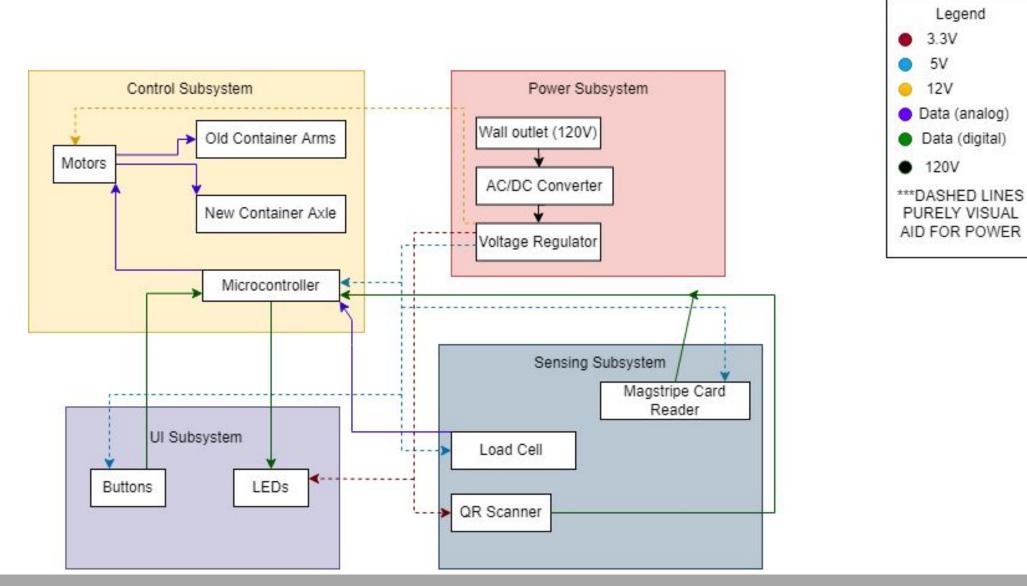

Team 38 Good2Go Automated Token Exchanger (GATEr) ECE 445

John Kim, Henry Guan, Ariocie Liang

Table of Contents

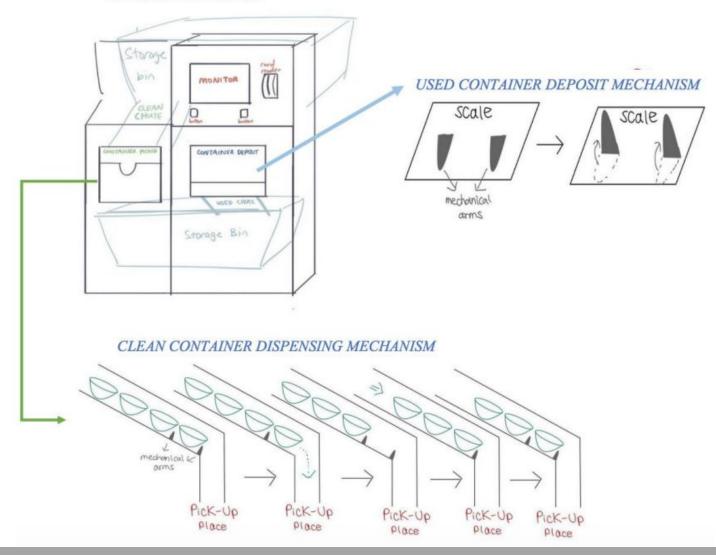
1.	Project Rationale	2
2.	Objectives	3
3.	Project Overview	4
4.	Original Design & Changes	5-6
5.	Requirements & Verification	7-15
6.	Project Build	16-17
7.	Functional Test Results	18-21
8.	Video	22
9.	Design Decisions	23
10.	Successes & Failures	24
11.	Challenges & Learning	25
12.	Future Work	26
13.	Ethics	27

Project Rationale


- Good2Go (G2G) is a service used by U of I dining halls
- Old container -> redeemable token -> new container

- Current problems
 - Lacks unification
 - Relies solely on human supervision

Objectives


Ι

- Automate service with 2 key functions
 - Exchange token for a clean container
 - Exchange old container for either token or new container
- Complete exchange process within 15 seconds
- Dispense exactly 1 new container at a time without jamming
- Correctly detect invalid G2G containers via 2 verification processes:
 - Overweight containers (>10g)
 - Invalid G2G QR codes
- Physical tokens -> digital tokens
 - Added convenience and security

Original Design

OVERALL DESIGN

Changes from Original Design

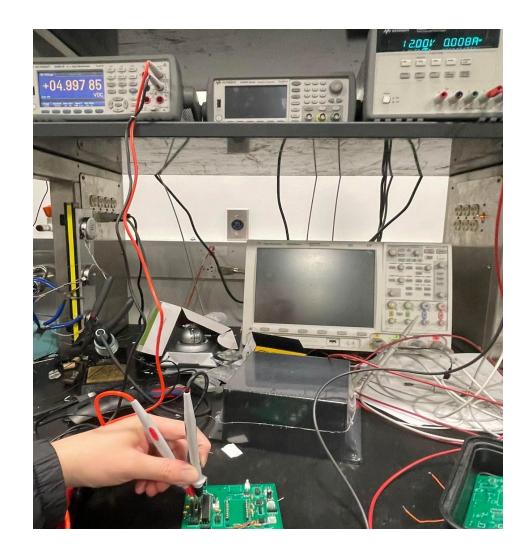
]

• Downsize overall size of contraption

• Utilize a conveyor belt style of dispensing rather than have 2 mechanical arms retract

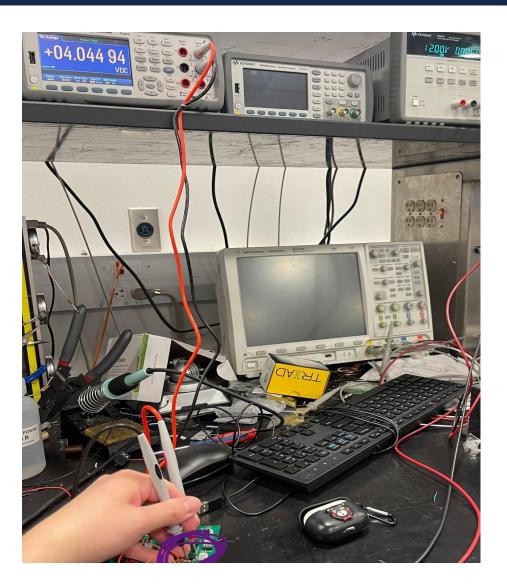
• Use of LEDs for status of machine rather than an LCD display

Requirements


 Power all components in accordance with their rated voltage within 5% variance

Verification

 Probe voltage running through each component, ensuring that measured voltage is within 5% of rated voltage


Requirements & Verification - Power Subsystem cont.

- Left side of PCB supplies expected voltage to each component
- Able to convert 12V from power supply into voltage value within 5% of 5V for AtMega328P

Requirements & Verification - Power Subsystem cont.

- Right side of PCB initially had a voltage drop
- 12V delivered from power supply does not convert into a value within 5% of 5V for ATTiny85
- Cause of drop was a corroded voltage regulator and a missing capacitor

Ι

Requirements

 Power all components in accordance with their rated voltage within 5% variance

Validity

1. Yes!

Verification

 Probe voltage running through each component, ensuring that measured voltage is within 5% of rated voltage Able to power all components on PCB properly after fixing the issues

Requirements

- 1. Keep track of user's token count
- 2. Correctly keep track of user input

Verification

- 1. Check invalid tokens, storing tokens, using tokens
- 2. Execute specific action based on user selection

 Validity 1. Yes! 2. Yes! Tokens are stored and updated successfully 	RETRIEVING SELECT dispense option your updated token num: CARDHOLDER/UNIVERSITY UIN: 667474 card successfully read	Start 1 CARDHOLDER/UNIVERSITY UIN: 667474 card successfully read
 User cannot dispense a new container if they have no tokens Buttons execute correct action based on user input 	your current token num: Select Deposit option Chose token your updated token num: DISPENSING	Chose token invalud num of tokens

Requirements

- 1. Able to scan QR code and measure weight on G2G containers
- 2. Execute retrieval and dispensal for valid G2G containers

Verification

- Check if QR code enables a correct scan and load cell measures mass properly
- Reject containers that are overweight or have an invalid/no QR code, while executing retrieval or dispensal for valid containers.

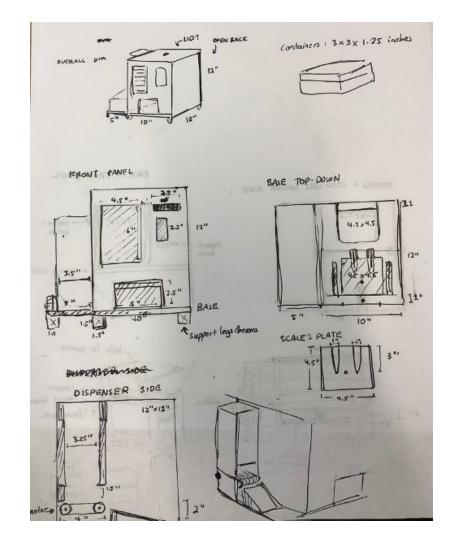
Requirements & Verification - Sensing Subsystem cont.

<u>Val</u> 1.	<u>idity</u> Yes!	CARDHOLDER/UNIVERSITY UIN: 66747 card successfully read	CARDHOLDER/UNIVERSITY UIN: 66747 card successfully read
2.	Yes!	your current token num: 0 Select Deposit option Chose container: put container and scan	your current token num: 0 Select Deposit option
•	Valid QR codes pass and weight is able to be read	reading QR 3213 QR successfully read <- Success with verified QR code	Chose container: put container and scan reading QR 3213 QR successfully read <- Success with verified QR
•	Machine rejects invalid containers properly, continues in state machine for valid containers	weight: 3.23 <- Valid weight RETRIEVING SELECT dispense option	1 code weight: 11.47 <- invalid weight invalid container

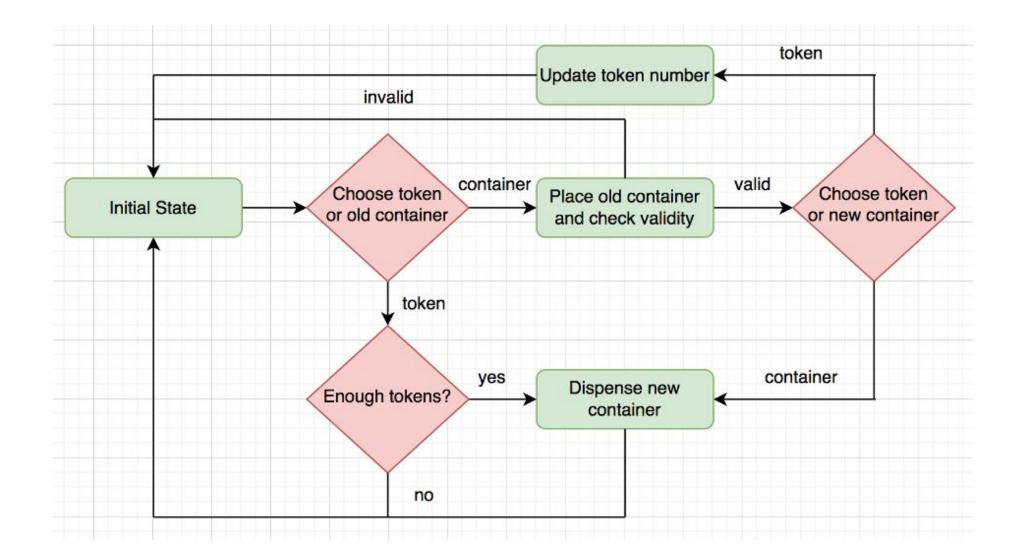
Requirements

- Machine should complete exchange within 15 seconds from start to finish
- 2. Dispense exactly one container upon a dispense request without any mechanical issues

Verification


- Repetitively time how long it takes to complete the exchange from start to finish
- 2. Repetitive tests, check if only one container is dispensed

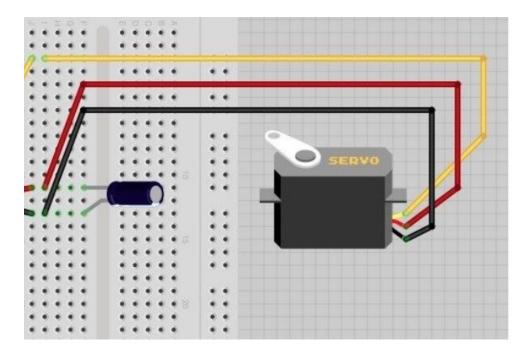
<u>Validity</u>


1. Will be validated in the video!

G2G system at U of I dining halls is only a service, not a product

- Physical Design:
 - Downscale
 - Retrieval & Dispensing mechanism
 - QR scanner continuous mode & Field of View
 - Transparency of containers
 - Needed a retrieval system + accurate weighing scale
 - Load cell with two arms beneath

State Machine


Servo Motors

• Non-continuous motor: RPM & angle tuning

- Continuous motor: RPM & duration tuning
 - Using PWM: pulse of ~1.5ms to stop motor
 - Calibration (adjustment screw & potentiometer)
 - 0 (CW full speed), 90 (stop), 180 (CCW full speed)

Issue: erratic behavior when powered

Solution: separate power supply, 470uF capacitor, software

Card Reader (iCard)

• Interfacing with HID device, debugging driver code

- Failure with MSR 123
 - USB protocols (Product ID)
 - Device Descriptor
- MSR 90
 - Modify to handle only key-down interrupts
 - 3 tracks (header, data, unused)

CARDHOLDER/UNIVERSITY UIN: 667474

RightShift changed DN >22< S ASCII: % RightShift changed UP >22< S RightShift changed DN >05< S ASCII: B

ECE 445/Team 38

QR Scanner

- Reading/Writing to address of QR
 - Mode change to continuous
 - UART scan commands
 - timeout value

reading QR 3213 QR successfully read

Issue: UART serial port buffered upon failed container return due to multiple scans

- Dynamic vs Static QR
 - Dynamic: encoded information changes
 - Static: fixed information (may become obsolete)

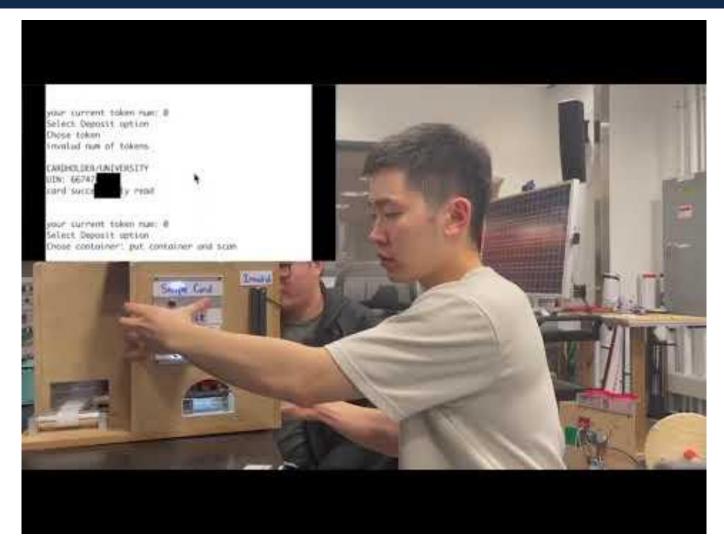
Solution: clear serial buffer if invalid

Load cell

- Strain gauge load cell & Amplifier
 - Convert load into electric signals
 - Degree of voltage change -> digital reading as weight

- Calibration process:
 - Software to set to 0 and place known weight
 - Adjust calibration factor (-7500)

weight: 3.23 RETRIEVING


weight: 11.47 invalid container

Issue: easy fluctuation in measurement when first inserted

Solution: delay measurement until QR scanner validation completes

Video

Link: https://www.youtube.com/watch?v=p8fdRb78moU&t=1s

- LED vs Display (LCD)
 - Imitate behavior of a vending machine
 - User information abstracted
 - At most 1 token needed

- Stepper vs Servo motor
 - High torque at high speed
 - Feedback (closed loop)

- QR vs Barcode
 - Barcode for small data
 - QR for human error
 - Orientation

- **RFID** vs Magnetic Card Swiper
 - iCard
 - Reduced layer of identification

- Success:
 - \circ Physical solution to current G2G system \checkmark
 - \circ Integration with iCard \checkmark
 - \circ Full functionality achieved \checkmark

- Work in Place:
 - Power supply component
 - PCB modification
 - USB Shield

• Hardware

- Separate power supply for motors
- Wiring in downscaled container
- Software
 - Integration: USB task and UART communication
- Parts & Components
 - Machine shop
- Learning: soldering, abstraction details

Future Work

- Database
 - Store more information (different containers, date)
 - Limited write cycles for on-chip memory
 - Scalable if using several G2G machines

- Display
 - Allow multiple choices and selection
 - Display non-sensitive account information (token)
 - Easy use with on screen instructions

- Security
 - No layer of security
 - \circ Data loss

- Safety
 - Mechanical jamming
 - Lack of warnings/alerts
 - Motors at high speed

Thank You For Listening!

Any Questions?

Contact Information:

John Kim: jaehank2@illinois.edu Henry Guan: henrgy3@illinois.edu Ariocie Liang: arliang2@illinois.edu

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN