
Electric Violin Audio Processor

Design Document

ECE 445: Spring 2022

Wei Gao (weigao4)

Alex Seong (aseong2)

Scott Foster (scottbf2)

Date Written: March 6, 2022

TA: Jeff Chang

Team: 22

Contents

1 Introduction III

1.1 Problem Statement . III

2 Proposed Solution III

3 High Level Requirements IV

4 Design V

5 Subsystems VII

5.1 Power Supply . VII

5.2 Audio Processing . VII

5.3 User Interface . XIV

6 Cost and Schedule XV

6.1 Cost . XV

6.2 Schedule . XVII

7 Tolerance Analysis XVII

8 Ethics and Safety XVIII

A Circuit Schematics XX

II

1 Introduction

1.1 Problem Statement

Current electric violin pickups tend to fall in one of two categories. Inexpensive pickups are

readily available for either acoustic or solid-body violins, but produce a sound quality which is

sometimes described as ”tinny” or ”nasal”, and whose harmonic content is too limited for a signifi-

cant amount of sound design to be carried out. These typically have one piezoelectric sensor for the

entire bridge. High-quality pickups produce a ”rich” sound with well-balanced harmonic content

which is well-suited for use with effects pedals and other sound design tools, but are expensive and

often hard to obtain due to low production volume. These typically have at least one sensor for

each string.

(The sound quality of pickups is highly subjective. An example of the ”nasal” sound of an

acoustic violin piezo pickup is demonstrated in [1].)

We have done some prior work with 3D printing electric violin bridges having one sensor for

each string. It is difficult to ensure that each string has a similar sound quality or volume by

changing the mechanical design of the bridge alone, except by trial and error. Furthermore, the

type of strings used can drastically affect the sound of the instrument; for example, steel strings

are characteristically ”bright” and tinny, while Thomastik Dominant synthetic strings are known

for having a ”thin”-sounding E string whose timbre contrasts with that of the other three strings.

(This is likewise a very subjective assessment, but [2] shows an example of discussion on this topic.)

The sound of the electric violin can also be affected by the properties of the effects chain or

sound system, such as the size of the amplifier speaker.

2 Proposed Solution

We will design an audio processor which boosts/attenuates and filters each string of a four-

string electric violin individually, then mixes the four string signals to the instrument output jack.

Furthermore, the user interface will allow the user to save and recall user-defined “presets” of audio

parameters, to account for use with different effects chains or sound systems.

Figure 1 shows the relevant parts of the Mina electric violin. The design is publicly available

III

online [3]. Figure 2 demonstrates the intended integration of the solution into the violin body, with

the processor placed in one of the decorative bouts of the violin.

Figure 1: The Mina electric violin

3 High Level Requirements

1. The volume of each string should be adjustable with gain between negative infinity (mute)

and +3 dB, and the string signal should be filtered using a bandpass filter with variable

bandwidth and center frequency between 100± 2% and 8000±2% Hz.

2. Two sets of audio parameters (i.e. gain, filter center frequency and bandwidth, and volume)

must be able to be saved and recalled as presets using the user interface.

3. The processor must fit in a space of 150x100x50mm (±1 mm in each dimension), which is

roughly the size of the decorative center bout on the Mina electric violin. The PCB should

be housed in an enclosure attached to this part of the violin.

IV

Figure 2: Sketch of proposed solution

4 Design

Figure 3 shows the block diagram for the proposed solution. One digital signal processor handles

audio processing for all four strings. Each LED lightbar has eight LEDs. For the sake of brevity, the

rotary encoders, pushbuttons, LED indicators, and LED lightbars are only drawn once. However,

one rotary encoder and lightbar is to be included for each of the four audio parameters (gain, center

frequency, bandwidth, and volume). Likewise, one pushbutton is to be used for string and preset

selection. Four LED indicators will be included to indicate the active string (only one will be lit at

a time), and the same scheme will be used to indicate the active preset (for a total of two preset

indicators). There is also one LED serving as a power indicator. Together, there are 39 LEDs, four

rotary encoders, and two pushbuttons in the interface.

V

Figure 3: Block diagram of proposed solution

VI

5 Subsystems

5.1 Power Supply

The power supply of the audio processor produces analog and digital supply voltages, to be

used in the rest of the processor, from a battery pack mounted on the instrument. The analog

power supply is 5V nominal, and the digital power supply is 3.3V nominal. The choice of separate

voltages for the analog and digital sections of the design is motivated by the need to isolate the

analog circuitry from noise produced, as well as design flexibility for the analog circuitry.

Table 1 shows the requirements and verification steps for this subsystem.

Requirement Verification steps

The power supply for the audio proces-
sor should regulate the 6V nominal bat-
tery voltage to a 5 ± 0.25V analog and
3.3± 0.17 digital power supply.

1. Connect a 6±0.3V power supply to the battery voltage
input (this range simulates fully charged and almost-
dead batteries).

2. Verify that the 5V regulator outputs 5±0.25 V on its
output voltage pin.

3. Verify that the 3.3V regulator outputs 3.3±0.17 v on
its output voltage pin.

The power supply should be able to pro-
vide 500±25 mA to all components (as-
suming 300± 15 mA allotted to digital
components and 200 ± 10 mA to ana-
log).

1. Turn on all 39 LEDs in the user interface, and pro-
gram the microcontrollers to do something computa-
tionally intensive.

2. Verify that the current drawn from the battery input
by the 5V regulator is 300± 15 mA.

The power supply should protect from
reverse-polarity and overcurrent events.
Overcurrent is defined as drawing 1±0.1
A or more from the battery input.

1. Connect a 6±0.3 V power supply to the battery input.

2. Connect a 6±1% power resistor between the input to
the 5V regulator and ground.

3. Verify that the power light turns off, indicating that
power is lost to the rest of the audio processor.

Table 1: Requirements and verification for power supply.

5.2 Audio Processing

This subsystem applies gain/volume adjustments and filtering to the input signals from each

piezo pickup, then mixes the four string signals to the final instrument output.

For each string, the processor has a gain control prior to filtering which varies between −∞ and

+3(±0.5) dB, and the same type of gain control (called “volume”) after filtering. The separation of

VII

these gain controls allows more flexibility in the sound design of each string. Piezoelectric sensors

generally output a voltage signal around 200 mV p−p. To boost that signal to a level such that it is

usable by our DSP chip we make use of a preamp such as the one shown in figure 4. Piezoelectric

sensors are able to be represented in a circuit by a voltage source in series with a capacitor, allowing

for a preamp circuit that can easily be configured for the signals received from the pickups in the

form of an op-amp charge amplifier.

Figure 4: Op-amp Charge Amplifier [4]

For each string, the processor has a bandpass filter with variable center frequency (nominally

between 100 and 8000 Hz) and bandwidth. The bounds of the center frequency are based on the

frequencies of the open strings as stated in [5]. The open G string has a frequency of 196 Hz and

is the lowest note on the string, while the open E string has a frequency 659.3 Hz. The violin can

play a few octaves above open E, and so choosing 8000 Hz as an upper bound gives flexibility in

filtering these higher notes (and harmonics).

We intend to use the biquadratic bandpass filter implementation from [6]: given the sampling

frequency Fs, and the center frequency f0 and quality factor Q of the filter, we calculate parameters

ω0 =
2πf0
Fs

VIII

α =
sin(ω0)

2Q

Note that relation of the bandwidth BW with Q is given by

1

Q
= 2 sinh

(
ω0BW ln(2)

2 sin(ω0)

)

Then the transfer function of the filter is

H(z) =
b0 + b1z

−1 + b2z
−2

a0 + a1z−1 + a2z−2

where b0 = −b2 = sin(ω0)/2, b1 = 0, a0 = 1 + α, a1 = −2 cos(ω0), and a2 = 1− α.

The DSP used is the AK7738VQ chip. This may end up being overkill in terms of processing

power and peripherals, but due to the low cost and on-board computing power, there is no reason

to not use it. It comes loaded with 2 24-bit stereo ADCs, as well as a 24-bit mono ADC. We will

also be ablt to utilize the 32-bit DAC. The chip itself is capable of 28-bit floating point calculations

at frequencies of up to 48 kHz, leaving more than enough overhead for sampling at a 44.8 kHz

frequency. Both of these ICs have more than enough capability to be able to provide the precision

and fidelity of signal that we are striving for.

The audio processing microcontroller connects as a SPI bus responder to the interface micro-

controller. Due to its many peripherals and GPIO pins, the DSP will simply be able to take in

the encoder outputs, as well as the pre-amplified signal(s), and will be able to convert then, filter,

analyze, and manipulate the input signals, before converting the resulting waveform back into an

analog signal for output.

The mixer should combine the four processed audio signals to be sent to the instrument output

jack. The mixer microcontroller should have four audio inputs and one audio output over I2S, as

well as SPI connectivity with the interface microcontroller as a bus responder.

Table 2 shows the requirements and verification steps for this subsystem.

IX

Figure 5: AK7738VQ Block Diagram

X

Figure 6: AK7738VQ DSP Blick Diagram

XI

Requirement Verification steps

The audio processor must have a variable center
frequency between 100± 2% and 8000± 2% Hz.

The verification steps for this requirement are
summarized in Fig 7.

1. Play a white noise signal into one channel
of the audio processor.

2. Configure the channel gain and volume to
unity, and the filter to center frequency
100 ± 2 Hz and bandwidth of 1 ± 0.1 oc-
taves.

3. Verify with oscilloscope FFT that the spec-
tral peak of the output signal occurs at
440 ± 2 Hz and the half-power points are
1± 0.1 octaves apart.

4. Play a sinusoid signal which sweeps linearly
from 100 to 8000 Hz over 5 seconds into the
processor.

5. Verify in the time domain that the output
amplitude is highest at time 7900f0

5 ± 10%,
where f0 = 100± 2 is the center frequency.

6. Repeat these steps for 440±9 and 8000±160
Hz center frequency.

The audio processing must introduce latency of
no more than 100 ± 10 milliseconds between the
input and output audio streams.

1. Play an impulse (click) into a channel of the
audio processor.

2. Verify on an oscilloscope that the impulse
response at the output of the processor be-
gins no later than 100± 10 ms after the im-
pulse input begins. The beginning of a sig-
nal is defined as the first time when the sig-
nal amplitude reaches 5% of its peak value.

Table 2: Requirements and verification for audio processing.

XII

Figure 7: Verification of filter center frequency, bandwidth, and frequency range.

XIII

5.3 User Interface

This subsystem provides controls for the user to change the gain, filter center frequency, and

volume for each string, and to save combinations of these parameters as presets. To do this, the

interface should have rotary encoders to control the gain, filter center frequency, filter bandwidth,

and volume of the active string. A sketch of how the user interface will be designed is displayed in

Fig 8.

The interface will also have a button to rotate between the active string, and four LED indicators

to show which string is active. Similarly, a button is included to rotate between the active preset,

and two preset indicators. To enter the preset mode, the user will turn on a toggle switch for the

presets.A set of 4 light bars with 8 lights each should be included to indicate the current intensity

of each parameter.

The interface should have an external SPI memory for saving presets, and be able to commu-

nicate with the audio DSP over SPI as a bus controller. The interface firmware should save the

current audio parameters to memory when the active string or preset is changed, and one second

after the user changes any of the audio parameters by rotating the encoders.

Table 3 shows the requirements and verification steps for this subsystem.

Figure 8: Sketch of proposed user interface

XIV

Requirement Verification steps

The rotary encoders must be able to
control the gain, filter center frequency,
and the volume of each string.

1. Slowly turn each knob while monitoring the out-
put signal to verify that the output signal actually
matches with the implemented range.

2. Verify with the status LED bars that will light up
more on the light bars as each control parameters in-
crease with the turning of each rotary encoder.

The button to switch between strings
must output correct signal to activate
the right string.

1. Connect the button to LED indicators and verify that
the each LED light up in correct order on each push
of the button

The button to switch between presets
must load the correct preset that is
saved in the SPI external memory.

1. Save the two presets with extreme parameters. For
example, a full gauge of each parameters for the first
preset and zero gauge for the second preset.

2. Connect the button to LED light bar indicators and
verify that the light bars fully lights up and turns off
on each push of the button.

3. Verify that the two LEDs for the preset notification
lights up accordingly on each push of the button.

Table 3: Requirements and verification for user interface.

6 Cost and Schedule

6.1 Cost

Table 4 shows the estimated cost of components for the current power supply and user interface

design (not including the cost of the enclosure and circuit board). The audio processor design is

still tentative, so the parts for it are not included.

The prices are from Digikey and are current as of Feb. 23, 2022. Some of the unit prices are at

higher price breaks, reflecting our intent to purchase more than is needed for a single prototype.

This is to prevent us from becoming bottlenecked from losing or damaging components during

assembly and testing.

The estimated cost of labor for us is given in Table 5, on the assumption that the total price of

labor is 2.5 times the hourly wage times the number of hours worked to design and assemble the

prototype. As the final layout of the user interface is not yet determined, we are currently unable

to estimate the cost of labor for the machine shop.

XV

Item Part no. Unit cost ($) Qty Extended cost ($)
0.1 uF capacitors 06035C104KAT2A 0.0239 21 0.502
10 uF capacitors 106BPS050M 0.293 2 0.586
2-pin keyed header (pins) LHA-02-TS 0.074 3 0.222
2-pin MTA connector (sockets) 3-641535-2 0.212 3 0.636
10-pin JTAG header 3221-10-0100-00 0.615 1 0.615
270 Ω LED resistors ERJ-3GEYJ271V 0.0162 39 0.632
10 kΩ resistors RMCF0603JG10K0 0.0061 14 0.085
1 A resettable polyfuse 0ZCJ0050AF2E 0.177 1 0.177
P-channel MOSFET DMP2066LSN-7 0.433 1 0.433
3.3V regulator XC6227C331PR-G 0.833 2 1.666
5V regulator NCP1117IDT50T4G 0.593 1 0.593
EEPROM BR25H010FVT-2CE2 0.482 1 4.82
Microcontroller MKL43Z128VLH4 7.11 1 7.11
I/O expander MCP23S08-E/SO 1.40 4 5.60
Amber LEDs IN-S42BT5A 0.115 39 4.49
Panel-mount buttons PS1023ABLK 2.01 2 4.02
Tactile pushbutton PTS636 SM50 SMTR LFS 0.118 1 0.118
Rotary encoders EN12-HN22AF25 0.938 4 3.75
Multi DSP with ADC and DAC AK7738VQ 12.40 1 12.40
Op-amp TL072HIDDFR 0.50 2 1.00

Total - - - 49.46

Table 4: Preliminary component list with costs.

Contributor Hourly wage ($) Labor hours (estimated) Total labor cost ($)
Wei 40 210 8400
Alex 40 220 8800
Scott 40 200 8000

Total 120 630 25,200

Table 5: Estimated labor cost for the three designers.

XVI

6.2 Schedule

A schedule for the design of our prototype audio processor is given in Table 6.

Task Assignee Due date
Complete Audio DSP schematic Scott 2022-02-24
Complete PCB layout Scott, Wei 2022-02-28
Create interface mechanical layout Wei 2022-03-05
Design user interface firmware Alex 2022-03-12
Design audio DSP firmware Scott 2022-03-12
Board assembly Wei 2022-03-23
Validate power supply Wei 2022-03-25
Validate user interface Alex 2022-04-01
Validate audio processing Scott 2022-04-01
Integrate prototype Everyone 2022-04-09
Test integrated prototype Wei 2022-04-16

Table 6: Schedule for completing the project.

7 Tolerance Analysis

Latency Latency is a huge problem when it comes to real-time DSP, especially if the signals

being processed require heavy computation. The latency for the ADC and DAC components are

the most meaningful when finding tolerances for the delay. The latencies for both the ADCs and

DACs are relative to the sampling frequency. From the AK7738VQ datasheet, the latency value

for the ADC is determined by Latency = 5
Fs
s where Fs = 48 kHz, therefore

Latency = 0.104ms

While the same process for the DAC results in

Latency =
6.6667

48 kHz
= .139ms

Due to the publicly stated value of 10 ms being the threshold at which latency becomes noticeable,

utilizing the maximum number of ADCs and DACs available on our chip;

Latencymax =
10ms

3ADC + 1DAC
=

10

4
= 2.5ms

XVII

Proving that even with the most processing done on the signals through the multiple ADCs and

DACs, the latency is still unnoticable.

Sampling The sampling rate we require for our signal fidelity and integrity to meet our ex-

pectations is that of 44.8 kHz. Our usable sampling frequencies are much higher, but the common

sampling frequency of 48 kHz would allow for tolerances of

48− 44.8

48
= 0.06667

allowing for a tolerance range of ±6.667% in terms of relative frequencies, much greater than our

needed tolerance range of ±2%.

8 Ethics and Safety

This project presents few safety concerns. All voltages used are 6V or less, using alkaline battery

chemistry. Once placed in an enclosure, there would be no meaningful contact between the user and

the circuits inside. We have included a reverse polarity protection MOSFET in the power supply

design to guard against the possibility of a user installing batteries backward. All capacitors are

used are either electrolytic or ceramic and will create an open circuit in the event of a failure.

This project presents few significant ethical concerns, although following section 1.5 of the ACM

Code of Ethics [7], we must acknowledge that similar prior work exists. Notably, the Strados electric

violin, created by ZETA Violins [8], uses an internal active preamplifier system which allows the

volume of each string and the overall gain to be adjusted manually [9]. ZETA calls this pickup

system ”patented” on their website, but does not list a patent number; additionally, we could

not find a relevant patent upon searching for ”ZETA violin” in Google Patents. Therefore, we

cannot immediately confirm whether this patent exists, let alone if the product is still under patent

protection. This may pose an obstacle if we choose to commercialize the project in the future.

Our pickup design is inspired by Richard Barbera’s design, ”Resonant pick-up system” [10].

The patent expired over a decade ago, and since our bridge is not carved of wood, it is unlikely

that our design would be infringing on this patent anyway.

XVIII

References

[1] H. Reich, I Had to Build a Custom Mute Switch for my Violin. YouTube, Jun 2019. [Online].

Available: https://www.youtube.com/watch?v=oYsp7OIMFAs

[2] S. Tsuchiya, “What’s wrong with dominant e?” Jun 2008. [Online]. Available:

https://www.violinist.com/discussion/archive/14090/

[3] J. Axelsson, “The mina violin (electric) by jaxelsson,” Feb 2017. [Online]. Available:

https://www.thingiverse.com/thing:2122773

[4] ”endolith”, “Electric violin.” [Online]. Available:

http://www.endolith.com/wordpress/2007/10/13/electric-violin/

[5] C. R. Nave, “The violin.” [Online]. Available: http://hyperphysics.phy-

astr.gsu.edu/hbase/Music/violin.html

[6] R. Bristow-Johnson, “Rbj audio-eq-cookbook,” May 2005. [Online]. Available:

https://www.musicdsp.org/en/latest/Filters/197-rbj-audio-eq-cookbook.html

[7] “Acm code of ethics and professional conduct,” Jun 2018. [Online]. Available:

https://www.acm.org/code-of-ethics

[8] “Strados modern - zeta violins: Electric violins cello bass: Zeta mandolins: Pickups repairs,”

Feb 2016. [Online]. Available: https://zetaviolins.com/strados-modern

[9] “Emg mxrp-5 internal preamp for zeta violins,” Jan 2021. [Online]. Available:

https://www.electricviolinshop.com/emg-mxrp-5-preamp

[10] R. Barbera, “Resonant pick-up system,” Sep 1989, uS4867027A.

XIX

A Circuit Schematics

Figure 9: High-level subsystems.

XX

Figure 10: User interface overview.

Figure 11: User interface microcontroller.

XXI

Figure 12: AK7738VQ DSP Circuit

Figure 13: Rotary encoders and quadrature decoder.

XXII

Figure 14: Lightbar indicator, used for audio parameters.

Figure 15: Preamp circuit schematic

XXIII

Figure 16: Modularized preamp circuits showing inputs and outputs

Figure 17: DAC output circuit

XXIV

Figure 18: Power supply.

Figure 19: PCB including components and routing

XXV

