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Abstract 

In order to solve the problem of bike theft on campus, we present a concealed bike anti-theft device 

that both deters potential thieves from stealing the user’s bike, and makes it easier for the user to locate 

the bike if it has been stolen. The device uses a RFID reader to detect the user’s RFID card to “unlock” 

the bike and allow the user to transport the bike easily; if the bike is transported without the user’s RFID 

card, the alarm will sound, alerting passerby to the theft and ideally causing the thief to abandon the 

bike. In the event the thief does remove the bike from the original location, the device uses a GPS 

module to determine its location and transmit the location data over a LoRa link to the user base 

station, where the GPS data is displayed in an easy-to-use GUI for the user to view. Our prototype device 

is contained in a water bottle that can easily fit into the average bike water-bottle-holder without 

alerting the thief to the presence of the anti-theft device. The GPS, RFID, alarm, GUI, and microcontroller 

subsystems are fully functional, and although we were not able to implement the full LoRa link, we were 

able to identify the most likely causes for this failure.  
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1. Introduction 
In college campuses around the country, many students have experienced the problem of bike theft. 

Since bikes are frequently left outside for extended periods of time, they are vulnerable to theft, and 

unfortunately, once a bike is stolen it is very unlikely to be recovered. In order to solve this problem, a 

twofold approach is ideal – first, deter the theft itself, and second, improve the likelihood of bicycle 

recovery after the theft has occurred.  

In order to deter potential thieves, we implemented a system to detect when a theft is occurring, and 

trigger a loud and annoying alarm that will make the thief want to abandon the bike. A RFID “unlocking” 

system allows the device to differentiate from the bike owner and a bike thief. The bike owner uses 

their RFID tag to unlock the device, which allows them to ride the bike normally. However, if the bike 

device detects movement from GPS data without the RFID unlocked, the alarm will sound. The alarm 

will continue to sound until the GPS no longer detects movement, indicating the thief has abandoned 

the bike.  

For the second component – increasing ease of bicycle recovery after a theft – the device uses the GPS 

module to track its location over time and transmit the data over a LoRa link to the user base station. 

The user’s base station will receive the data and display it for the user to view. This way, the user will be 

able to find their bike after it has been stolen. Since LoRa is a very low-power protocol with an extremely 

long range even in urban environments, it will enable the user to track their bike even after it has been 

moved relatively far away from its original location. Additionally, since LoRa operates in the 900-MHz 

ISM band, it requires no radio licensing to operate, therefore greatly simplifying the deployment of the 

device.  

2 Design 
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2.1 Block Diagram  
The diagram below shows the conceptual block diagram for the device. 

 

Figure 1: System Block Diagram 

2.2 Control Subsystem 
Design Procedure: 

For our control unit, we selected the STM32WL55CC microcontroller. We selected this microcontroller 

primarily due to the integrated SubGHz radio, which is much more convenient for implementing the 

radio subsystem than an external LoRa IC. Although there are many integrated LoRa modules 

commercially available, we chose to use the STM32WL since we would likely learn more by 

implementing the radio ourselves rather than using a commercial module. The dual core ARM Cortex-

M0/Cortex-M4 provided adequate computing power and peripherals (two UARTs and several GPIOs) 

which were necessary for our device. 

Design Details: 

Our control system successfully implemented a state-based control system shown in figure A.4 in 

Appendix 1. The full circuit diagram is shown in figure A.1. We used STM32CubeMX to generate 

peripheral initialization code, and for debugging, we used an STLINK probe with Black Magic Probe 

firmware running in self-hosted mode.  

2.3 LoRa Subsystem 
Design Procedure: 
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As discussed above, we used the STM32WL55CC integrated microcontroller/SubGHz receiver for our 

project. Our LoRa subsystem used the SubGHz receiver which includes hardware to implement the LoRa 

modulation scheme. LoRa is a low-power, spread-spectrum modulation scheme which allows the user to 

trade receiver sensitivity for data rate; for our low-data rate, low-power, high-range system, it was an 

ideal choice. STMicroelectronics also provides a firmware package for this microcontroller which 

includes a LoRaWAN upper-level protocol stack, which we initially planned to use as well. However, 

since we do not actually need the MAC and upper-level stack functionality for our system, we switched 

to only using the low-level hardware radio driver instead to minimize the complexity of the firmware.  

Design Details: 

We used the ST-provided RF design guide to design the matching network in between the RF output of 

the MCU and an external antenna [2]. Since the RF output is a class-D amplifier, the matching network 

was quite complex since it included all the pulse-shaping, matching and filtering circuitry necessary to 

match the device to a 50-ohm output. The full circuit is shown in figure A.2.  

In order to implement the radio in firmware, we used the low-level hardware radio driver provided by 

ST. This driver essentially provided access to the internal SPI interface between the STM32 

microcontroller and SubGHz radio peripheral. In order to test our device, we initialized the radio, set the 

frequency and power, set the RF switch control lines, and then sent the CW test command. Although we 

were able to verify that the firmware did give the correct RF output with the STM32WL55 Nucleo dev 

board, our PCB did not have any RF output; refer to section 3.2 for more on this topic. 

2.4 GPS Subsystem 
Design Procedure:  

We originally planned to use the EM-506 GPS module from Sparkfun, but we discovered during testing 

that the UART output uses 0 stop bits which is impossible to receive using any other UART device. So, we 

switched to the Adafruit Ultimate GPS module, which uses a very standard UART configuration (9600 

8N1), and were able to communicate with this module easily. One other concern in this subsystem was 

the distance calculation, which is somewhat slow since the microcontroller does not have an FPU. In 

order to prevent the calculation from slowing down the microcontroller processing excessively, we 

decreased the frequency of the GPS updates and instead only requested data from the GPS every 10 

seconds. We used the STM32 timer peripheral to implement the 10 second timer to avoid using 

(blocking) delay functions in the code.  

Design Details:  

Due to the complexity of implementing a GPS receiver from scratch, we used a commercial GPS module, 

so there was very little circuit design for this subsystem. In firmware, we implemented NMEA message 

parsing that put data from the UART peripheral into a struct that contained each field of the NMEA 

message. To calculate the distance between two GPS locations, we used the flat-surface approximation 

[1]: 
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𝐷 = 𝑅 √(Δ𝜙)2 + (cos(𝜙𝑚) Δ𝜆)2 

Where R is the radius of the earth, φ denotes latitude, 𝜆 denotes longitude, and 𝜙𝑚 = (𝜙1 +  𝜙2)/2. In 

order to determine whether the device was in motion or stationary, we calculated the distance between 

two subsequent GPS location measurements (which are each 10 seconds apart as explained above). If 

the distance exceeded the setpoint of 8 meters, the device would consider itself “in motion”. The 

threshold of 8 meters was chosen due to the fact that experimentally, the “drift” of the GPS 

measurement when the device was stationary tended to be below 5 meters in most cases, so a 

threshold of 8 meters decreased the likelihood of false positives for motion.   

Timing the GPS data operations was critical to our project, since the state transitions depended on 

knowing the elapsed time between different GPS locations. Since the HAL_Delay functions simply block 

any code from executing until the time has elapsed, we avoided these functions, since it is important 

that our state machine continues to execute during the time in between GPS data operations. Instead, 

we polled one of the STM32 timer peripherals to keep track of the elapsed time between the previous 

GPS operation and the current time. When the time exceeded the set point (in this case 10 seconds), the 

device polled the GPS module again.  

2.5 RFID Subsystem 
Design Procedure: 

We designed this subsystem around the main component, the ID-3LA RFID Module from Sparkfun. This 

module was chosen as it could communicate with the STM32 through UART, and noted that it had a 30 

cm detection range when using a suitable antenna. We originally planned to create an antenna by 

winding a coil, but decided to use a general 1 mH antenna for convenience and accuracy.  

Design Details: 

The circuit was designed to include an LED as visual indicator, and appropriate connections for each of 

its pins according to details given by the datasheet for the RFID module. 

2.6 Alarm Subsystem 
Design Procedure: 

 Originally, we intended to use a Piezo buzzer due to its small size which would be easy to 

conceal on the bike device. However, the Piezo buzzer we selected was not loud enough, so we 

switched to a normal speaker instead. Since a critical requirement of our project is a loud and annoying 

noise to scare away a potential bike thief, it was essential that our alarm subsystem was able to be loud. 

The speaker was slightly larger, but significantly louder than the piezo buzzer, so we decided to use it for 

the alarm subsystem. 

Design Details: 

 We used one of the STM32 timer peripherals to generate a PWM control signal at the desired 

frequency of 5 kHz whenever the alarm was activated. Since the STM32 cannot provide enough current 
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to drive the speaker directly, we used the simple circuit below as the speaker driver. The BJT acts as a 

switch to turn the speaker on and off at the signal frequency. This circuit allowed the speaker to make a 

loud and annoying tone when the alarm was activated. Since we did not have time to order an 

additional PCB, we implemented the driver circuit on protoboard for our demo.  

 For our demo, we added a timeout to the ALARM state so that after 5 seconds it would 

automatically transition back to the IDLE state – this was primarily because the alarm did end up being 

very loud and annoying to listen to for more than 5 seconds at a time. However, in a real device, we 

would only allow the ALARM state to time out after the device has remained in a stationary location for 

longer than 5 minutes. This would incentivize the bike thief to abandon the bike rather than continue 

stealing it, since the alarm is quite painful to listen to. 

 

Figure 2:  Speaker Driver Circuit. 

 Similarly to the GPS subsystem, we polled the STM32 timer peripheral to keep track of the time 

elapsed between the speaker starting to sound and the current time in order to implement the 5 second 

timeout. This again enabled our state machine to continue executing rather than blocking code 

execution for the duration of the timeout. 

 

2.7 GUI Subsystem 
Design Procedure: 

The Python Graphical User Interface (GUI) is used to provide a visual representation of data – GPS 

location – obtained from the USB serial port such that the user can interact with data in various ways, 

including analyzing and understanding the history of where the bike has been and provide a mapping 

view of current location based on current GPS data. Originally, this was to be done from an FTDI board 

with an I2C link for data transmission; however, we were not able to obtain a working FTDI chip, thus 

data transmission was conducted using USB serial. In terms of working with the source code, the 
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transition in the data transmission methodology simplified the way we obtain data as it merely requires 

the internal serial module to access the serial port from the USB device. 

Design Details: 

In the Python code, the interaction between the USB serial and the GUI is the internal serial module. 

From this module, the device can be read based on its identifier – in our case, it’s along the lines of 

‘/dev/ttyUSB0’. The data obtained from the device can then be read through the various read functions, 

depending on the objective of the function. For the GUI itself, the windows application is built using 

Python’s internal pyqt5 module. The module provides for the general application overlay, followed by a 

series of buttons – as well as an internal signal connection that displays a new window when clicked. As 

of the formulation of this report, the GUI can obtain and retain the data in static state – that is, it can 

show a certain amount of data as predefined in the source code; it has yet to be able to constantly poll 

the device and obtain and show data continuously. Also, the integration of mapping feature has not 

been successful. 

2.8 Power Subsystem 
Design Procedure: 

Since the device is meant to be mobile and able to be carried on a bike, it was essential that the device is 

battery powered. We originally planned to use four AA batteries in series, but eventually decided on a 

single 9V battery instead since it was difficult to design a battery pack on a short schedule. We used 

linear regulators to regulate the 9V input down to 5V for the GPS board and 3V3 for the MCU and all 

other peripherals. 

Design Details: 

The main board also contains the 3V3 and 5V linear regulators, and all of the peripherals are powered 

from this board. To further conserve power, we included load switches on all the power supplies for the 

GPS, RFID and speaker module so that the subsystems could be fully turned off when not in use. The 

load switches functioned correctly and turned off the power to each subsystem when switched off by 

the microcontroller control signal; however, we did not end up implementing the power-saving 

measures in firmware since we did not have time. Additionally, the power saving measures would have 

made it much more challenging to demo the device, so we did not include them in the demo.  

3. Design Verification 

3.1 Control Subsystem 
Overview:  

Since our control system simply ran the state machine, our verification was not very complex; much of 

the functionality was demonstrated during the demo. Our full requirements and verification are below. 

Requirement Verification Outcome 
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1. The microcontroller implements 
a state-based control system with 
power- 
saving measures in the 
idle/safe states. 

1. Flash the firmware to the 
device. 
2. Monitor the state transitions 
during device operation. 

Success: We verified that the 
MCU behaves according to our 
desired state machine. 

1. The microcontroller pack- 
etizes data to be sent over 
LoRa at the update rate 
specified by the state dia- 
gram in figure 3. 

1. Flash test firmware that cycles 
through each of the states. 
2. Verify that the TX update rate is 
greater than once per 
hour in the IDLE, UNLOCK, and 
TRANSIT states. 

Partial Success: Our 
microcontroller was able to 
create data packets from the 
GPS data, but since our LoRa 
subsystem was not functional, 
we were unable to transmit the 
packets. 

3.2 LoRa Subsystem  
Overview:  

Unfortunately, our LoRa subsystem was the main failure in the device. We verified that the firmware 

test program using the low-level radio driver worked on the Nucleo dev board, but it did not work on 

our PCB, leading us to conclude there was a hardware issue with our board. We could not fully diagnose 

the issue due to the limited time and resources in the course, but we do have several ideas for what 

could have caused the issue.  

First, we encountered several issues with the oscillator. We initially used a 32 MHz SMD external crystal 

since the RF transceiver requires relatively high frequency accuracy; due to a mistake in the board 

layout, we could not use the oscillator we ordered, and instead had to bodge in a through-hole crystal. It 

is likely that the through-hole crystal soldered onto the pads introduced enough parasitic inductance 

and capacitances to cause the internal PLL to fail. This hypothesis is supported by the fact that when we 

polled the radio error state, it returned intermittent PLL lock errors. To further investigate this issue, we 

would try correcting the layout issue and assembling a new board with good crystal trace routing; 

however, we did not have time to do this in this class.  

Our second possibility was a separate generic hardware fault and/or an issue with the internal PA.  Since 

the internal PA is delicate and usually requires a dedicated matching network to prevent signal 

reflections from damaging the device, it is possible that we inadvertently destroyed the PA output stage 

over the course of testing the device. Unfortunately, since we did not have enough time or materials to 

assemble a second board to test, we could not test a fresh board to determine if we had damaged the 

PA in our original board. The least likely option in our view is the a matching network erorr, since we 

followed the matching network design guide in detail to design our matching network. However, since 

we could not find a VNA to test the matching network, we could not verify the input impedance and it is 

very possible we simply presented the PA with a VSWR that exceeded the damage rating and 

permanently destroyed the PA.  

 

Requirement Verification Outcome 
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1. The LoRa subsystem 
matching network and an- 
tenna have a VSWR of less 
than 10 at the RF output 
of the STM32WL55CC. 

1. Populate the RF matching 
network before populating the 
microcontroller. 
2. Calibrate the VNA from 800-
1200 MHz with PCB TRL 
standards. 
3. Terminate the SMA output of 
the PCB with a 50 ohm load. 
4. Measure the input impedance 
looking into the RF matching 
network at the RF output of the 
STM32WL55CC. 
5. Calculate the VSWR from the 
measured input impedance 
and the specified PA output 
impedance in the STM32 
datasheet. 

Could not verify: We did not 
have access to a VNA, so we 
were unable to test or verify this 
requirement. 

1. The antenna is hidden in 
a common bike component 
such as a reflector so that 
it is not visibly obvious. 

1. Objective visual verification. 
2. Ask other senior design 
students. 

Unsuccessful: We did not use an 
antenna since our LoRa link did 
not work, so we did not satisfy 
this requirement. 

 

3.3 GPS Subsystem  
Overview:  

Due to the complexity of implementing GPS from scratch, we used a commercially-available GPS 

module, the Adafruit Ultimate GPS V3. Since we used a module we did not design any hardware for this 

subsystem, but we wrote the firmware to communicate with the microcontroller over UART, parse 

messages, and calculate the distance between two GPS readings. 

Requirement Verification Outcome 

1. The GPS module can com- 
municate with the micro- 
controller at a update rate 
of greater than 1 Hz. 

1. Flash a test program to the 
microcontroller that continu- 
ously polls the GPS module. 
2. Verify that the GPS module 
transfers GPS data at an up- 
date rate of greater than 1 Hz. 

Success: We were able to 
communicate with the GPS 
module at a rate of greater than 
1 Hz. However, in our final 
design, we did decrease this 
update rate to once every 10 
seconds as discussed in section 
2.4. 

3.4 RFID Subsystem  
Overview:  

 

Requirement Verification Outcome 
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1. The RFID detector will detect 
the user’s RFID tag 
within 10 seconds. 

1. Place the RFID tag within 10 cm 
of the RFID receiver. 
2. Monitor the RFID output data to 
verify it has detected the 
RFID card within 10 seconds. 

Success. 

1The RFID subsystem will 
provide a visual indication 
that the RFID tag has 
been detected within 1 second of 
detecting the RFID 
tag. 

1. Place the RFID tag within 10 cm 
of the RFID receiver. 
2. Monitor the RFID reader output 
data and the RFID LED 
to verify that it turns on within 10 
seconds of detecting the 
RFID tag. 

Success. 

1. The RFID subsystem triggers the 
alarm if movement occurs and the 
user’s 
RFID is not detected. 

1. Ensure that the RFID tag is out 
of range (> 1 m). 
2. Move the bike 5m from the 
original location to verify the 
alarm is triggered 

Success.  

1. The RFID indicator LED 
is concealed in an unobtru- 
sive location on the bike. 

 

1. Visual verification. Unsuccessful: We did not finish 
integrating the device into the 
bike, so the LED was not 
concealed. 

 

 

3.5 GUI Subsystem  
Overview:  

Our GUI verification process was somewhat limited due to the fact that we did not have a functioning 

LoRa link. Additionally, we changed our final design to use the CH340 IC rather than the I2C/USB FTDI IC 

we had originally planned to use. However, we were still able to verify much of the functionality of the 

GUI itself.  

 

Requirement Verification Outcome 

1. The receiver board will in- 
terface with the computer 
over USB. 

1. Flash a test program to the base 
station board that sends 
continuous data over the I2C/USB 
interface. 
2. Connect the base station board 
to the user computer and 
view the data sent over USB. 
3. Verify the received data 
matches the sent data. 

Success: We were able to 
communicate data to the 
computer over USB, however, 
we did modify the design to use 
the CH340 UART/USB converter 
IC rather than the FTDI I2C/USB 
IC. 



10 
 

1. The receiver board will re- 
ceive LoRa packets from 
the bike-based device. 

1. Flash a test program to the TX 
(bike system) board that 
transmits continuous data. 
2. Flash a test program to the RX 
(base station) board that 
listens for data and continuously 
sends received data to the 
computer over I2C (USB to the 
computer). 
3. Verify the data sent from the TX 
board is received by the 
RX board. 

Partial Success: As discussed 
before, we were not able to 
implement the LoRa link. 
However, we were able to 
receive “dummy” messages from 
the board that mimicked the 
type of message that would be 
received over LoRa from the 
bike-based device. 

1. The GUI will display GPS 
data over the past day, 
week, month, or year on a 
map 

1. Flash a test program to the TX 
(bike system) board that 
transmits data with (false) 
timestamps that cover a 6- 
month period. 
2. Transmit the data and receive it 
with the base station 
board. 
3. Using the GUI, plot the data and 
verify the output plots 
match the data sent by the TX 
board 

Partial Success: The GUI was 
able to display data, but we did 
not fully finish the map 
functionality.  

1. The GUI will allow the 
user to view plots of the 
average speed and distance 
traveled. 

 

1. Flash a test program to the TX 
(bike system) board that 
transmits data with (false) 
timestamps that cover a 6- 
month period. 
2. Transmit the data and receive it 
with the base station 
board. 
3. Using the GUI, plot the average 
speed and distance traveled 
and verify that it matches the data 
transmitted by the bike 
system board. 

Unsuccessful: We did not have 
time to implement this 
functionality.  

 

3.6 Power Subsystem  
Overview:  

In order to enable our device to function for extended periods of time in a self-contained manner, we 

powered the device using a battery, and included power-saving measures such as load switches to fully 

turn subsystems on and off. 

 

Requirement Verification Outcome 
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1. The power system will pro- 
vide 3V3 +/- 0.4 mV to 
all subsystems that require 
3V3, and 5V to the subsys- 
tems that require 5V. 

1. A multimeter will be used to 
ensure the voltage and current 
are as specified at different points 
on the board. 

Success: All subsystems are 
powered correctly.  

1. The power system will 
power the device for over 
24 hours. 

1. Connect a 
multimeter/oscilloscope to 
measure the voltage 
at the battery terminals. 
2. Record data every two hours 
over two 12 hour periods. 
3. The data from the device will be 
read to ensure that the 
values were reasonably constant 
over time. 

Unsuccessful: Due to time 
constraints, we did not test this 
functionality. 

1. The microcontroller can 
fully power off the GPS 
and RFID subsystems 
when not in use by turn- 
ing off the load switches. 

1. Flash a test program to the 
micrcontroller that toggles the 
control signals GPS_ PWR and 
RFID_ PWR. 
2. Measure the output voltage on 
pin 1 of U7 and U8 to verify 
that the RFID and GPS subsystems 
are powered off. 

Success: The load switches were 
able to turn off power to each of 
the subsystems and were able to 
be controlled by the 
microcontroller.  

 

4. Costs 

4.1 Parts 
 

Part Manufacturer Retail Cost ($) Bulk Purchase 
Cost ($) 

Actual Cost ($) 

ID-3LA Sparkfun 27.95 27.95 27.95 

Adafruit Ultimate 
GPS 

Adafruit 29.95 29.95 0 (already had) 

STM32WL55CC STMicroelectronics 12.94 11.69 12.94 

RFID Tag Sparkfun 2.10 2.10 2.10 

Speaker (SP-6619) Soberton 3.60 2.98 0 (already had) 

Miscellaneous 
components 

Digikey ~100 ~100 ~100 

Total    142.99 

 

4.2 Labor 
For each engineer:  

$42.07/hour * 2.5 * 120 hours = $12,621 



12 
 

Total for three engineers:  

3*12,621=$37,863 

5. Conclusion 

5.1 Accomplishments 
As shown in the Requirements and Verifications sections, we were successfully able to implement near-

complete functionality of the RFID, GPS, and Alarm subsystem, and we made significant strides towards 

implementing the GUI on the receiver device. Although we were not able to implement the LoRa link, 

we learned how to use the complex ST LoRaWAN firmware, and in particular, how to use the low-level 

radio driver to implement LoRa directly to avoid the complexity of the upper-level protocol stack. We 

were able to demonstrate transmission using the Nucleo dev board, which suggests that with hardware 

corrections, a new revision of our PCB would have a high likelihood of successfully transmitting LoRa.  

5.2 Uncertainties 
By far our biggest uncertainty was the unsuccessful LoRa subsystem, and unfortunately, we are still not 

sure what caused the issue. However, if we were to continue the project, we have a clear path forward 

for continuing to diagnose the problem and eventually coming to a conclusion about how to solve the 

issue. 

In addition to the LoRa subsystem, our final device was unfortunately not very polished. Due to time 

constraints, we used a water bottle to contain our final model, but it was not very well “concealed”. In a 

future revision of this project, we would work to make a more polished and unobtrusive packaging 

method for the device so that it could be concealed in a real-life water bottle holder without looking 

suspicious.  

5.3 Ethical considerations 
This project is designed with IEEE’s code of ethics in mind, and the main point as we work on the project 

is “to hold paramount the safety, health and welfare of the public, to strive to comply with ethical 

design and sustainable development practices, to protect the privacy of others, and to disclose promptly 

factors that might endanger the public or the environment.” 

The design is implemented with LoRa and RF implementation, which involves the transmission and 

reception of information wirelessly. As such, an ethical consideration that is paramount to our objective 

is that data is received accurately. This is important because if given false or failed readings thieves can 

make off with the bike even with the flawed design attached due to failure or misreading of information. 

As such, the RFID tag communicates with the transmitter such that the alarm will sound if and only if the 

bike is in motion and reaches out of range of the RFID. 

5.4 Future work 
Since our main failure with this project was the LoRa subsystem, the main goal of future work would be 

to successfully implement that subsystem. With a new board revision, we could fix the issues of the 
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oscillator footprint and possible matching network issues and transmit with the board. Once the 

hardware issues are fixed, it would also be important to develop a LoRa transmission protocol that is 

robust and can deal with multiple bikes with the anti-theft device on them. For this task, we would need 

to investigate the use of existing protocols such as LoRaWAN and assess whether they would be 

adequate or whether it would be more effective to create a new, likely simpler protocol for our use 

case.  
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Appendix A Detailed Circuit Schematics 
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Figure A.1: Microcontroller Subsystem Schematic

 

Figure A.2: RF Matching Network Schematic 

 

Figure A.3: RFID Carrier Board Schematic 
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Figure A.4: System State Diagram 

 

 

Figure A.5: Subsystem Load Switches. 
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