Portable Anti-Theft Package Container

ECE 445

Date: 2/7/2022

Team Members

- Conor Mueller
- Ethan Fransen
- Yufei Zhu

TA: Qingyu Li

1 Introduction

Objective and Background

- Deter package theft in areas where delivery lockers may not be available
- Provide online retailers a means to ensure secure and delivery of goods to customers
- Mobile container for packages can easily be retrieved and redeployed by companies
- A plain and inconspicuous exterior prevent potential thieves from noticing the container
- Preventing theft will cut losses online retailers face due to refunding orders to customers

High Level Requirements

- Container must be able to communicate with a phone app that locks and unlocks the door to the package inside
- The container must be able to detect when a theft attempt is occurring, such as being carried away or broken into
- Systems must be able to operate on battery life for up to 12 hours and be recharged externally when out of power
2 Design

Block Diagram

2.1 Power Supply

- 2.1.2 Li-ion battery
 - *The greatest safety concern in the device.*
 - Two 3.7V batteries will power the device
 - **18650 Cell (2600mAh with solder tab and battery holder)**
 - Will be taken out to recharge. Can easily be replaced
 - *Requirement 1:* Need to be isolated in a separate chamber to prevent short circuits.
 - *Requirement 2:* Need a capacity of ~2000mAh each or greater.
 - 2.1.3 Voltage regulator
 - Keep the circuit's voltage at a desired voltage (3.65 V/cell)
- *Requirement 1*: Needs to cut off power to the system if battery voltage decays below 3.0V/cell or exceeds 4.2 V/cell
- *Requirement 2*: Also includes a step converter to give us the appropriate amount of voltage for the security and control systems

2.2 Control Unit

- **2.2.1 Microprocessor**
 - Our chosen microprocessor will be the ATMEGA48A-PU
 - **28 pins** on a SPDIP layout
 - Operate at **4.5V** on a **20 MHz clock**
 - Power consumption
 - Active mode: **0.2 mA**
 - Power saver mode: **0.75 µA**
 - Our microprocessor will mostly be used to control our internal security system such as the door lock and alarm through our app

- **2.2.2 Status LED**
 - Two simple 5mm LEDs
 - Green LED indicates power on/off
 - Red LED indicates the system is armed/disarmed
 - Current draw: **20mA each**
2.3 Security System

● 2.3.1 Exterior Casing
 ○ Requirement 1: Reasonable tamper-proofing
 ■ Resist blunt attacks
 ■ Protect contents from damage
 ○ Requirement 2: Worst-case consideration
 ■ Must be openable with high-power equipment if system fails
 ■ Designed so product is not damaged when opened this way

<table>
<thead>
<tr>
<th>Components + Circuit Here</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut Zone - solid (not hollow) section that indicates safe area to cut and protects contents</td>
</tr>
<tr>
<td>Package stored here</td>
</tr>
</tbody>
</table>

- 2.3.2 Electronic door lock
 ○ Electromechanical latch lock
 ■ Draws 600mA at 12V to release the latch
 ■ Latch is in locked state when not powered
 ○ Microprocessor will control the latch
 ○ Requirement 1: Reasonable tamper-proofing
 ■ Resist blunt attacks, power overloading, lack of power, etc.
 ■ Internally housed to prevent external access
 ○ Requirement 2: App Control
 ■ Locked/Unlocked controlled through app

● 2.3.3 Front camera
○ A front mounted camera that will take photos when the microprocessor tells it to
 ■ Signal delivered at 3.3V from the microcontroller will activate the camera
 ■ Captured photo will be sent to the Wi-Fi module and uploaded to the phone app
○ Requirement 1: Cameras must be aligned properly to cover full FOV
 ■ Package placed in a way to limit angles of approach (corner)
 ■ Cameras on multiple sides of casing
○ Requirement 2: Photos must be taken when tampering is detected
 ■ Responds to an alert signal determined by PIR sensor
○ Requirement 3: Photos must be sent and stored on phone app
 ■ Limited/no data storage in container unit
 ■ Must have wifi connection in order to send images
○ Requirement 3: Protected against potential damages
 ■ Protect from blunt attacks
 ■ Want security system to be durable

● 2.3.4 Passive Infrared Sensor
○ A PIR sensor will monitor for any activity around the box and send a signal to take the device out of low power mode when activated
 ■ Draws 3.0V at 170uA
 ■ Will always be in operating mode while system is armed
○ Requirement 1: Calibrated Sensitivity
 ■ Need to set minimum required interference
 ■ Prevents unnecessary photos/alarm triggers
○ Requirement 2: Control alarm signal
 ■ Must be able to activate rest of security system
 ■ Turn off alarm signal in absence of interference
 ■ Turn off alarm signal from microprocessor instructions
2.3.5 Alarm Speaker
- An alarm horn inside the container will sound when it receives an intrusion signal from the microcontroller
 - The model we’re looking at has a sound range of 78dB to 100dB
 - 3V at 78db & 18V at 100dB
 - **100dB has the potential to damage hearing**
- Requirement 1: Activates with alarm signal
 - Alarm is off when alarm signal is not active
- Requirement 2: Loud/Annoying Noise
 - Must actually serve as a deterrent
 - Alert others nearby that something is wrong
- Requirement 3: App Control
 - Alarm able to be triggered/silenced/deactivated by app
 - Plays quieter noise when triggered by app to assist in locating

2.3.5 GPS tracker
- Likely the most expensive component
- SAM-M8Q GPS board
 - Draws 3.3V at 29mA in operation mode
- Requirement 1: Long Distance Communication
 - Must be able to send location to app over long distances
 - Most likely requires wifi access
- Requirement 2: Low Power Draw
 - Needs to last a long time to be worth price
 - Option for non-constant transmission to save battery life
- Requirement 3: Accurate Enough
 - Accurate enough to where package can be located with alarm

2.3.6 Accelerometer
- Will allow the container to know when it’s being stolen (picked up) and send a signal to the microcontroller to sound the alarm
 - Draws 2.5V at 145uA
- Requirement 1: Works in all directions
- **Requirement 2**: Calibrated Specifications
 - Must have appropriate triggers
 - Prevents unnecessary alarm system triggers

2.4 Phone App

- **2.4.1 User control app**
 - Ideally, the app will be the means by which we turn the device on/off
 - Will be Android based
 - Coded in Java
 - *Delivery crew able to activate alarm system once package is dropped off*

- **2.4.2 Location tracking service**
 - Wi-Fi module will transmit the location the GPS shows the box being at
 - *Requirement 1*: Be accurate enough to allow us to find a container in the event one is stolen and tossed somewhere

- **2.4.3 Notify the user when suspicious things happen**
 - *Requirement 1*: Threshold for suspicion must not cause frequent false positives

- **2.4.4 Receive video streaming/signal from the device through the Wi-Fi module in the Device**
 - *Requirement 1*: Will be able to receive the photos the front camera takes and uploads over the Wi-Fi module

3 Ethics & Safety

3.1 Ethical Concerns

- Upholding the safety, health, and welfare of the public
 - Our device will be placed in areas that are accessible to the public.
 - Theft counter-measures cannot be designed to inflict harm.
 - This is just dangerous to the public and asking for a lawsuit. We don’t want to design something that could end up tear gassing somebody’s puppy for being curious.
 - Disclose promptly factor that might endanger the public or environment
Though the container should be inconspicuous, providing notice of the alarm system on the container is necessary.

- Alarm must receive an appropriate amount of voltage to serve as an effective deterrent but also not cause hearing damage from excess volume.

3.2 Safety

- Our only safety concern at the moment is the Lithium-ion battery pack that we plan to use in the device due to its portable nature.

 - Lithium-ion technology has some flammability concerns
 - Put the battery pack in a compartment with fire suppression?
 - Give the horn a secondary function as a fire alarm?

- The final product should have means to mitigate dangerous levels of energy flow to the systems

- Isolate & insulate the battery pack from the rest of the system to prevent short circuits from occurring

- Rely on charging our Li-ion batteries from outside the device and in a safe environment

- Voltage regulator will need to include the function of preventing the battery voltage from decaying below 3.0V or exceeding 4.2V

 - In the event this threshold is breached, the microcontroller should detect this and give an emergency shutdown signal