Robot Controller through Gestures

Team 41

Eric Zhou(yirui2), Guang Yin(guangy2), Haoduo Yan(haoduoy2)

TA: Hanyin Shao Spring 2022

Introduction

Traditional Robot Controller

- X Unresponsive Enough
- X Not Easy to Use
- X Unengaging

Can we have a **cool**er and more **intuitive** tool?

No Problem!

Objective

Objective

 The position and orientation of fingers and palm can be collected through IMUs.

 Hand movements and gestures can be translated to robot control actions respectively.

Users can get feedback through the glove.

Project Overview

Fig. Hardware Overview

Control Board

Subsystems

- Human Positioning System
- Gesture Control System
- Robot Feedback System

Block Diagram

PCB Board Overview

Human Positioning System


```
TERMINAL
          PROBLEMS 277
                          OUTPUT
                                   DEBUG CONSOLE
Middle roll: -19.756, pitch: -14.161, yaw: 45.235. Q0:
                                                        0.911, Q1: -0.110, Q2: -0.178, Q3:
                                                                                              0.356, AX:
                                                                                                           2.359, AY: -3.163, AZ:
                                                                                                                                     8.800
Ring
       roll: -19.188, pitch: 17.280, yaw: 53.400. QO:
                                                         0.860, Q1:
                                                                    -0.214, 02:
                                                                                  0.058, 03:
                                                                                              0.460, AX:
                                                                                                          -2.866, AY: -3.034, AZ:
                                                                                                                                     8.728
Little
       roll: -11.871, pitch: -7.514, yaw: -9.962. Q0:
                                                         0.988, Q1: -0.108, Q2: -0.056, Q3:
                                                                                              -0.093, AX:
                                                                                                           1.254, AY: -1.948, AZ:
                                                                                                                                     9.307
       roll: -12.265, pitch: -28.489, yaw: 41.017. Q0:
                                                                                              0.313, AX:
Thumb
                                                         0.912, Q1:
                                                                    -0.011, Q2:
                                                                                -0.265, Q3:
                                                                                                           4.527, AY: -1.766, AZ:
                                                                                                                                     8.144
       roll: -1.835, pitch: -9.968, yaw: -41.714. QO:
Hand
                                                         0.930, Q1:
                                                                    -0.046, Q2: -0.076, Q3:
                                                                                              -0.356, AX:
                                                                                                           1.704, AY: -0.306, AZ:
                                                                                                                                     9.671
       roll: -12.678, pitch: -6.871, yaw: 53.823. Q0:
                                                                                                           1.144, AY: -2.091, AZ:
Index
                                                         0.888, 01: -0.071, 02: -0.103, 03:
                                                                                              0.443, AX:
                                                                                                                                     9.302
```

Fig. Gesture data collected from IMUs and sent to PC through Bluetooth

Euler Angles: Roll, Pitch, Yaw, in degrees

Quaternions: Q0, Q1, Q2, Q3

Acceleration: AX, AY, AZ, in m/s^2

Gesture Control System

Using L2 algorithm to recognizes gestures

☐ Translates gestures into robot commands

Sends commands to robot via Bluetooth

O) Prerecord Gestures

Fig. Principles of L2 Algorithm

1) Get quaternions

Fig. Principles of L2 Algorithm

2) Calculate geodesic distance

Fig. Principles of L2 Algorithm

3) Concatenate into one vector

Fig. Principles of L2 Algorithm

4) Compute the L2 distance

Fig. Principles of L2 Algorithm

5) Predict the gesture

Fig. Example of L2 Algorithm in Operation

Example of Saved Gestures

Hold (Gesture 0)

Chassis (Gesture 1)

Gimbal (Gesture 2)

Shoot (Gesture 3)

Example output of software running on the PC

```
Gesture 0 l2: 21.574106040980926
Gesture 1 l2: 15.935477902904832
Gesture 2 l2: 14.441595901942796
Gesture 3 l2: 0.608011788139928
Prediction: 3
```

```
Gesture 0 l2: 12.003243266082979
Gesture 1 l2: 0.15055034716838211
Gesture 2 l2: 10.151618564238449
Gesture 3 l2: 11.415297980643851

Prediction: 1
```

Gesture 0 l2: 29.310272787902104 Gesture 1 l2: 22.60062787570088 Gesture 2 l2: 14.549955075964574 Gesture 3 l2: 34.62843018384689 Prediction: 404

Fig. Examples of L2 Algorithm in Operation

Note: Threshold: 4, Prediction 404 means no prediction

Robot Feedback System

Feedbacks include:

- Controller operating status
- Bluetooth connection status
- Messages from robot
- Possible warnings and errors

Feedback will be displayed through:

- \circ LED
- Vibration motor
- Buzzer
- Display

More About Display

Showing System Information

Create Config
Files Onboard

GNDUCC SCLSDA

default.config
Set as Default
View Config
Delete Config
Back

O
GNDUCC SCLSDA

O
GNDUCC SCLSDA

Manage Config Files Onboard Showing Operation
Status

Functionality & Instruction Set

Hold	Stop all action
Chassis	Move forward or back
	Turn left or right
	Rotate clockwise or counter clockwise
Gimbal	Move up or down
	Move left or right
Shooter	Shoot

Video Presentation

Successes & Challenges

Successes

- Controller is fully functional.
- Also universal and customizable.
- We make use of the IMUs and identify gestures with high accuracy.

Challenges

- Bluetooth connection is unstable.
- Readings from IMUs are greatly influenced by the magnetic field of surrounding environment.
- Drawing the PCB board according to our needs.

Future Work

- Remove intermediate PC
- 2. Build a UI for recording more gestures
- 3. Revise the gesture recognition algorithm
- 4. Reduce magnetic interference
- 5. Extend battery life
- 6. Tidier exterior design

