# Portable Anti-Theft Package Container

#### ECE 445

## Date: 2/7/2022

#### Team Members

- Conor Mueller
- Ethan Fransen
- Yufei Zhu

TA: Qingyu Li

# **<u>1 Introduction</u>**

## **Objective and Background**

- Deter package theft in areas where delivery lockers may not be available
- Provide online retailers a means to ensure secure and delivery of goods to customers
- Mobile container for packages can easily be retrieved and redeployed by companies
- A plain and inconspicuous exterior prevent potential thieves from noticing the container
- Preventing theft will cut losses online retailers face due to refunding orders to customers

#### **High Level Requirements**

- Container must be able to communicate with a phone app that locks and unlocks the door to the package inside
- The container must be able to detect when a theft attempt is occurring, such as being carried away or broken into
- Systems must be able to operate on battery life for up to 12 hours and be recharged externally when out of power

# <u>2 Design</u>

## **Block Diagram**



### 2.1 Power Supply

- 2.1.2 Li-ion battery
  - The greatest safety concern in the device.
  - Two 3.7V batteries will power the device
    - 18650 Cell (2600mAh with solder tab and battery holder)
  - Will be taken out to recharge. Can easily be replaced
  - *Requirement 1:* Need to be isolated in a separate chamber to prevent short circuits.
  - *Requirement 2*: Need a capacity of ~2000mAh each or greater.
- 2.1.3 Voltage regulator
  - Keep the circuit's voltage at a desired voltage (3.65 V/cell)

- Requirement 1: Needs to cut off power to the system if battery voltage decays below 3.0V/cell or exceeds 4.2 V/cell
- *Requirement 2:* Also includes a step converter to give us the appropriate amount of voltage for the security and control systems

### 2.2 Control Unit

- 2.2.1 Microprocessor
  - Our chosen microprocessor will be the ATMEGA48A-PU
    - 28 pins on a SPDIP layout



- Operate at **4.5V** on a **20 MHz clock**
- Power consumption
  - Active mode: 0.2 mA
  - Power saver mode: 0.75 μA
- Our microprocessor will mostly be used to control our internal security system

such as the door lock and alarm through our app

- 2.2.2 Status LED
  - Two simple 5mm LEDs
    - Green LED indicates power on/off
    - Red LED indicates the system is armed/disarmed
  - Current draw: 20mA each

|                          | $\cup$ |                             |
|--------------------------|--------|-----------------------------|
| (PCINT14/RESET) PC6      | 1      | 28 🛛 PC5 (ADC5/SCL/PCINT13) |
| (PCINT16/RXD) PD0        | 2      | 27 🛛 PC4 (ADC4/SDA/PCINT12) |
| (PCINT17/TXD) PD1        | 3      | 26 🗆 PC3 (ADC3/PCINT11)     |
| (PCINT18/INT0) PD2       | 4      | 25 🛛 PC2 (ADC2/PCINT10)     |
| (PCINT19/OC2B/INT1) PD3  | 5      | 24 DPC1 (ADC1/PCINT9)       |
| (PCINT20/XCK/T0) PD4     | 6      | 23 🛛 PC0 (ADC0/PCINT8)      |
|                          | 7      | 22 GND                      |
| GND _                    | 8      | 21 🗆 AREF                   |
| (PCINT6/XTAL1/TOSC1) PB6 | 9      | 20 AVCC                     |
| (PCINT7/XTAL2/TOSC2) PB7 | 10     | 19 🗆 PB5 (SCK/PCINT5)       |
| (PCINT21/OC0B/T1) PD5    | 11     | 18 🗆 PB4 (MISO/PCINT4)      |
| (PCINT22/OC0A/AIN0) PD6  | 12     | 17 🛛 PB3 (MOSI/OC2A/PCINT3) |
| (PCINT23/AIN1) PD7       | 13     | 16 🗆 PB2 (SS/OC1B/PCINT2)   |
| (PCINT0/CLKO/ICP1) PB0   | 14     | 15 DPB1 (OC1A/PCINT1)       |
|                          |        |                             |

#### 2.3 Security System

- 2.3.1 Exterior Casing
  - Requirement 1: Reasonable tamper-proofing
    - Resist blunt attacks
    - Protect contents from damage
  - Requirement 2: Worst-case consideration
    - Must be openable with high-power equipment if system fails
    - Designed so product is not damaged when opened this way

| Components + Circuit Here                                                                   |  |
|---------------------------------------------------------------------------------------------|--|
| Cut Zone - solid (not hollow) section that indicates safe area to cut and protects contents |  |
| Package stored here                                                                         |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |

- 2.3.2 Electronic door lock
  - Electromechanical latch lock
    - Draws 600mA at 12V to release the latch
    - Latch is in locked state when not powered
  - Microprocessor will control the latch
  - *Requirement 1:* Reasonable tamper-proofing
    - Resist blunt attacks, power overloading, lack of power, etc.
    - Internally housed to prevent external access
  - *Requirement 2:* App Control
    - Locked/Unlocked controlled through app
- 2.3.3 Front camera

- A front mounted camera that will take photos when the microprocessor tells it to
  - Signal delivered at 3.3V from the microcontroller will activate the camera
  - Captured photo will be sent to the Wi-Fi module and uploaded to the phone app
- *Requirement 1:* Cameras must be aligned properly to cover full FOV
  - Package placed in a way to limit angles of approach (corner)
  - Cameras on multiple sides of casing
- *Requirement 2:* Photos must be taken when tampering is detected
  - Responds to an alert signal determined by PIR sensor
- Requirement 3: Photos must be sent and stored on phone app
  - Limited/no data storage in container unit
  - Must have wifi connection in order to send images
- *Requirement 3:* Protected against potential damages
  - Protect from blunt attacks
  - Want security system to be durable
- 2.3.4 Passive Infrared Sensor
  - A PIR sensor will monitor for any activity around the box and send a signal to take the device out of low power mode when activated
    - Draws 3.0V at 170uA
    - Will always be in operating mode while system is armed
  - Requirement 1: Calibrated Sensitivity
    - Need to set minimum required interference
    - Prevents unnecessary photos/alarm triggers
  - *Requirement 2:* Control alarm signal
    - Must be able to activate rest of security system
    - Turn off alarm signal in absence of interference
    - Turn off alarm signal from microprocessor instructions

- 2.3.5 Alarm Speaker
  - An alarm horn inside the container will sound when it receives an intrusion signal from the microcontroller
    - The model we're looking at has a sound range of 78dB to 100dB
      - 3V at 78db & 18V at 100dB
      - 100dB has the potential to damage hearing
  - Requirement 1: Activates with alarm signal
    - Alarm is off when alarm signal is not active
  - *Requirement 2:* Loud/Annoying Noise
    - Must actually serve as a deterrent
    - Alert others nearby that something is wrong
  - Requirement 3: App Control
    - Alarm able to be triggered/silenced/deactivated by app
    - Plays quieter noise when triggered by app to assist in locating
- 2.3.5 GPS tracker
  - Likely the most expensive component
  - SAM-M8Q GPS board
    - Draws 3.3V at 29mA in operation mode
  - Requirement 1: Long Distance Communication
    - Must be able to send location to app over long distances
    - Most likely requires wifi access
  - Requirement 2: Low Power Draw
    - Needs to last a long time to be worth price
    - Option for non-constant transmission to save battery life
  - Requirement 3: Accuracute Enough
    - Accurate enough to where package can be located with alarm
- 2.3.6 Accelerometer
  - Will allow the container to know when it's being stolen (picked up) and send a signal to the microcontroller to sound the alarm
    - Draws 2.5V at 145uA
  - *Requirement 1:* Works in all directions

- Requirement 2: Calibrated Specifications
  - Must have appropriate triggers
  - Prevents unnecessary alarm system triggers

## 2.4 Phone App

- 2.4.1 User control app
  - Ideally, the app will be the means by which we turn the device on/off
  - Will be Android based
  - Coded in Java
  - Delivery crew able to activate alarm system once package is dropped off
- 2.4.2 Location tracking service
  - Wi-Fi module will transmit the location the GPS shows the box being at
  - *Requirement 1:* Be accurate enough to allow us to find a container in the event one is stolen and tossed somewhere
- 2.4.3 Notify the user when suspicious things happen
  - *Requirement 1:* Threshold for suspicion must not cause frequent false positives
- 2.4.4 Receive video streaming/ signal from the device through the Wi-Fi module in the Device
  - *Requirement 1:* Will be able to receive the photos the front camera takes and uploads over the Wi-Fi module

# 3 Ethics & Safety

#### 3.1 Ethical Concerns

- Upholding the safety, health, and welfare of the public
  - Our device will be placed in areas that are accessible to the public.
  - Theft counter-measures cannot be designed to inflict harm.
    - This is just dangerous to the public and asking for a lawsuit. We don't want to design something that could end up tear gassing somebody's puppy for being curious.
- Disclose promptly factor that might endanger the public or environment

- Though the container should be inconspicuous, providing notice of the alarm system on the container is necessary.
  - Alarm must receive an appropriate amount of voltage to serve as an effective deterrent but also not cause hearing damage from excess volume

#### 3.2 Safety

- Our only safety concern at the moment is the Lithium-ion battery pack that we plan to use in the device due to its portable nature.
  - Lithium-ion technology has some flammability concerns
    - Put the battery pack in a compartment with fire suppression?
    - Give the horn a secondary function as a fire alarm?
  - The final product should have means to mitigate dangerous levels of energy flow to the systems
  - Isolate & insulate the battery pack from the rest of the system to prevent short circuits from occurring
  - Rely on charging our Li-ion batteries from outside the device and in a safe environment
- Voltage regulator will need to include the function of preventing the battery voltage from decaying below 3.0V or exceeding 4.2V
  - In the event this threshold is breached, the microcontroller should detect this and give an emergency shutdown signal