
Team 33
Design Document

Air Pollution Mapping Bands

Chirag Nanda
Vedant Agrawal

Vatsin Shah

Table of Contents
1. Introduction 1

1.1 Problem Overview 1
1.1 Solution Overview 1
1.2 Visual aid 2
1.3 High-level Requirements 3

2. Design 4
2.1 Block Diagram 4
2.2 Subsystem Description 5

2.2.1 App Subsystem 5
2.2.1.1 Overview 5
2.2.1.2 Requirements and Verification 5

2.2.2 Power Subsystem 6
2.3.1.1 Overview 6
2.3.1.2 Requirements and Verification 7

2.2.2 Indicator Subsystem 7
2.2.2.1 Overview 7
2.2.2.2 Requirements and Verification 7

2.2.3 Sensing Subsystem 8
2.2.3.1 Overview 8
2.2.3.2 Requirements and Verification 9
2.2.3.3 Sensor Plots 10

2.4 Tolerance Analysis 11

3. Cost and Schedule 15
3.1 Cost analysis 15

3.1.1 Labor Cost 15
3.1.2 Parts Cost 15
3.1.3 Total Cost 16

3.2 Schedule 16

4. Ethics and Safety 17
4.1 Ethical Concerns 17
4.2 Safety Concerns 17

References 18

1. Introduction
1.1 Problem Overview
As air pollution has increased globally, the need for pollution tracking has increased in tandem.
Today, most cities take readings using satellites as well as sensors scattered around the city to
collect an aggregate reading of city-wide air quality1. While this may give a good estimate of the
air pollution over a city-wide area, the air quality of individual localities and streets may differ
vastly.

Air pollution can change over the course of a day. A variety of factors including traffic,
population density, the operation of office buildings, and factories can influence the air quality. A
more dynamic calculation of air quality can help people decide which routes to take and which
places to avoid. Some cities like Barcelona and Chicago have tried implementing IOT based air
pollution trackers embedded into city-wide infrastructure to aid in this effort. Google has even
tried to fit street view cars with sensors to track pollution levels2. Nonetheless, these devices are
often extremely expensive. For instance, the sensor nodes used in Chicago cost around five
thousand dollars per node.3 Additionally, the sensors are often spread far apart, preventing
accurate locality-centric/streetwise data collection of pollution.

1.1 Solution Overview
Our solution to this problem is to create a cheap wearable band and an accompanying mobile app
that will continuously monitor the air quality around the user. The broader idea is to have
thousands of users wear this band to help contribute to a city-wide map that everyone can access.
Nevertheless, within the time constraints of the course we plan to first create a proof of concept
of the band and a simple application that gives alerts to the user about their general vicinity. The
app can keep a personal record of air pollutant levels of the places they visited on a map.

We aim to keep track of carbon dioxide and carbon monoxide. Additionally, since this band will
be portable, it has the potential to be useful as a warning device in indoor spaces. Hence, we also
wish to sense propane as it is a common flammable gas. The band can then help find poorly
ventilated areas and even warn users of potential gas leaks in places like warehouses and storage
rooms. For our project we only plan to build one band. However, we plan to have multiple
profiles on our app to test how multiple users can update the same map with the pollution data
they collect.

1

1.2 Visual aid
A mockup of our idea is shown in figure 1. All sizes are approximate for now. We picked 3cm
for the thickness of the band because the height of the tallest component we plan to use is 2.5cm.
We will try to keep the size of our final device within these approximations if possible.

Figure 1: Top view of band

Figure 2: Side view of band

2

1.3 High-level Requirements

1. The propane sensor should be able to simply detect the presence of propane since any
quantity of flammable gas is dangerous. The carbon monoxide sensor should be able to
detect up to 200 ppm. The carbon dioxide sensor should be able to detect upto 10000
ppm. We have picked these values based on USDA determined values of dangerous
exposure. 4 5

2. The app will need to be able to take pollution data from the band and update the map
accordingly. Since the data will be a continuous stream, as a design choice we will update
the app at a specific period of time as pollutant values will not be changing continuously.
The app must also be able to warn the user in the form of a notification or sound if the
pollution level is not safe or if propane was detected (since it is flammable).

3. Our band needs to be wearable and must have around 1-3 hours battery life to be able to
track pollution data when a person makes their commute. We plan to create the housing
for our circuitry using a 3D printer

3

2. Design
2.1 Block Diagram

Figure 3: Block diagram of the project

Figure 3 shows the high-level block diagram for our project. Our design can be broken down into
two broad categories: the board system and the software system. The board system includes the
power subsystem, indicator subsystem, and sensing subsystem. The power subsystem is
responsible for converting the 9V supply into 3.3V and 5V to be used by our microcontroller and
sensor array respectively. The indicator subsystem relays whether or not the band is powered on
as well as whether or not a device is connected to the band. The sensing subsystem is responsible
for collecting and transmitting pollutant data to the connected device. The board system meets
our first high level requirement by being responsible for powering our sensors and
microcontroller to monitor and send pollutant data to the app. To maintain our third high level
requirement, we plan to keep the design minimal and ensure that our board is as small as possible
so that the band is compact and wearable. The software system meets our second high level
requirement and consists of the app subsystem. The app subsystem’s main goal is to visualize the
pollutant data on a map and maintain a centralized map across different user profiles using a
REST server.

4

2.2 Subsystem Description

2.2.1 App Subsystem

2.2.1.1 Overview

We intend on designing an Android application to produce human-readable values of the output
of the sensors and use these values in a decision model to alert the user. The application would
also serve the purpose of displaying the heat map, alerting the user if they enter a contaminated
region, and an interface to interact with a server to indicate contaminated regions.
This subsystem aims to solve the second high-level requirement of interacting with the sensor
data and update the shared map with those values to handle user alerts

2.2.1.2 Requirements and Verification

Requirements Verification

Connect the phone to the bluetooth module of
ESP32 MCU and periodically receive
bluetooth packets and unpack them without
losing any data in the app.

Compare the values sent by the
microcontroller (using print statements to the
serial monitor) and the values obtained by
unpacking the bluetooth packets.

The app should alert the user if the carbon
dioxide and carbon monoxide values go above
a certain threshold. Additionally, any
detection of propane gas should be notified to
the user.

Send dummy test values from ESP32 MCU
for each gas above and below their respective
threshold values and verify that the app only
notifies if these values cross the threshold.
Additionally, we can also artificially simulate
conditions that would cause the sensors to
detect high concentration of gasses to verify
the app alerts.

The app should be able to communicate with
the central server to send the local gas values
data (if they cross the threshold) and current
GPS location.

Send dummy test values from ESP32 MCU
for each gas above and below their respective
threshold values and verify that the app only
sends a POST request to the server if the
values cross the threshold. Also, verify if the
values received by the server and the GPS
coordinates matches the values sent by the
app. In the case where gas values for the same
rounded off GPS coordinate exist on the
server,

The server should maintain a ledger of all the Send multiple dummy test values from the

5

values sent to it from the app when a
contamination is detected. It should also
round off the GPS coordinates by a
predetermined degree to group the values in
100m radius together on the map to adhere to
the safety regulation suggested by
REVIHAAP paper6 .

app to the server using POST requests and
verify that these values are accurately
recorded by the server using print statements.
Also verify that the rounding off code works
as intended and only rounded off GPS values
are stored in the ledger. In the case where gas
values for the same rounded off GPS
coordinate exist on the server, verify that it
updates it with the average of the existing and
current value.

The app should periodically fetch the ledger
data from the server to display the
contaminations on a human readable map.

Inject the server with some dummy values
and verify that the app automatically executes
GET requests periodically. Ensure that the
ledger on the server matches exactly with the
local ledger after the GET request is fulfilled.
Since the Google Maps API is going to be
used to display the heat map, ensure that the
coordinates from the ledger are accurately
displayed on the map.

The app should alert the user if they enter a
zone that was marked as contaminated by
other users.

Inject the server with dummy test values of
gas concentration that exceed the threshold
values. Verify that the app rounds off the
current GPS coordinates (by the same degree
as done while posting the values) and checks
for it in the obtained ledger. If the coordinates
match up, verify that the app sends a
notification.

Table 1: Requirements and verification of the app subsystem

2.2.2 Power Subsystem

2.3.1.1 Overview

This subsystem takes in battery voltage (~9V) from three 3V cells and steps it down to 5V for
powering the sensors and 3.3V for powering the ESP32. The battery, after a power switch, also
connects to the indicator subsystem which indicates that the device has been powered on. The
power subsystem needs to step voltage down while wasting minimum possible energy in order to
maintain high battery life. The ideal way to do this would be a buck converter for each voltage
while keeping the same 9V input for each voltage required as less energy wastage in step down
means higher battery life over time. The microcontroller operates on 3.3V and sensor array

6

operates on 5V, so both of those stepdowns will be required. Hence, the ESP 32 and sensors will
have separate voltage regulators. At the end of each regulator there needs to be a denoise
capacitor to smooth out the power supply from the regulators.

2.3.1.2 Requirements and Verification

Requirements Verification

The 9V input must come from three 3V
button cells to keep the design compact. This
voltage should not drop below 5V as we use a
Buck converter to step the voltage down.

The upper limit can be verified using a
voltmeter and a fresh set of cells, while the
lower limit can be verified using a voltmeter
and a discharged set of cells.

When the band is not being used, there needs
to be a switch between the battery and voltage
regulators to turn off the device and conserve
power

Operation of the power switch can be verified
using continuity tests in a multimeter.

The sensors expect a 5V input with a
tolerance of ±0.1V from the voltage regulator.

Output of the voltage regulator for the 5V
input and its stability over time must be
verified using an oscilloscope.

ESP32 expects input of 3.3V but can accept
between 2.2 to 3.6V from the voltage
regulator.

Output of the voltage regulator for the 3.3V
input and its stability over time must be
verified using an oscilloscope.

Table 2: Requirements and verification of the Power subsystem

2.2.2 Indicator Subsystem

2.2.2.1 Overview

The purpose of this subsystem is to indicate whether the band is powered up, if the system is
ready to be connected to, or if some device is already connected to the system. It consists of two
LEDs, one for indicating power and one for indicating the status of connection. The power
indication LED will be directly connected to the same voltage regulator used by the sensor array.
The connection LED will be multicolored and powered by the microcontroller. Depending on the
connection status of the band, the connection LED will display a different color.

2.2.2.2 Requirements and Verification

7

Requirements Verification

The power indication LED needs to turn on
when the device is switched on.

Potential difference across switch’s end and
the state of the LED can be monitored
simultaneously to verify the working of the
power indicator LED.

The connection indication LED needs to turn
on when the microcontroller finishes setup.
By default, the LED needs to shine red upon
turning on the band.

Potential difference across switch’s end,
microcontroller, and the state of the LED can
be monitored simultaneously to verify the
working of the connection indicator LED
once the band is turned on.

The connection indication LED needs to
change to a different color depending on the
state of connection. If a mobile device is not
paired with the band, it should shine red.
Once a device pairs with the band it should
shine green.

Microcontroller’s state (using print statements
to the serial monitor) and the state of the LED
can be monitored simultaneously to verify the
working of the state indicator LED. The color
should change as soon as a device is
connected to the microcontroller.

Table 3: Requirements and verification of the Indicator subsystem

2.2.3 Sensing Subsystem

2.2.3.1 Overview

The sensing subsystem involves the microcontroller (ESP32) and an array of sensors including:

a) MQ-2 Semiconductor Sensor for Combustible Gas like propane7

b) MQ-9 Semiconductor Sensor for Carbon Monoxide8

c) Semiron’s SCD41 Carbon Dioxide Sensor9

All the sensors mentioned above use 5V power each. The purpose of this subsystem is to
measure pollution levels and send the data over to the connected phone using bluetooth or WiFi.
The Carbon Monoxide and Propane sensors connect to the ESP3210 via the analog input pins
available on the microcontroller. The Carbon Dioxide sensor is a digital sensor that connects via
I2C communication protocol. This analog data will be converted to ppm values via the
conversion graphs for each sensor (figures 4 and 5). The microcontroller will send the recorded
PPM values to the app over the chosen wireless transfer protocol every 5 minutes or whenever a
dangerous amount of any gas is detected. The decision to send every 5 minutes is based on the
fact that air quality readings do change rapidly unless there is a gas leak. This subsystem
specifically meets our first high level requirement. Additionally, these sensors are 2.5cm in

8

height including connection pins, so they have a low profile, allowing us to fit them in a bracelet
(to meet high level requirement 3).

2.2.3.2 Requirements and Verification

Requirements Verification

Read analog data from MQ-2 and MQ-9
sensors into digital data using analog input
pins on ESP 32.

Read voltage output using an oscilloscope and
convert the voltage reading to digital reading
mathematically. Compare this value to the
value read by the microcontroller using print
statements.

Convert sensor data into PPM measurements. Convert voltage readings to PPM readings
using the conversion graphs for each sensor.
This can be done by linearizing the graph in
100 ppm segments so that we can map voltage
values to approximate PPM value using the
appropriate load resistors mentioned in the
datasheets. See figure 4 for MQ 9 and figure 5
for MQ 2 sensors.

Establish successful I2C connection between
ESP 32 and SCD 41 to read data from the
sensor.

Send wakeup requests and receive
confirmation to make sure we can
communicate with the sensor.

Establish successful bluetooth connection
between ESP 32 and app to reliably send data
over.

Send dummy packets over bluetooth using the
appropriate protocol to ensure we can receive
data on the app.

Ensure that the sensor data is sent to the app
every 5 minutes

Use a timer on ESP 32 to interrupt the normal
flow of code to send collected data over
bluetooth and verify on app that the packets
are received every five minutes.

Table 4: Requirements and verification of the Sensor subsystem

9

2.2.3.3 Sensor Plots

Figure 4: Voltage vs PPM (MQ-9)8

Figure 5: Voltage vs PPM (MQ-2)7

10

2.4 Tolerance Analysis
For each sensor we have calculated the approximate error using graphs from their datasheet that
catalog the relative readings based on various temperatures and humidity. Since we will be
testing our bands in the spring in Champaign, we have assumed that the temperature will be
between 15-25°C and the humidity will be around 55%11. To calculate the percentage error, we
make use of the following formula:

𝛅 = (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 −𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒)
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒

|| || * 100

1) MQ-2:

Figure 6: Graph of MQ-2’s relative temperature/humidity characteristics7

The y-axis in figure 6 represents the ratio of Rs/Rso and the x-axis represents temperature. Rs
(the measured value) is the resistance of the sensor in 2000ppm of propane in various
temperatures and pressures. Rso (the absolute value) is the resistance of the sensor in 2000ppm
propane under 20°C/55% relative humidity. Relative Humidity can be assumed to be 55% (the
green curve) and operating temperature is 15-25°C.

Relative error at 15°C:
𝑅

𝑠
−𝑅

𝑠𝑜

𝑅
𝑠𝑜

|||
||| * 100

= (
𝑅

𝑠

𝑅
𝑠𝑜

 − 1|||
|||) * 100

= (1.1-1)*100
= 10%

11

Relative error at 20°C:
𝑅

𝑠
−𝑅

𝑠𝑜

𝑅
𝑠𝑜

|||
||| * 100

= (
𝑅

𝑠

𝑅
𝑠𝑜

 − 1|||
|||) * 100

= ()*1001 − 1| |
= 0%

Relative error at 25°C:
𝑅

𝑠
−𝑅

𝑠𝑜

𝑅
𝑠𝑜

|||
||| * 100

= (
𝑅

𝑠

𝑅
𝑠𝑜

 − 1|||
|||) * 100

= ()*1000. 95 − 1| |
= 5%

2) MQ-9:

Figure 7: Graph of MQ-9’s relative temperature/humidity characteristics8

12

The y-axis in figure 7 represents the ratio of Rs/Rso and the x-axis represents temperature. Rs
(the measured value) is the resistance of the sensor in 150ppm of CO in various temperatures and
pressures. Rso (the absolute value) is the resistance of the sensor in 150ppm CO under
20°C/55% relative humidity. Relative Humidity can be assumed to be 55% (the green curve) and
operating temperature is 15-25°C. Relative Humidity can be assumed to be 60% (closest to 55%)
(the blue curve) and operating temperature is 15-25°C.

Relative error at 15°C:
𝑅

𝑠
−𝑅

𝑠𝑜

𝑅
𝑠𝑜

|||
||| * 100

= (
𝑅

𝑠

𝑅
𝑠𝑜

 − 1|||
|||) * 100

= ()*1001. 1 − 1| |
= 10%

Relative error at 20°C:
𝑅

𝑠
−𝑅

𝑠𝑜

𝑅
𝑠𝑜

|||
||| * 100

= (
𝑅

𝑠

𝑅
𝑠𝑜

 − 1|||
|||) * 100

= ()*1001. 07 − 1| |
= 7%

Relative error at 25°C:
𝑅

𝑠
−𝑅

𝑠𝑜

𝑅
𝑠𝑜

|||
||| * 100

= (
𝑅

𝑠

𝑅
𝑠𝑜

 − 1|||
|||) * 100

= ()*1001 − 1| |
= 0%

3) SCD40:
At high accuracy, ±(40ppm + 5%) should be expected error. The range of high accuracy
measurements is 400 - 2000ppm. At higher ppm, the inaccuracies increase, though the
datasheet does not quantify the exact amount9.

We have also highlighted possible faults in our system and our proposed solutions to them:

Pain point: Due to some external or internal factors, the sensors can occasionally transmit faulty
values. These faulty values can severely affect the accuracy of our data.

13

Solution: We will try to mitigate this issue by maintaining a running average of the collected
values and pushing this average to the server. By maintaining a running average, we can smooth
out the inaccurate spikes in our data.

Pain point: Faulty bracelets will always be transmitting inaccurate data to the server which affect
the accuracy of the data for other users.

Solution: We will try to minimize the effect of faulty bracelets by averaging the received value
with the current value on the server side. The hope is that with enough non-faulty functioning
bracelets in the region, the error can be offset easily as the average would be closer to the
accurate values.

Pain point: The power expected by sensors and the microcontroller is very precise. Sensors
expect a 5V input with a tolerance of ±0.1V and the ESP32 expects input of 3.3V but can accept
2.2 to 3.6V.

Solution: Using buck converters, which have a feedback loop each, we should be able to
precisely control the voltage step down from ~9V from the battery to the desired 5V and 3.3V
irrespective of the load.

14

3. Cost and Schedule
3.1 Cost analysis
The cost of the project can be divided into the labor cost and parts cost.

3.1.1 Labor Cost
We assume that we will spend an average of 10 hours a week for a total of 10 weeks of this
semester working on our senior project. Additionally, we are taking $32 as our per hour wage
because that is the average salary of ECE interns in Illinois12. Using these numbers the total labor
cost is:

𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 = $/ℎ𝑜𝑢𝑟 * 2. 5 * ℎ𝑜𝑢𝑟𝑠 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 * 𝑝𝑒𝑜𝑝𝑙𝑒
𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 = $32/ℎ𝑜𝑢𝑟 * 2. 5 * 10ℎ𝑜𝑢𝑟𝑠/𝑤𝑒𝑒𝑘 * 10 𝑤𝑒𝑒𝑘𝑠 * 3 𝑝𝑒𝑜𝑝𝑙𝑒

𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 = $24000

3.1.2 Parts Cost
Aside from the exact costs for required parts, we are also including a row for miscellaneous costs
for parts that we may already have from lab kits of previous courses including resistors,
capacitors, and push button switches. Additionally, as a fail safe, we plan to buy an excess of
specific parts which we are not confident about using including the CO sensor, propane sensor,
and buck converter.

Part Name Part Number Quantity Vendor Cost Total

CO2 Sensor SCD41 1 Sparkfun $60.00 $60.00

CO Sensor MQ9 2 Sparkfun $4.95 $9.90

Propane Sensor MQ2 2 Sparkfun $5.95 $11.90

ESP32 ESP32 C3 WROOM 1 Sparkfun $3.50 $3.50

Buck Converter LMR36015FBRNXT 6 Mouser $2.83 $16.98

3V button cell CR2032 10 Amazon $0.80 $8.00

LED 1528-2761-ND 2 Digikey $5.95 $11.90

Miscellaneous
Costs

$5.00

Total $127.18

Table 5: Cost of parts

15

3.1.3 Total Cost

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 + 𝑃𝑎𝑟𝑡𝑠 𝐶𝑜𝑠𝑡
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = $24000 + $127. 18 = $24127. 18

3.2 Schedule

Week Chirag Nanda Vatsin Shah Vedant Agrawal

2/7 Work on Project proposal and talk to machine shop

2/14 Work on design document

2/21 Complete circuit
schematic for power

subsystem.
Finalize and order
parts for the power

subsystem

Complete circuit
schematic for sensor

subsystem.
Finalize and order
parts for the sensor

subsystem.

Complete circuit
schematic for

indication subsystem.
Finalize and order

parts for the
indication subsystem

2/28 Finalize pcb design
for power subsystem

Finalize pcb design
for sensor subsystem

Finalize pcb design
for indication

subsystem

3/7

3/21

3/28

4/4

4/11

4/18 Prepare for mock demo
Finalize and verify all components

4/25 Prepare for final presentation
Work on the final report

Table 6: Planned weekly schedule

16

4. Ethics and Safety
4.1 Ethical Concerns
Since we will be tracking location data of the user, it could be a possible violation of IEEE12 and
ACM13 privacy standards. To ensure privacy, we will log the location data but keep the user
anonymous on our map. Our app will only associate pollutant data to the user’s location and no
trace of the user’s identity will be recorded. Additionally, we only start using the user’s gps
location after appropriate in-app permissions are given.

4.2 Safety Concerns
The biggest safety concern during the development of our bands lies in testing the bands for
detection of harmful levels of gasses. To test carbon dioxide and carbon monoxide levels we plan
on positioning the sensor at different distances from a lit flame (using a candle or bunsen burner).
To ensure safety while doing these tests, we will only work in a well ventilated laboratory with a
fire extinguisher. However, for testing propane detection we plan to purchase a propane tank.
This is a safety issue as propane is flammable. Hence we will be testing with the tank only
outdoors and ensure proper storage of the tank when we are not testing our project.

Since we are making a wearable band, we also need to make sure that all the circuitry is well
insulated. We will create a proper housing for the pcb and batteries to ensure that no wires or
circuitry is exposed. To create this enclosure we will make use of the machine shop or 3D print a
suitable structure for our circuitry.

17

References
1. “How Is Air Quality Measured?” NOAA SciJinks – All About Weather,

https://scijinks.gov/air-quality/. Accessed 7 Feb. 2022.

2. “Some Google Street View Cars Now Track Pollution Levels | Colorado Public Radio.”
Colorado Public Radio, Colorado Public Radio, 30 July 2015,
https://www.cpr.org/2015/07/30/some-google-street-view-cars-now-track-pollution-levels
/.

3. “How Cities Are Using the Internet of Things to Map Air Quality .” Data-Smart City
Solutions, Harvard,
https://datasmart.ash.harvard.edu/news/article/how-cities-are-using-the-internet-of-things
-to-map-air-quality-1025. Accessed 7 Feb. 2022.

4. “Carbon Dioxide Health Hazard Information Sheet .” FSIS USDA, USDA,
https://www.fsis.usda.gov/sites/default/files/media_file/2020-08/Carbon-Dioxide.pdf.
Accessed 8 Feb. 2022

5. “What Are the Carbon Monoxide Levels That Will Sound the Alarm?” Kidde, 19 Aug.
2019,
https://www.kidde.com/home-safety/en/us/support/help-center/browse-articles/articles/w
hat_are_the_carbon_monoxide_levels_that_will_sound_the_alarm_.html.

6. “Proximity to Roads, NO2, Other Air Pollutants and Their Mixtures - Review of
Evidence on Health Aspects of Air Pollution – REVIHAAP Project - NCBI Bookshelf.”
National Center for Biotechnology Information,
https://www.ncbi.nlm.nih.gov/books/NBK361807/. Accessed 9 Feb. 2022.

7. “MQ-2 Semiconductor Sensor for Combustible Gas .” Sparkfun,
https://cdn.sparkfun.com/assets/3/b/0/6/d/MQ-2.pdf. Accessed 9 Feb. 2022.

8. “MQ-9 Semiconductor Sensor for CO/Combustible Gas.” Sparkfun,
https://cdn.sparkfun.com/assets/d/f/5/e/2/MQ-9B_Ver1.4__-_Manual.pdf. Accessed 9
Feb. 2022.

9. “Sensors SCD4x Datasheet”. Sparkfun,
https://cdn.sparkfun.com/assets/d/4/9/a/d/Sensirion_CO2_Sensors_SCD4x_Datasheet.pdf
. Accessed 9 Feb. 2022.

10.“ESP 32 Series Datasheet.” Digikey,
https://www.digikey.com/htmldatasheets/production/2845213/0/0/1/esp32-datasheet.html
?utm_adgroup=xGeneral&utm_source=google&utm_medium=cpc&utm_campaign=Dyn
amic%20Search_EN_Product&utm_term=&utm_content=xGeneral&gclid=CjwKCAiA6
Y2QBhAtEiwAGHybPRh4PBaR9pZXi6. Accessed 9 Feb. 2022.

18

11.“Weather in Champaign.” Champion Traveler,
https://championtraveler.com/dates/best-time-to-visit-champaign-il-us/. Accessed 10 Feb.
2022.

12. “Average Electrical Engineer Internship Salary 2022: Hourly and Annual Salaries.”
Zippia - Find Jobs, Salaries, Companies, Resume Help, Career Paths and More, 18 May
2020, https://www.zippia.com/electrical-engineer-internship-jobs/salary/.

13.“IEEE - IEEE Code of Ethics.” IEEE - The World’s Largest Technical Professional
Organization Dedicated to Advancing Technology for the Benefit of Humanity.,
https://www.ieee.org/about/corporate/governance/p7-8.html. Accessed 9 Feb. 2022.

14.“Code of Ethics.” Association for Computing Machinery,
https://www.acm.org/code-of-ethics. Accessed 9 Feb. 2022.

19

