I-Bottle

ECE 445 Design Document

Evan Dawson (evanfd2), Michael Tzeng (mhtzeng2), Homero Vazquez (hvazqu6)

Team 58

TA: Akshatkumar Sanghvi

Spring 2022

Content	ts				
1 Int	1 Introduction				
1.1	Problem and Solution	3			
1.2	Visual Aid	3			
1.3	High-level requirements list:	3			

2	Des	ign	4		
	2.1	Block Diagram	4		
	2.2	Physical Design (if applicable):	4		
	2.3	Sensor Subsystem	4		
	2.4	User Interface Subsystem	6		
	2.4	Power Subsystem	6		
	2.5	Control Subsystem	7		
	2.6	ISP Subsystem	7		
	Tolera	nce Analysis	9		
3	Cos	t and Schedule	9		
	3.1	Cost Analysis	9		
	3.2	Schedule 1	10		
4	Discussion of Ethics and Safety				
5	Citati	ons 1	10		

1. Introduction

a. Problem and Solution

Induction kettles are extremely popular, even compared to gas powered stoves. The issue with a kettle is the transfer of hot liquid to a thermally insulated container to steep your tea or make your coffee. We propose an all in one solution that will heat your liquid to the desired temperature and warm on the go.

b. Visual Aid

c. High-level requirements list:

- 1. The induction heating coils will supply 10-20 kW to the base heating plate to boil the liquid inside the container in as little as 5 minutes.
- 2. Sensors attached to the bottle will measure the temperature of the liquid within 0.5 degrees Celsius.
- 3. The wireless induction charging pad will transfer 12 V from the wall outlet to the generator via magnetic wireless induction with an optimized efficiency of 50% to 70%.
- 4. Users will be able to view the current temperature of the liquid and select the desired temperature of their liquid with the press of a button.
- 5. The control unit will transition seamlessly between low, medium, and high power states based on the computed temperature differential.

2. Design

b. Physical Design (if applicable):

c. Sensor Subsystem

The sensor subsystem will measure temperature data from the liquid in our bottle and the heating plate that is heating the liquid. It will also measure pressure data from the bottle cap. When the bottle charger system is plugged in or the bottle is turned on, the sensors will measure data and send this data to the microcontroller. The thermocouple and barometric pressure sensor will use SPI protocol while the DS18B20 liquid temperature sensor will use I2C protocol. The thermocouple requires a digital converter which is the purpose of the MAX31855. The MCU will process the data and send the result to the LCD screen for the user to view.

Requirements

- 1. The MAX31855 will be supplied a voltage of 3.3 V \pm 1% from the voltage regulator. The DS18B20 will be supplied a voltage of 5V \pm 1% from the voltage regulator. The MPL115A1 will be supplied a voltage of 5V \pm 1% from the voltage regulator.
- The MAX31855 must supply an output current of 1.6 mA. The DS18B20 must supply an output current of 1 mA. The MPL115A1 will supply an output current of 5 μA.
- 3. The MAX31855 will measure between -270° C and $+700^{\circ}$ C with an accuracy of $\pm 2^{\circ}$ C. The DS18B20 will measure between -10° C to $+85^{\circ}$ C with an accuracy of $\pm 0.5^{\circ}$ C. The MPL115A1 will measure from 50 to 115 kPa with ± 1 kPa accuracy.

Verification

- Measure output voltages from the MAX31855, DS18B20, and
 MPL115A1 using a voltmeter or oscilloscope, and ensure they maintain a steady voltage of 3.3 V allowing a 1% deviation, 5 V allowing a 1% deviation, and 5 V allowing a 1% deviation, respectively.
- Measure output currents from the MAX31855, the DS18B20 liquid temperature sensor, and the MPL115A1 barometric pressure sensor using an ammeter, and ensure they maintain a steady current of 1.6 mA, 1 mA, and 5 μA respectively.
- 3. Measure temperature of water and base plate using a kitchen thermometer to compare to measured temperature from sensors and ensure they are accurate within 2°C and 0.5°C respectively. Measure pressure of room with built in phone barometer to compare to sensor and ensure measurement is accurate within 1 kPa.

Commented [TMH1]: After power RV, change threshold if necessary

2.4 User Interface Subsystem

The user interface subsystem will allow the user to choose and view the desired temperature of their liquid as well as turn the bottle on and off. The subsystem will consist of a 4x4 Matrix Membrane Keypad with outputs routed through a CD405xB 8 channel Analog Multiplexer/Demultiplexer to allow for manual input of desired temperature, a NHD LCD display to allow the user to view the current and desired temperature of the liquid, and a ______] button to turn the bottle on and off.

Commented [TMH2]: Figure out which button from arduino package we have already and add to components spreadsheet, as well as detail in this section.

Commented [TMH3]: After power RV table, fill in

Requirements	Verification		
1. Keypad should send correct user	1. To verify functionality, we will test		
input.	the keypad on our PCB board and		
2. LCD display should output current	check that the inputs correspond to the		
and desired temperature of liquid.	correct outputs using the IDE console.		
3. Button should power on and off the	2. We will watch the LCD display to		
bottle.	verify that the outputs on the LCD		
	correspond to the our provided input		
	such as "Hello World" from our IDE		
	console.		
	3. We will use a multimeter to ensure		
	that no power is being supplied to the		
	bottle when the bottle is powered off,		
	and that <u>1k</u> W are being supplied to		
	the bottle when the power is on.		

d. Power Subsystem

Our power subsystem will supply power internal and externally through two voltage regulators, the L7805 for 5v conversion, and the LP2953-3.3 for 3.3v conversion. These voltages will be used for the internal chips, which vary between needing 5v and 3.3v power. This will be supplied by an external 9v battery. The MCP3302 is used to convert digital output signals from the

6

microcontroller into analog signals, used by the input keypad for an analog clock, and used externally to send data signals to the I-Bottle's induction heating system.

Requi	rements	Verifi	cation
1.	Input supply from rechargable battery and use the voltage regulatory systems into +5v and +3.3v	1.	Input of 9v with universal ground, converted into 5v with 1% accuracy relative to ground, and 3.3v within 1%
2.	Use the Digital to Analog converter to send analog signals externally to control the Induction Coil and internally to create an analog clock	2.	accuracy Input MOSI from the Microcontroller and convert into a 3-bit synchronous clock aligned with Microcontroller clock signal
		3.	Send SPI analog data to an extrenal connection, ensuring a 5v, low frequency (about 60Hz) signal gets sent externally.

e. Control Subsystem

Our control subsystem will consist of a STM8S003K3 microcontroller which will receive data from our peripherals such as our sensors and keypad and transmit data to our LCD display after processing all the received data. The microcontroller requires a regulator capacitor, such as the ADP2108 step down DC-to-DC converter. The microcontroller will receive and send data using SPI and I2C, and be programmed by USB via UART data protocol, the latter which is detailed in the ISP subsystem.

					÷
	Computation +80				
	MICROCON	TROLLER	STHESOD	IE3T	
	<u>.</u>	PA1	eq.		
	- <u>1</u>	PA2 PA3			
	.16	PBO			
	-15	P81	PDO	<u>.</u>	
	- 17	P82	P01	22	1
- 111	-17	P83	P02	20	1
14	11	P84	PD3	29	
	. 10	P85	204	30	1
	9	687	P00	34	
		r 0)	P07	32	÷ .
	_18	PC1		_	1
SCIR	. 19	PC2	PES	17_CS	÷
	. 20	PC3			1.
		PC4	PF4		10
	NOR 12	PC5			
100	NIED TH	PCő			1.
	A120 23	PC7			1
cs	RESET 1	MART			
	5	NEAR			÷
			ŝ		1.1
			1	' II	1.1
		-	end 🕂		1.
- Cré					1.1
	+5¥				
	A 114	05	10 1-11		
	, ADI	-2100AUJ-:	LO LEH		1.1
		Vin SW	2		
Cinci			4	COuts	1.1
4.74F	- T	5 18		1.0uF	1.1
		~			
				7	
			6	80	
					1.

Requirements	Verification
1. Perform calculations with sensor data	1. Simulate current and desired
to send current and desired	temperature situation to test
temperature to LCD display as well as	calculation of temperature differential
use calculated temperature differential	and ensure that sufficient power is
to route necessary power to heating	supplied to heating coils.
coils.	2. Measure temperature of coils to check
	that power supplied aligns with
	temperature of coils.

2.6 ISP Subsystem The In System Programming subsystem will allow the microcontroller to be programmed via USB connection. This requires a FT231X USB to full handshake UART IC to connect with our microcontroller.

Requirements

- 1. The FT231X will be supplied a voltage of $5V \pm 1\%$ from the voltage regulator.
- 2. The FT231X will handle the data stream from USB to UART to provide communication between a computer that will program the microcontroller while being compliant with USB 2.0 specifications.

Verification

-	Measure output voltage from the
	FT231X using a voltmeter or
	oscilloscope, and ensure it maintains a
	steady voltage of 5V allowing a 1%
	deviation.
-	Configure FT231X with its built-in
	USB protocol engine to ensure

compliant transfer of data from USB to UART.

Tolerance Analysis

Commented [TMH4]: Homero, need to digitize the tolerance analysis from the design doc on google docs, v2

3. Cost and Schedule

a. Cost Analysis

Parts:

Component name or Number	Quantity	Price	TOTAL PRICE
ADDDDD BUTTON	1	0	0
3245 Thermocouple Type-K	1	9.95	9.95
MAX31855 Thermocouple-to-Digital Converter	1	7.76	7.76
DS18B20 Waterproof Thermometer	1	9.95	9.95
MPL115A1 Barometric Pressure Sensor	1	7.95	7.95
NHD-C0220BiZ LCD display 20x2	1	13.49	13.49
27899 Parallax 4x4 Matrix Membrane Keypad	1	9.95	9.95
CD4051BM Single 8 Channel Analog Mux/DeMux	1	1.13	1.13
STM8S003K3 MCU	1	2.13	2.13

Commented [TMH5]: Add component name of button, also find price

ADP2108 Step down DC-to-DC converter	1	2.12	2.12
FT231XQ-T USB to UART IC	1	2.22	2.22
USB-A1VSB6 USB connector	1	0.69	0.69
L7805ACD2T Positive voltage regulator IC	1	0.89	0.89
LP2985-3.3 150 mA, Low-Noise, Low-Dropout Regulator	1	1.06	1.06
MCP3302 Quad Channel SPI Interface	1	5.56	5.56
Lithium Ion Rechargeable Battery (9v)	2	12.5	24.99
MFBW1V2012-801-R Ferrite Bead	2	0.1	0.2
polarized 10 uF cap	2	0.72	1.44
1 uF cap	1	0.18	0.18
2.2 uF cap	1	0.19	0.19
0.01 uF == 10 nF cap	3	2.01	6.03
10 uF	1	0.29	0.29
0.1 uF == 100 nF cap	3	0.29	0.87
47 pF cap	2	0.2	0.4
4.7 uF	2	2.39	4.78
1N4148 diode	2	0.1	0.2
1 uH inductor	1	0.41	0.41
10k resistor	5	0.16	0.8
27 resistor	2	0.26	0.52
1k resistor	1	0.42	0.42
4.7k resistor	1	0.46	0.46
TOTAL			92.04

Commented [TMH6]: Idk what voltage we need for this, so add component name, quantity, and price

Total component price = \$92.04

Labor costs:

Cost = \$30/hour * 10 weeks * 10 hours/week * 3 people * 2.5 = \$22,500.00

Cost / person = \$30/hour * 10 weeks * 10 hours/week * 2.5 = \$7,500.00

b. Schedule				
Week		Evan	Michael	Homero

2/14	Research parts for	Research parts for pcb	Research parts for pcb
	induction system		
2/21	Design power pcb	Design UI and USB	Design sensor pcb
	schematic	pcb schematic	schematic
2/28	Finalize PCB Design	Finalize PCB Design	Finalize PCB Design
		and research bottle	
		system design	
3/07	Research	Research	Research
	Microcontroller	Microcontroller Coding	Microcontroller
	Coding and Order	and Order Components	Coding and Order
	Components	_	Components
3/14	Spring Break	Spring Break	Spring Break
3/21	Test parts and integrate	Write test code for	Write test code for
	into project	microcontroller	microcontroller
3/28	Test parts and integrate	Test parts and integrate	Test parts and
	write Individual	write Individual	integrate write
	Progress Report	Progress Report	Individual Progress
			Report
4/4	Test Parts and Prepare	Test Parts and Prepare	Test Parts and Prepare
	for Mock Demo	for Mock Demo	for Mock Demo
4/11	Finalize Physical	Finalize Physical	Finalize Physical
	Project for Mock	Project for Mock Demo	Project for Mock
	Demo		Demo
4/18	Finalize Any Errors	Finalize Any Errors	Finalize Any Errors
	from Mock Demo and	from Mock Demo and	from Mock Demo and
	Prepare for Final	Prepare for Final Demo	Prepare for Final
	Demo		Demo
4/25	Demo, Give	Demo, Give	Demo, Give
	Presentation and Write	Presentation and Write	Presentation and Write
	Final Report	Final Report	Final Report

4. Discussion of Ethics and Safety

Our main concern with the I-Bottle is the heating element. This heating element is a coil that will operate at a low, medium, or high temperature. This coil receives power from the induction generator through the power routing module. This module will be controlled by a state machine ensuring that power is supplied to the coils in an efficient and safe manner to ensure the coil does not overheat. A max temperature threshold will be set so that when our heating plate reaches this temperature, our generator will turn off.

Our secondary concern is the bottle tipping or falling when connected to the base plate. We plan on making our base plate sufficiently heavy to improve sturdiness. We will also place sticky pads on the underside of the base plate to ensure users don't push the device off their countertop easily. The base plate will be flat, with walls on three or four sides of the plate to make sure the bottle itself doesn't fall or slip off the device. Finally, we will implement a locking mechanism that ensures the bottle will be heated only when locked into place. We plan on placing the bottle on some raised contact points and then turning the bottle to lock the bottle into place.

Our final concern is the strong magnetic fields our wireless charger will be creating. Magnetic fields can damage other electronics and the bottle's electronics if not isolated correctly. We will use a material that is ferromagnetic to redirect the magnetic field. We plan on building this material into the walls of the base plate to shield the outside environment, as well as around our pcb to shield our electronic components. Proper caution labels will be put on our device components to ensure the safety of public users.

5 Citations

"IEEE Code of Ethics." IEEE, https://www.ieee.org/about/corporate/governance/p7-8.html.