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1. Introduction
1.1 Problem Overview
As air pollution has increased globally, the need for pollution tracking has increased in tandem.
Today, most cities take readings using satellites as well as sensors scattered around the city to
collect an aggregate reading of city-wide air quality [1]. While this may give a good estimate of
the air pollution over a city-wide area, the air quality of individual localities and streets may
differ vastly.

Air pollution can change over the course of a day. A variety of factors including traffic,
population density, the operation of office buildings, and factories can influence the air quality. A
more dynamic calculation of air quality can help people decide which routes to take and which
places to avoid. Some cities like Barcelona and Chicago have tried implementing IOT based air
pollution trackers embedded into city-wide infrastructure to aid in this effort. Google has even
tried to fit street view cars with sensors to track pollution levels [2]. Nonetheless, these devices
are often extremely expensive. For instance, the sensor nodes used in Chicago cost around five
thousand dollars per node [3]. Additionally, the sensors are often spread far apart, preventing
accurate locality-centric/streetwise data collection of pollution.

1.2 Solution Overview
Our solution to this problem is to create a cheap wearable band and an accompanying mobile app
that will continuously monitor the air quality around the user. The broader idea is to have
thousands of users wear this band to help contribute to a city-wide map that everyone can access.
Nevertheless, within the time constraints of the course, we plan to first create a proof of concept
of the band and a simple application that gives alerts to the user about their general vicinity. The
app can keep a personal record of air pollutant levels of the places they visited on a map.

We aim to keep track of carbon dioxide and carbon monoxide. Additionally, since this band will
be portable, it has the potential to be useful as a warning device in indoor spaces. Hence, we also
wish to sense propane as it is a common flammable gas. The band can then help find poorly
ventilated areas and even warn users of potential gas leaks in places like warehouses and storage
rooms. For our project, we only plan to build one band. However, we plan to have multiple
profiles on our app to test how multiple users can update the same map with the pollution data
they collect.
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1.3 Visual aid
A mockup of our idea is shown in Figures 1 and 2. All sizes are approximate for now. We picked
3cm for the thickness of the band because the height of the tallest component we plan to use is
2.5cm. We will try to keep the size of our final device within these approximations if possible.
The housing of the band will either be made using a modified PCB box with the help of the
machine shop or be 3D printed.

Figure 1: Top view of band

Figure 2: Side view of band
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1.4 High-level Requirements

1. The propane sensor should be able to simply detect the presence of propane since any
quantity of flammable gas is dangerous. The carbon monoxide sensor should be able to
detect up to 200 ppm. The carbon dioxide sensor should be able to detect up to 10000
ppm. We have picked these values based on USDA determined values of dangerous
exposure [4] [5].

2. The app will need to be able to take pollution data from the band and update the map at a
period of 5 minutes since pollutant levels do not change rapidly. The app must also warn
the user if the pollution level is not safe or if propane was detected.

3. Our band needs to be wearable and must have around 1-3 hours battery life to be able to
track pollution data when a person makes their commute
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2. Design
2.1 Block Diagram

Figure 3: Block diagram of the project

Figure 3 shows the high-level block diagram for our project. Our design can be broken down into
two broad categories: the board system and the software system. The board system includes the
power subsystem, indicator subsystem, and sensing subsystem. The power subsystem is
responsible for converting the 9V supply into 3.3V and 5V to be used by our microcontroller and
sensor array respectively. The indicator subsystem relays whether or not the band is powered on
as well as whether or not a device is connected to the band. The sensing subsystem is responsible
for collecting and transmitting pollutant data to the connected device. The board system meets
our first high-level requirement by being responsible for powering our sensors and
microcontroller to monitor and send pollutant data to the app. To maintain our third high-level
requirement, we plan to keep the design minimal and ensure that our board is as small as possible
so that the band is compact and wearable. The software system meets our second high-level
requirement and consists of the app subsystem. The app subsystem’s main goal is to visualize the
pollutant data on a map and maintain a centralized map across different user profiles using a
REST server.
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2.2 Subsystem Description

2.2.1 App Subsystem

2.2.1.1 Overview

We intend on designing an Android application to produce human-readable values of the output
of the sensors and use these values in a decision model to alert the user. The application would
also serve the purpose of displaying the heat map, alerting the user if they enter a contaminated
region, and an interface to interact with a server to indicate contaminated regions.
This subsystem aims to solve the second high-level requirement of interacting with the sensor
data and update the shared map with those values to handle user alerts

2.2.1.2 Requirements and Verification

Requirements Verification

Connect the phone to the Bluetooth module of
ESP32 MCU and periodically receive
Bluetooth packets and unpack them without
losing any data in the app.

a) Compare the values sent by microcontroller
(using print statements to the serial monitor)
and the values obtained by unpacking the
Bluetooth packets.

The app should alert the user if the carbon
dioxide and carbon monoxide values go above
a certain threshold. Additionally, any
detection of propane gas should be notified to
the user.

Test 1:
a) Send dummy test values from ESP32 MCU
for each gas above and below their respective
threshold values
b) Verify that the app only notifies if these
values cross the threshold.
Additionally, we can also artificially simulate
conditions that would cause the sensors to
detect a high concentration of gasses to verify
the app alerts. Such conditions include:
Test 2:
a) Place a candle on a table and take readings
at multiple distances from the candle
b) Verify that CO2 and CO readings reduce
the further away we are from the candle using
print statements
Test 3:
a) In a well-ventilated area open a propane
tank and place the band close to it
b) Verify that a notification appears on the app
that propane was detected
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The app should be able to communicate with
the central server to send the local gas values
data (if they cross the threshold) and current
GPS location.

a) Send dummy test values from ESP32 MCU
for each gas above and below their respective
threshold values
b) Verify that the app only sends a POST
request to the server if the values cross the
threshold.
c) Verify if the values received by the server
and the GPS coordinates match the values
sent by the app. In the case where gas values
for the same rounded off GPS coordinate exist
on the server, verify if the value is updated
with an average of the new and existing
values.

The server should maintain a ledger of all the
values sent to it from the app when
contamination is detected. It should also
round off the GPS coordinates by a
predetermined degree to group the values in
100m radius together on the map to adhere to
the safety regulation suggested by the
REVIHAAP paper [6].

a) Send multiple dummy test values from the
app to the server using POST requests and
verify that these values are accurately
recorded by the server using print statements.
b) Verify that the rounding off code works as
intended and only rounded off GPS values are
stored in the ledger. In the case where gas
values for the same rounded off GPS
coordinate exist on the server, verify that it
updates it with the average of the existing and
current value.

The app should periodically fetch the ledger
data from the server to display the
contaminations on a human-readable map.

a) Inject the server with some dummy values
and verify that the app automatically executes
GET requests periodically.
b) Ensure that the ledger on the server
matches exactly with the local ledger after the
GET request is fulfilled. Since the Google
Maps API is going to be used to display the
heat map, ensure that the coordinates from the
ledger are accurately displayed on the map.

The app should alert the user if they enter a
zone that was marked as contaminated by
other users.

a) Inject the server with dummy test values of
gas concentration that exceed the threshold
values.
b) Verify that the app rounds off the current
GPS coordinates (by the same degree as done
while posting the values) and checks for it in
the obtained ledger. If the coordinates match
up, verify that the app sends a notification.

Table 1: Requirements and verification of the app subsystem
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2.2.1.3 Datapath and REST overview

Figure 4: Block diagram for wireless communication

For the app subsystem, we will have two types of communications and the appropriate protocols
to go with them:

BLE Communication
The data exchange from the ESP32 microcontroller to the android application will be via
Bluetooth Low Energy (BLE) protocol. We decided to use this particular protocol because of its
low battery consumption and its easy interface for sending periodic data. BLE limits us to
sending 20 bytes packets at a time which would translate to 20 chars. This is enough for us as we
intend to send the carbon monoxide, carbon dioxide and propane concentration values in a
comma-separated value style (CSV). Since the carbon monoxide values will be between 0-500,
we will need 3 chars for it. Carbon dioxide values will be between 0-10,000 requiring 5 chars
and lastly, propane detection would be a boolean requiring 1 char. The 2 commas used to
separate the values will use 2 chars resulting in a total packet size of 11 chars. This leaves us
with enough overhead to add extra logging data if needed.

The Bluetooth packet data structure will be a char string: [xxx, xxxxx, x] specifying carbon
monoxide, carbon dioxide and propane values respectively. We intend on using the BLE library
native to ESP32 to create a Bluetooth server which will allow us to start advertising from the
microcontroller. Next, we can connect an android phone to ESP32’s Bluetooth and start receiving
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packets. The sensor values can be formatted in the data structure shown above, set as a custom
characteristic and notified to the phone. On the app side, we can experience the event of
receiving the Bluetooth packet and unpack the data structure to get the values.

HttpURL connection
We intend to set up a web server that will serve HTTP GET and POST requests and allow us to
have a central database of all the contamination zones reported by the users. Once a user
experiences higher than threshold values for any gas, the app will call a subroutine that will
construct an object shown below and include this structure in the body of the POST request to
the server.
POST request object:
{
“body”: {

“gps”: (Double, Double)
“co2”: INT
“co”: INT
“propane”: BOOL
}

}
The server will respond to this post request by sending a response status code back to the user.
We will send a status code of 200 for a successful POST request and 400 for a failed one.

On the server-side, we will maintain a ledger in the form of a dictionary of all the data received
where the key will be the rounded down version of the GPS coordinates with the value being the
gas values at that specific location. If we receive values for a GPS coordinate that exists in our
dictionary, we will update the values by an average of the new and existing values. Every app
will periodically send a GET request to the server to get a local copy of this ledger and use that
to visualize the data on google maps and contamination notification for the user. The response
object to the GET request is shown below where the status code of 200 represents a successful
GET request and 400 for a failed one. If the request is successful, the app should unpack the
ledger data from the body of the response back into a dictionary.
Response object for a GET request:
{
“status code”: INT
“body”: [

“gps1”: (Double, Double): {
“co2”: INT
“co”: INT
“propane”: BOOL

},
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“gps2”: (Double, Double): {
“co2”: INT
“co”: INT
“propane”: BOOL

},
…

]
}

The dictionary will then be used to plot the contamination zones on a google map using the
coordinate keys. All the particular gas values will be available to the user by a tap on any
particular contamination zone. Specifically, we will use the google maps Markers to drop a pin
for the contamination zone using the GPS coordinate values from the dictionary. This Marker
will be associated with an Info Window that can be brought up by tapping on a Marker. This Info
Window will list out the gas concentration values for that particular Marker. The end product
will look like the following:

Figure 5: Marker and Info Window on Google Maps [7]
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2.2.2 Power Subsystem

2.2.2.1 Overview
This subsystem takes in battery voltage (~9V) from three 3V cells and steps it down to 5V for
powering the sensors and 3.3V for powering the ESP32. The battery, after a power switch, also
connects to the indicator subsystem which indicates that the device has been powered on.  The
power subsystem needs to step the voltage down while wasting the minimum possible energy in
order to maintain high battery life. The ideal way to do this would be a buck converter for each
voltage while keeping the same 9V input for each voltage required as less energy wastage in step
down means higher battery life over time. The microcontroller operates on 3.3V and the sensor
array operates on 5V, so both of those step-downs will be required.  Hence, the ESP 32 and
sensors will have separate voltage regulators. At the end of each regulator, there needs to be a
denoise capacitor to smooth out the power supply from the regulators.

2.2.2.2 Requirements and Verification

Requirements Verification

The 9V input must come from three 3V
button cells to keep the design compact. This
voltage should not drop below 5V as we use a
Buck converter to step the voltage down.

a) The 9V upper limit can be verified using a
voltmeter and a fresh set of cells by
measuring the voltage across them
b) The 5V lower limit can be verified using a
voltmeter and a discharged set of cells by
measuring the voltage across them

When the band is not being used, there needs
to be a switch between the battery and voltage
regulators to turn off the device and conserve
power

a) Operation of the power switch can be
verified using continuity tests in a multimeter.

The sensors expect a 5V input with a
tolerance of ±0.1V from the voltage regulator.

a) Place the positive prong of the oscilloscope
at the end of the 5V regulator and the negative
prong at the common ground.
b) Monitor the potential difference between
the two prongs to make sure the voltage is
5±0.1V over time.

ESP32 expects an input of 3.3V but can
accept between 2.2 to 3.6V from the voltage
regulator.

a) Place the positive prong of the oscilloscope
at the end of the 3.3V regulator and the
negative prong at the common ground.
b) Monitor the potential difference between
the two prongs to make sure the voltage is
between 2.2 and 3.6V over time.

Table 2: Requirements and verification of the Power subsystem
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2.2.2.3 Circuit Schematic

Figure 6: Circuit schematic of the power subsystem

Figure 6 shows the overall circuit schematic for the power system including two voltage
regulators, a battery (consisting of 3 3V coin cells), and a switch. The resistance, capacitance and
inductance values shown in figure 6 have been directly taken from the LMR36015 Buck
convertors’ datasheets [8] for a voltage step down to 5V and 3.3V. We were presented with a
choice of values between two switching frequencies for the step-down converter. In the end, we
decided to use the appropriate resistance and capacitance values for a lower switching frequency
as it will lead to less loss of power from switching and consequently, a higher system efficiency.
This will help maintain higher battery life for our band to meet our 3rd high-level requirement.
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2.2.3 Indicator Subsystem

2.2.3.1 Overview

The purpose of this subsystem is to indicate whether the band is powered up, if the system is
ready to be connected to, or if some device is already connected to the system. It consists of two
LEDs, one for indicating power and one for indicating the status of the connection. The power
indicator LED will be directly connected to the same voltage regulator used by the sensor array.
The connection LED will be multicolored and powered by the microcontroller. Depending on the
connection status of the band, the connection LED will display a different color.

2.2.3.2 Requirements and Verification

Requirements Verification

The power indication LED needs to turn on
when the device is switched on.

a) Measure the potential difference across the
switch’s end and ground using a voltmeter.
b) Visually check if the power indicator LED
turns on when the switch is turned on.

The connection indication LED needs to turn
on when the microcontroller finishes the
setup. By default, the LED needs to shine blue
upon turning on the band.

a) Connection status of the microcontroller
can be monitored using print statements and
the corresponding LED can be visually
monitored to verify that it lights up blue.

The connection indication LED needs to
change to a different color depending on the
state of the connection.  If a mobile device is
not paired with the band, it should shine blue.
Once a device pairs with the band it should
shine green.

a) Connection status of the microcontroller
can be monitored using print statements and
the corresponding LED can be visually
monitored to verify that it lights up green
instead of blue when we connect a device to
the band.

Table 3: Requirements and verification of the Indicator subsystem
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2.2.3.3 Circuit Schematic

Figure 7: Circuit schematic of the Indicator Subsystem

Figure 7 shows the circuit schematic for the Indicator subsystem consisting of the power LED
and the RGB connection state LED. The CON and RDY signals in figure 7 come from the ESP
32 and are 3.3V. Depending on the state of the ESP 32, a signal will be sent to illuminate the
appropriate LED (blue if the band is ready to pair and green if the band is connected to a phone).

2.2.4 Sensing Subsystem

2.2.4.1 Overview

The sensing subsystem involves the microcontroller (ESP32) and an array of sensors including

a) MQ-2 Semiconductor Sensor for Combustible Gas like propane[9]
b) MQ-9 Semiconductor Sensor for Carbon Monoxide[10]
c) SGP30 Carbon Dioxide Sensor[11]

All the sensors mentioned above use 5V power each. The purpose of this subsystem is to
measure pollution levels and send the data over to the connected phone using Bluetooth or WiFi.
The Carbon Monoxide and Propane sensors connect to the ESP32 [12] via the analog input pins
available on the microcontroller. The Carbon Dioxide sensor is a digital sensor that connects via
the I2C communication protocol. This analog data will be converted to ppm values via the
conversion graphs for each sensor (figures 8 and 9). The microcontroller will send the recorded
PPM values to the app over the chosen wireless transfer protocol every 5 minutes or whenever a
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dangerous amount of any gas is detected. The decision to send every 5 minutes is based on the
fact that air quality readings do not change rapidly unless there is a gas leak. This subsystem
specifically meets our first high-level requirement. Additionally, these sensors are 2.5cm in
height including connection pins, so they have a low profile, allowing us to fit them in a bracelet
(to meet high-level requirement 3).

2.2.4.2 Requirements and Verification

Requirements Verification

Read analog data from MQ-2 and MQ-9
sensors into digital data using analog input
pins on ESP 32.

a) Read voltage output across the load resistor
using an oscilloscope. Call this value V_read.
b) We know that we are using a 12-bit ADC
and the maximum value shows up for 5 V.
Thus, the 0-5V output is linearly mapped
between 0 and 2^12-1. Hence calculate the
digital value using the formula V_read/5 *
(2^12-1)
c) Compare this value to the value read by the
microcontroller using print statements.

Convert sensor data into PPM measurements. a) Convert voltage readings to PPM readings
using the conversion graphs for each sensor.
This can be done by linearizing the graph in
100 ppm segments so that we can map voltage
values to approximate PPM value using
4.7KΩ load resistors for which the datasheet
has mapped ppm to voltage outputs as seen in
figure 8 (for MQ9) and figure 9 (for MQ2).

Establish a successful I2C connection
between ESP 32 and SGP30 to read data from
the sensor.

a) Send wake-up requests and receive a
confirmation to make sure we can
communicate with the sensor.

Establish a successful Bluetooth connection
between ESP 32 and the app to reliably send
data over.

a) Since we are sending our sensor data in one
packet every five minutes, we need the
reliability of one packet every 5 minutes.

Ensure that the sensor data is sent to the app
every 5 minutes

a) Use a timer on ESP 32 to interrupt the
normal flow of code to send collected data
over Bluetooth
b) Verify on the app that the packets are
received every five minutes using assertions
and timeouts

Table 4: Requirements and verification of the Sensing subsystem
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2.2.4.3 Sensor Plots

Figure 8: Voltage vs PPM from SparkFun's MQ9 datasheet[9]

Figure 9: Voltage vs PPM from SparkFun's MQ2 datasheet[10]

Figures 8 and 9 show how the voltage across the sensor change with different gas concentrations
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2.2.4.4 Circuit Schematic

Figure 10: Circuit schematic of the Sensing Subsystem

Figure 10 shows the circuit schematic of the sensing subsystem, including the ESP 32
microcontroller, MQ-9 sensor, MQ-2 sensor, SGP30 sensor and UART header. The UART
header is to be used for programming and data-logging for testing the microcontroller’s
functionality.
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2.3 Tolerance Analysis
For each sensor we have calculated the approximate error using graphs from their datasheet that
catalog the relative readings based on various temperatures and humidity. Since we will be
testing our bands in the spring in Champaign, we have assumed that the temperature will be
between 15-25°C and the humidity will be around 55% [13].  To calculate the percentage error,
we make use of the following formula:

𝛅 =  (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 −𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒)
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒

|| || * 100 

1) MQ-2:

Figure 11: Graph of MQ-2’s relative temperature/humidity characteristics from SparkFun's MQ2
datasheet [9]

The y-axis in figure 11 represents the ratio of Rs/Rso and the x-axis represents temperature. Rs
(the measured value) is the resistance of the sensor in 2000ppm of propane in various
temperatures and pressures. Rso (the absolute value) is the resistance of the sensor in 2000ppm
propane under 20°C/55% relative humidity. Relative Humidity can be assumed to be 55% (the
green curve) and operating temperature is 15-25°C.

Relative error at 15°C:
𝑅

𝑠
−𝑅

𝑠𝑜

𝑅
𝑠𝑜

|||
||| * 100

=   (
𝑅

𝑠

𝑅
𝑠𝑜

 −  1|||
|||) * 100

= (1.1-1)*100
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= 10%

Relative error at 20°C:
𝑅

𝑠
−𝑅

𝑠𝑜

𝑅
𝑠𝑜

|||
||| * 100

=  (
𝑅

𝑠

𝑅
𝑠𝑜

 −  1|||
|||) * 100

=  ( )*1001 −  1| |
=  0%

Relative error at 25°C:
𝑅

𝑠
−𝑅

𝑠𝑜

𝑅
𝑠𝑜

|||
||| * 100

=  (
𝑅

𝑠

𝑅
𝑠𝑜

 −  1|||
|||) * 100

=  ( )*1000. 95 −  1| |
=  5%

2) MQ-9:

Figure 12: Graph of MQ-9’s relative temperature/humidity characteristics from SparkFun's MQ9
datasheet [10]
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The y-axis in figure 12 represents the ratio of Rs/Rso and the x-axis represents temperature. Rs
(the measured value) is the resistance of the sensor in 150ppm of CO in various temperatures and
pressures. Rso (the absolute value) is the resistance of the sensor in 150ppm CO under
20°C/55% relative humidity. Relative Humidity can be assumed to be 55% (the green curve) and
operating temperature is 15-25°C. Relative Humidity can be assumed to be 60% (closest to 55%)
(the blue curve) and operating temperature is 15-25°C.

Relative error at 15°C:
𝑅

𝑠
−𝑅

𝑠𝑜

𝑅
𝑠𝑜

|||
||| * 100

=   (
𝑅

𝑠

𝑅
𝑠𝑜

 −  1|||
|||) * 100

= ( )*1001. 1 − 1| |
= 10%

Relative error at 20°C:
𝑅

𝑠
−𝑅

𝑠𝑜

𝑅
𝑠𝑜

|||
||| * 100

=  (
𝑅

𝑠

𝑅
𝑠𝑜

 −  1|||
|||) * 100

=  ( )*1001. 07 −  1| |
=  7%

Relative error at 25°C:
𝑅

𝑠
−𝑅

𝑠𝑜

𝑅
𝑠𝑜

|||
||| * 100

=  (
𝑅

𝑠

𝑅
𝑠𝑜

 −  1|||
|||) * 100

=  ( )*1001 −  1| |
=  0%

3) SGP30:
The SGP30 assures an accuracy of 15% for carbon dioxide values in the measurable
range of 0 - 60000ppm [11].

We have also highlighted possible faults in our system and our proposed solutions to them:

Pain point: Due to some external or internal factors, the sensors can occasionally transmit faulty
values. These faulty values can severely affect the accuracy of our data.
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Solution: We will try to mitigate this issue by maintaining a running average of the collected
values and pushing this average to the server. By maintaining a running average, we can smooth
out the inaccurate spikes in our data.

Pain point: Faulty bracelets will always be transmitting inaccurate data to the server which affect
the accuracy of the data for other users.

Solution: We will try to minimize the effect of faulty bracelets by averaging the received value
with the current value on the server-side. The hope is that with enough non-faulty functioning
bracelets in the region, the error can be offset easily as the average would be closer to the
accurate values.

Pain point: The power expected by sensors and the microcontroller is very precise. Sensors
expect a 5V input with a tolerance of ±0.1V and the ESP32 expects an input of 3.3V but can
accept 2.2 to 3.6V.

Solution: Using buck converters, which have a feedback loop each, we should be able to
precisely control the voltage step down from ~9V from the battery to the desired 5V and 3.3V
irrespective of the load.
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3. Cost and Schedule
3.1 Cost analysis
The cost of the project can be divided into labor cost and parts cost.

3.1.1 Labor Cost
We assume that we will spend an average of 10 hours a week for a total of 10 weeks of this
semester working on our senior project. Additionally, we are taking $32 as our per hour wage
because that is the average salary of ECE interns in Illinois [14]. Lastly, we are using a 2.5
multiplier to reflect any miscellaneous costs like lab clean up, maintenance, etc. Using these
numbers the total labor cost is

𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 = $/ℎ𝑜𝑢𝑟 *  2. 5 *  ℎ𝑜𝑢𝑟𝑠 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 * 𝑝𝑒𝑜𝑝𝑙𝑒 
𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 = $32/ℎ𝑜𝑢𝑟 *  2. 5 *  10ℎ𝑜𝑢𝑟𝑠/𝑤𝑒𝑒𝑘 * 10 𝑤𝑒𝑒𝑘𝑠 * 3 𝑝𝑒𝑜𝑝𝑙𝑒 

𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 = $24000 
3.1.2 Parts Cost
Aside from the exact costs for required parts, we are also including a row for miscellaneous costs
for parts that we may already have from lab kits of previous courses including resistors,
capacitors, and push-button switches. Additionally, as a fail-safe, we plan to buy an excess of
specific parts which we are not confident about using including the CO2 sensor, CO sensor,
propane sensor, and buck converter.

Part Name Part Number Quantity Vendor Cost Total

CO2 Sensor SGP30 2 Adafruit $17.50 $35.00

CO Sensor MQ9 2 Sparkfun $4.95 $9.90

Propane Sensor MQ2 2 Sparkfun $5.95 $11.90

ESP32 ESP32 WROOM 1 Sparkfun $3.50 $3.50

Buck Converter LMR36015FBRNXT 6 Mouser $2.83 $16.98

3V button cell CR2032 10 Amazon $0.80 $8.00

UART module 103990049 2 Digikey $7.95 $15.9

LED COM-09264 2 Sparkfun $2.25 $4.50

Miscellaneous
Costs

$5.00

Total $110.68
Table 5: Cost of parts
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3.1.3 Total Cost

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 +  𝑃𝑎𝑟𝑡𝑠 𝐶𝑜𝑠𝑡 
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = $24000 +  $110. 68 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = $24110. 68 

3.2 Schedule

Week Chirag Nanda Vatsin Shah Vedant
Agrawal

Milestones

2/7 → Section 1 and
3 of project
proposal

→ Section 2.1,
2.3 of project
proposal

→ Section 2.2 of
project proposal
→ Talk to
machine shop

1. Project
proposal

2/14 → Sections 1,
2.1,  2.2.3 and 3
of design
document

→ Sections
2.2.2, 2.2.4, 2.3
of design
document

→ Sections
2.2.1, and 4 of
design document

1. First draft of
design document

2/21 → Sensing
subsystem
circuit schematic
→ Finalize
sensors

→ Power
subsystem
circuit schematic
→ Find the
appropriate buck
converters for
regulating
voltage

→ Indication
subsystem
circuit schematic
→ Find
appropriate
multi-colored
LEDs that are
compatible with
Arduino

1. Circuit
schematic
2. Final draft of
design document
3. Finalize and
order parts

2/28 → PCB design
for sensing
subsystem

→ PCB design
for power
subsystem

→ PCB design
for indication
subsystem

1. PCB design

3/7 → Figure out the
capabilities of
the google maps
API and test
possible UI
designs.

→ Work on the
power
subsystem and
verify
components on
breadboard

→ Start building
the android app

1. Test parts
2. First version
of app
3. Team
Evaluation
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3/21 → Figure out faults in the first PCB design and finalize
the design for the second PCB order.

1. Second PCB
design

3/28 → Test the MQ9
Carbon
Monoxide
sensor

→ Test the SGP
30 Carbon
Dioxide sensor

→ Test the MQ2
Flammable gas/
propane sensor

1. Test sensors
2. Individual
progress report

4/4 → Work on
building the
REST API and
server.

→ Work on the
indication
subsystem and
ensure band can
connect with a
device over
Bluetooth

→ Finalize app
UI design and
multi-user
functionality

1. Finalize app
design

4/11 → Test band and application at various locations in
Urbana-Champaign using multiple profiles

1. Test project

4/18 → Prepare for mock demo
→ Finalize and verify all components

1. Mock demo

4/25 → Prepare for final presentation
→ Work on the final report

1. Final
Presentation
2. Final Report

Table 6: Planned weekly schedule

Note: The schedule is tentative and mainly depends on the timely arrival of parts
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4. Ethics and Safety
4.1 Ethical Concerns
Since we will be tracking the location data of the user, it could be a possible violation of IEEE
[15] and ACM [16] privacy standards. Additionally, we found out that for using Bluetooth Low
Energy in our Android application, we need to have “ACCESS_COARSE_LOCATION”
permission enabled by the user [17]. Since there is no workaround for this permission and we
need the users’ location for creating a heat map, we will make sure that the user identity is not
linked to the location data recorded by our application and sent to the server. Firstly, we only
start using the user’s GPS location after appropriate in-app permissions are given. To ensure user
privacy, we will log the location data but keep the user anonymous on our map. Our app will
only associate pollutant data to the user’s location and no trace of the user’s identity will be
recorded. We will do this by only sending the rounded down GPS coordinates of the user in case
of contamination detection. This way, even if an IP address is associated with a POST call to the
server, the exact location of any IP will be impossible to determine.

4.2 Safety Concerns
The biggest safety concern during the development of our bands lies in testing the bands for the
detection of harmful levels of gasses. To test carbon dioxide and carbon monoxide levels we plan
on positioning the sensor at different distances from a lit flame (using a candle or bunsen burner).
To ensure safety while doing these tests, we will only work in a well-ventilated laboratory with a
fire extinguisher. However, for testing propane detection we plan to purchase a propane tank.
This is a safety issue as propane is flammable. Hence we will be testing with the tank only
outdoors and ensure proper storage of the tank when we are not testing our project as per
OSHA’s standard 1910.253(b)(2)(ii) for flammable gas storage [18].

Since we are making a wearable band, we also need to make sure that all the circuitry is well
insulated. We will create proper housing for the PCB and batteries to ensure that no wires or
circuitry is exposed. To create this enclosure we will make use of the machine shop or 3D print a
suitable structure for our circuitry.
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