24; i++){

clk ()
I PORTE = BO00000O00;
}
clk():; // 25th pulse

weight = scale.get units();

if(weight == 0.0){
PORTE = BOO0OO00O1;

}

while(weight < 0.7 and weight > 0.1){ //in lbs: (cup is 0.5 lbs)
PORTE = BOO0OO00O1:
PORTE = BOO0O0100;

}

while(scale.read() - weight < 511){ // update number to appropriate value
PORTB = BOOOOO100;

}

PORTE = BOOOOOOOO;

void clk() {
italWrite (PWM, HIGH);
italWrite (PWM, LOW);

}

Figure 28. Code to Manually Connect Hx711 to MCU

34

