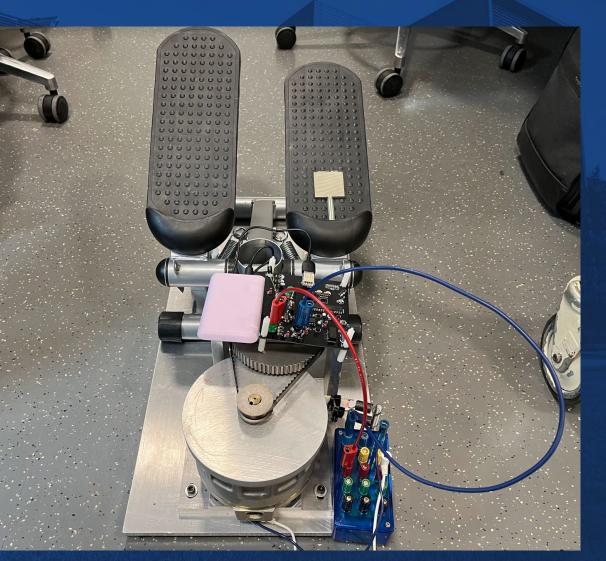


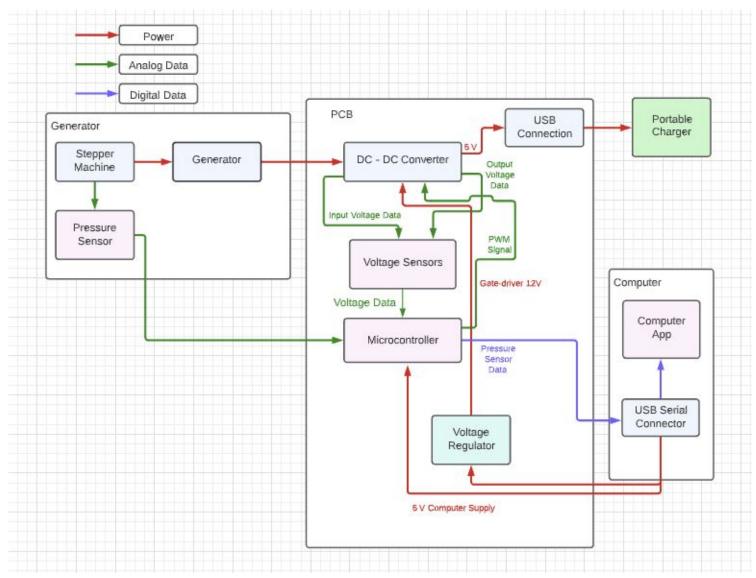
Stepper Machine Power Generation Group 46: Zach Deardorff, Jooseung Kim, Jayden Cho

05/02/22



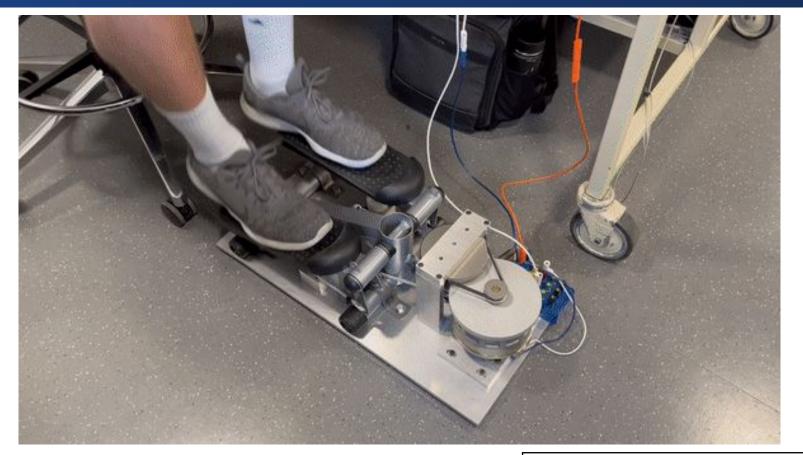
Our Problem

We found that during the pandemic and normal work days people sit in their chairs way too much. It has been found that people who sit for more than 13 hours a day are actually at a 200% higher risk of death when compared to people who sit for only 11 hours or less per day.

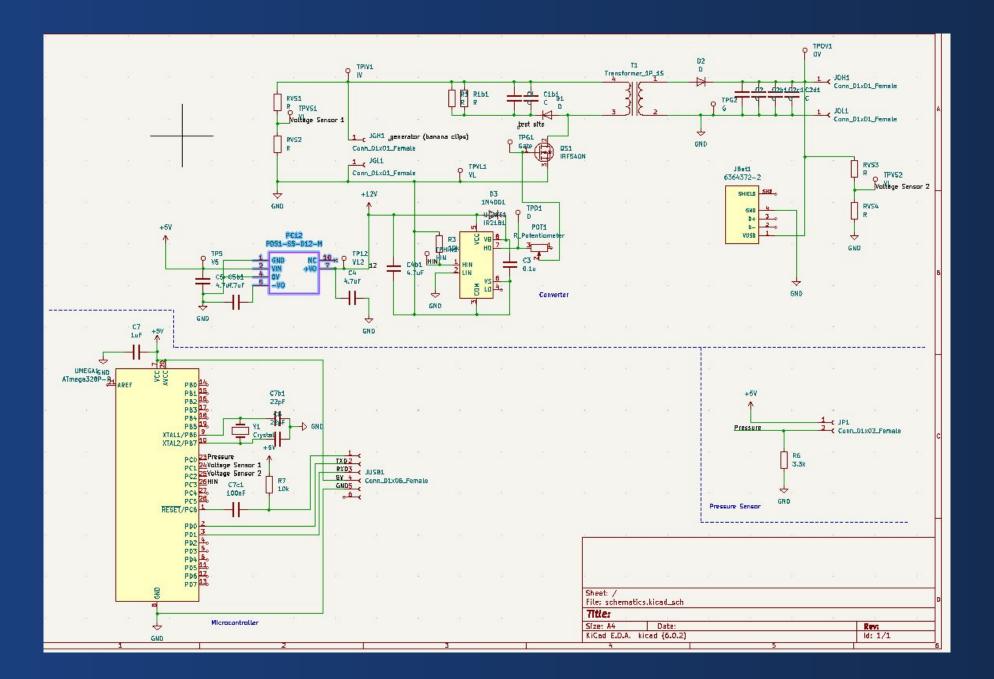

Our Solution

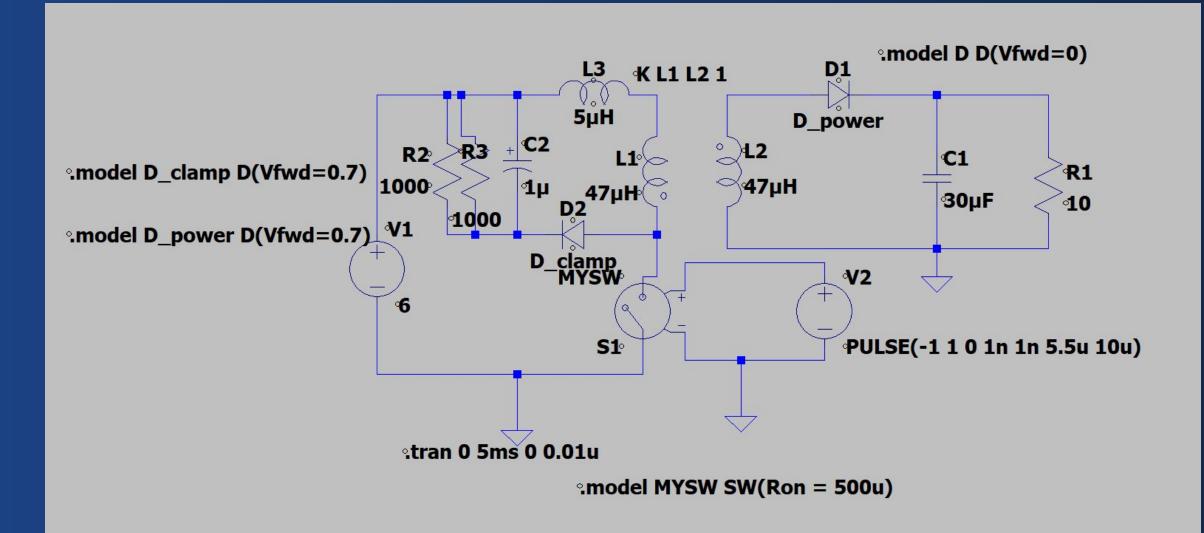
Ι

- 1) The power electronics, our DC-DC converter, needs to be able to convert the electrical energy generated from the motor and stepper into a constant 5V to supply the output to the portable charger within 5%.
- 2) Machine can be used while sitting, and small enough so that it can fit under a desk (About 36 inches deep, around 30 inches tall, and minimum width for a person of around 24 inches[2]).
- 3) The pressure sensor and computer program system is able to reinforce working out at least 8 times a day (Once every hour of an 8 hour workday).

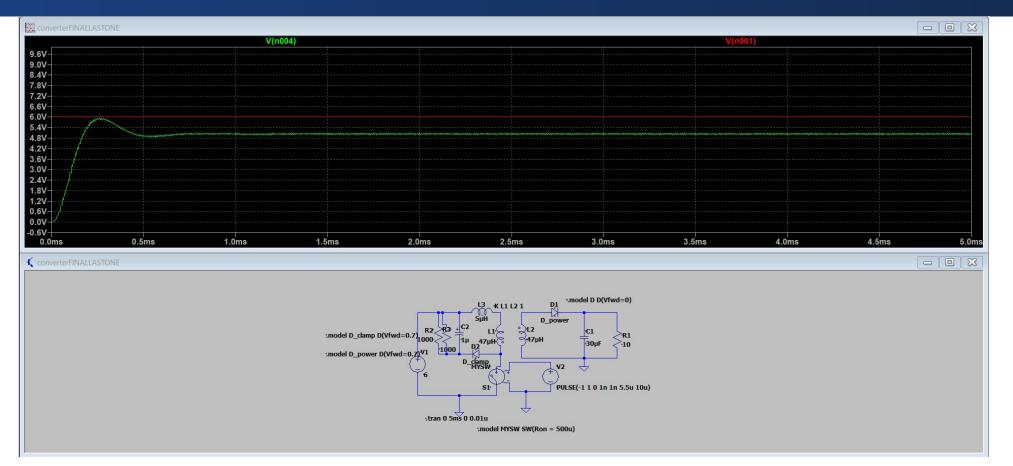

Block Diagram

(Our Block Diagram showing major subsystems)

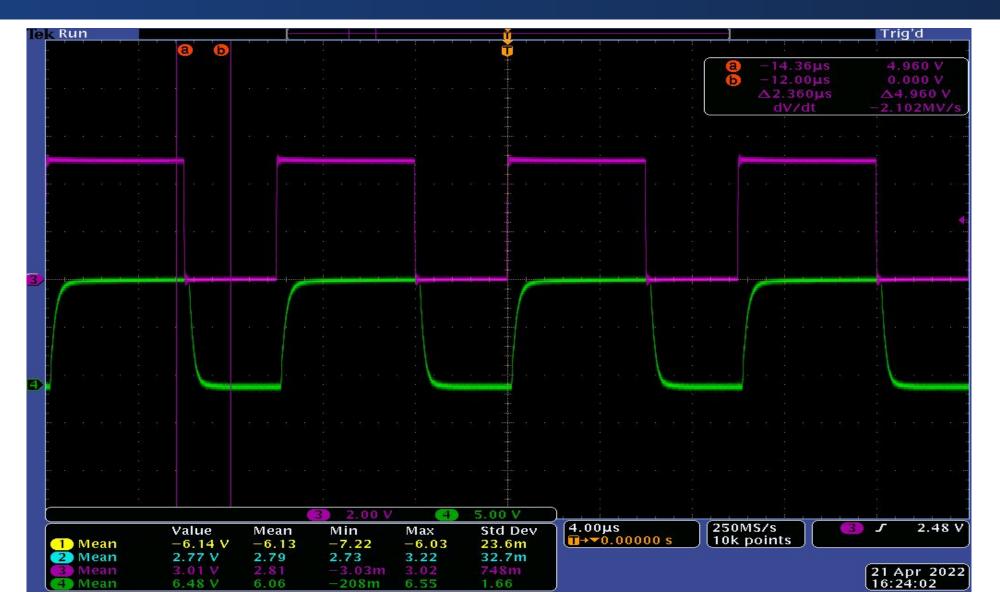

Stepper Machine Power Generation


Stepper Machine Creating Electricity!

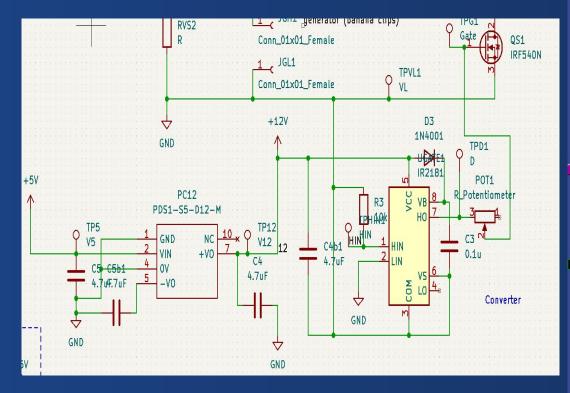
Requirement	Verification
The stepper system needs to be able to fit under a desk.	 Measure the width and height of the machine. Verify that depth < 36 inches, height < 30 inches, width < 24 inches



DC DC Converter

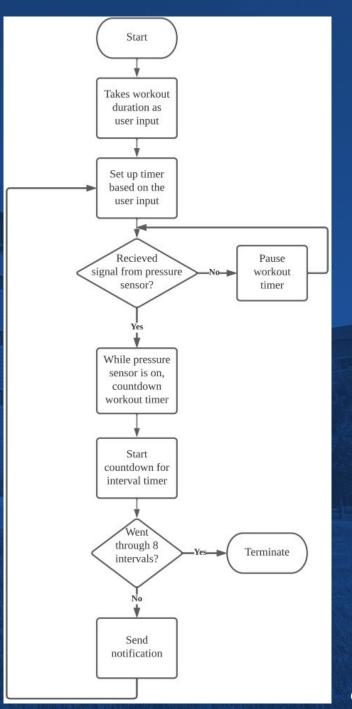

DC DC Converter

Requirement	Verification		
Needs to output 5V with a tolerance of $\pm 2.5\%$.	 Use a variable DC voltage supply to the converter input. Connect a 30hm (10% tolerance), 30 ohm (10%), 1000hm (10%) to the output 		
ECE 445 / Team 46	 Measure the output with an oscilloscope Change the values of the DC voltage supply from 1V to 10V. Check that the output is 5V ±2.5 GRAINGER ENGINEERING 		



PWM Signal and Voltage Control Algorithm

PWM Signal and Voltage Control Algorithm



Requirement	Verification	
Must take in voltage at the input and output of the DC-DC converter and create the appropriate duty cycle for the converter. (PWM capability)	 Connect an oscilloscope to the gate drivers. Produce a DC voltage at the inputs for the microcontroller (1V to 10V) Run control code mode for the microcontroller. Ensure that the microcontroller is producing correct PWM by probing the input to the gate driver circuit. Change input DC voltage and ensure that microcontroller changes PWM signal correctly. 	

Computer Application

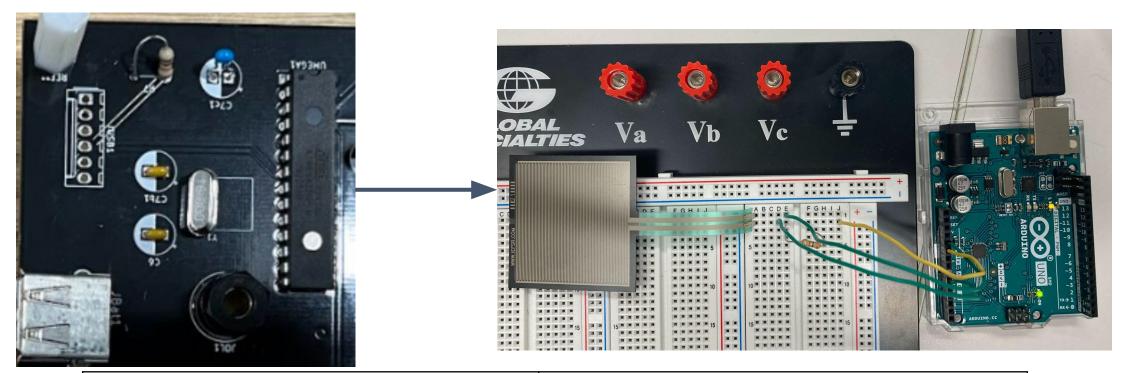
PWM Signal and Voltage Control Algorithm

Requirement		
Needs to be able to sense voltage within plus or minus 2.5%.		

Reference	Voltage:	0.73	Vsense_high:	12.62	Vsense_mid: 4.98	Output Voltage: 5.01	D
Reference	Voltage:	0.73	Vsense_high:	12.59	Vsense_mid: 5.05	Output Voltage: 5.00	D
Reference	Voltage:	0.73	Vsense_high:	15.57	Vsense_mid: 5.04	Output Voltage: 5.04	D
Reference	Voltage:	0.73	Vsense_high:	15.83	Vsense_mid: 4.97	Output Voltage: 4.97	D
Reference	Voltage:	0.73	Vsense_high:	9.16	Vsense_mid: 4.97	Output Voltage: 4.97	Du
Reference	Voltage:	0.73	Vsense_high:	9.09	Vsense_mid: 5.02	Output Voltage: 5.02	Du
Reference	Voltage:	0.73	Vsense_high:	10.75	Vsense_mid: 5.00	Output Voltage: 4.98	D
Reference	Voltage:	0.73	Vsense_high:	9.34	Vsense_mid: 4.97	Output Voltage: 5.00	Du
Reference	Voltage:	0.73	Vsense_high:	9.21	Vsense_mid: 5.03	Output Voltage: 4.99	Du
Reference	Voltage:	0.73	Vsense_high:	9.29	Vsense_mid: 5.03	Output Voltage: 4.97	Du
Reference	Voltage:	0.73	Vsense_high:	11.26	Vsense_mid: 5.01	Output Voltage: 4.97	D
Reference	Voltage:	0.73	Vsense_high:	11.44	Vsense_mid: 4.98	Output Voltage: 4.97	D
Reference	Voltage:	0.73	Vsense_high:	11.35	Vsense_mid: 5.00	Output Voltage: 5.05	D
					_		

Pressure Sensor R&V

Pressure not applied:



Pressure applied:

	*	Agilent Tech	nologies	InfiniiVision	DSO-X Digital Sto	3034A rrage Oscilloscop	e	350 MH 4 GSa/s	z MEGA Doom	Measurements #
EFE Keylige Cullineton Sino Data 30 Coluzió Dese associazore En dese associazore desenazoreales			3	4	Digital Sto	4.000	•	Auto?	1 3.20V KEVSICHT Toprwidders Acquisition = Normal 1.0053/s Channels = DC 10.0.1 DC 10.0	Pk-Pk(1): 600mV Freq(1): Low signal
									DC 1.00:1 In Measurements IPk-Pk(1): Freq(1): 600mV Low signal DC RMS - Cyc(1): No adges Avg - FS(1): 4.409V	DC RMS - Cyc(1): No edges
		Save to file = (s	0	ave to None>	File Name	Settings		0	Press to Save	Avg - FS(1): 4.409V

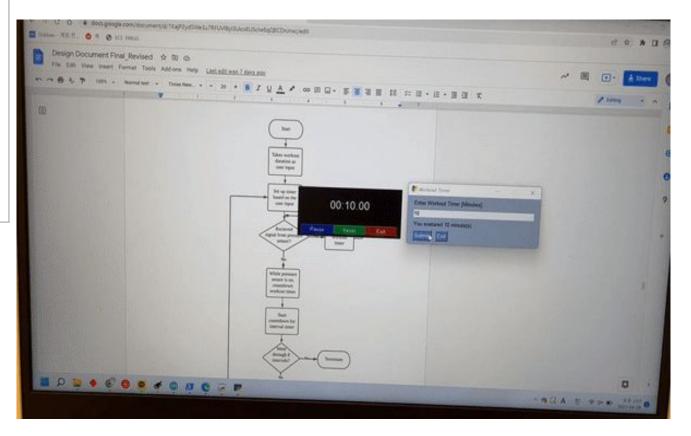
Requirement	Verification
Must be able to sense pressure of force above 10 kg.	 Without connecting to PCB first construct circuit below on testing breadboard.
Pressure 2 Conn_01x02_Female	 Connect 5 V DC supply to the pressure sensor circuit.
↓ GND	3. Read voltage across the 3.3k ohm resistor
Resistance: 657628.00 ohms Force: 2.37 g Resistance: 3124.40 ohms	4. Apply pressure and make sure that voltage increases.
Force: 497.87 g Resistance: 409806.25 ohms Force: 3.80 g	5. Apply weight of around 10 kg to ensure that the
Resistance: 468811.41 ohms Force: 3.32 g Resistance: 217056.02 ohms Force: 7.17 g	sensor can handle sitting person weight.

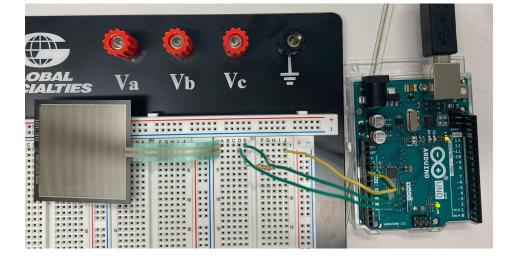
Microcontroller Integration Challenges

Requirement	Verification			
USB must transmit information from the microcontroller to the computer.	 Write and apply dummy code with LED circuit to the microcontroller that won't hurt the system. Test the code to ensure that the microcontroller is able to send data to the computer through the USB data pins and that a simple LED can blink. 			

Computer Application R&V

Requirement	Verification
When activated, the computer app must take in the amount of time the user wants to work out every hour	 The user inputs a workout duration. Verify that the application can display the amount of time the user imputed and have a countdown.




Computer Application R&V

4

Requirement	Verification			
When the user touches the pressure sensor the computer app must start the timer.	1.	Check that counts dow user applie the sensor		
	2	Check if th		

- Check that the timer counts down when the user applies force on the sensor.
 Check if the timer stops counting down
 - Check if the timer stops counting down when the force is not applied

Computer Application R&V

Requirement	Verification			
Must be able to send notification to remind users to work out after an hour break.	 Verify that the interval counter appears after the duration timer is done. Verify that the app sends out notification when the interval timer hits 0. 			

The Future

Thank you for listening! Questions? ן נ

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN