Portable Anti-Theft Package Container

ECE 445

Date: 2/7/2022

Team Members

- Conor Mueller
- Ethan Fransen
- Yufei Zhu

TA: Qingyu Li

1 Introduction

Objective and Background

- Deter package theft in areas where delivery lockers may not be available
- Provide online retailers a means to ensure secure and delivery of goods to customers
- Mobile container for packages can easily be retrieved and redeployed by companies
- A plain and inconspicuous exterior prevent potential thieves from noticing the container
- Preventing theft will cut losses online retailers face due to refunding orders to customers

High Level Requirements

- Container must be able to communicate with a phone app that locks and unlocks the door to the package inside
- The container must be able to detect when a theft attempt is occurring, such as being carried away or broken into
- Systems must be able to operate on battery life for up to 12 hours and be recharged externally when out of power
2 Design

Block Diagram

2.1 Power Supply

- 2.1.2 Li-ion battery
 - *The greatest safety concern in the device.*
 - Two 3.7V batteries will power the device
 - **18650 Cell (2600mAh with solder tab and battery holder)**
 - Will be taken out to recharge. Can easily be replaced
 - *Requirement 1:* Need to be isolated in a separate chamber to prevent short circuits.
 - *Requirement 2:* Need a capacity of ~2000mAh each or greater.

- 2.1.3 Voltage regulator
 - Keep the circuit’s voltage at a desired voltage (3.65 V/cell)
- **Requirement 1**: Needs to cut off power to the system if battery voltage decays below 3.0V/cell or exceeds 4.2 V/cell
- **Requirement 2**: Also includes a step converter to give us the appropriate amount of voltage for the security and control systems

2.2 Control Unit

- **2.2.1 Microprocessor**
 - Our chosen microprocessor will be the ATMEGA48A-PU
 - **28 pins** on a **SPDIP** layout
 - Operate at **4.5V** on a **20 MHz clock**
 - Power consumption
 - Active mode: **0.2 mA**
 - Power saver mode: **0.75 µA**
 - Our microprocessor will mostly be used to control our internal security system such as the door lock and alarm through our app

- **2.2.2 Status LED**
 - Two simple 5mm LEDs
 - Green LED indicates power on/off
 - Red LED indicates the system is armed/disarmed
 - Current draw: **20mA each**
2.3 Security System

- 2.3.1 Electronic door lock
 - Electromechanical latch lock
 - Draws 600mA at 12V to release the latch
 - Latch is in locked state when not powered
 - Microprocessor will control the latch
 - **Requirement 1:** Tamper proof from the outside
 - **Requirement 2:** Openable via smartphone app
 - **Requirement 3:** Fail secure (locked without power)

- 2.3.2 Front camera (Panoramic)
 - A front mounted panoramic camera that will take photos when the microprocessor tells it to
 - Signal delivered at 3.3V from the microcontroller will activate the camera
 - Captured photo will be sent to the Wi-Fi module and uploaded to the phone app
 - **Requirement 1:** Photos must be taken when tampering is detected
 - **Requirement 2:** Photos must be sent and stored on phone app
 - **Requirement 3:** Protected against potential damages

- 2.3.3 Passive Infrared Sensor
 - A PIR sensor will monitor for any activity around the box and send a signal to take the device out of low power mode when activated
 - Draws 3.0V at 170uA
 - Will always be in operating mode while system is armed
 - **Requirement 1:** Calibrated sensitivity to react to appropriate stimulus
 - **Requirement 2:** Knows when to turn on/off of low power

- 2.3.4 Alarm Speaker
 - An alarm horn inside the container will sound when it receives an intrusion signal from the microcontroller
 - The model we’re looking at has a sound range of 78dB to 100dB
 - 3V at 78db & 18V at 100dB
- **100dB has the potential to damage hearing**
 - *Requirement 1*: Calibrate stimulus required to sound alarm to avoid false positives and turn off after certain conditions are met
 - *Requirement 2*: Loud/Annoying enough to serve as a deterrent + alert others in the area
 - *Requirement 3*: Able to assist in locating lost/stolen package at short distances
- **2.3.5 GPS tracker**
 - Likely the most expensive component
 - SAM-M8Q GPS board
 - Draws 3.3V at 29mA in operation mode
 - *Requirement 1*: Precise enough to locate package within distance where sound can be used to find it
 - *Requirement 2*: Draw low power to last for a long time if package is stolen
- **2.3.6 Accelerometer**
 - Will allow the container to know when it’s being stolen (picked up) and send a signal to the microcontroller to sound the alarm
 - Draws 2.5V at 145uA
 - Works in all three axis
 - *Requirement 1*: Calibrate acceleration required to sound the alarm to avoid false positives such as being nudged by a strong wind

2.4 Phone App
- **2.4.1 User control app**
 - Ideally, the app will be the means by which we turn the device on/off
 - Will be Android based
 - Coded in Java
- **2.4.2 Location tracking service**
 - Wi-Fi module will transmit the location the GPS shows the box being at
 - *Requirement 1*: Be accurate enough to allow us to find a container in the event one is stolen and tossed somewhere
● 2.4.3 Notify the user when suspicious things happen
 ○ Requirement 1: Threshold for suspicion must not cause frequent false positives

● 2.4.4 Receive video streaming/signal from the device through the Wi-Fi module in the Device
 ○ Requirement 1: Will be able to receive the photos the front camera takes and uploads over the Wi-Fi module

3 Ethics & Safety

3.1 Ethical Concerns

● Upholding the safety, health, and welfare of the public
 ○ Our device will be placed in areas that are accessible to the public.
 ○ Theft counter-measures cannot be designed to inflict harm.
 ■ This is just dangerous to the public and asking for a lawsuit. We don’t want to design something that could end up tear gassing somebody’s puppy for being curious.

● Disclose promptly factor that might endanger the public or environment
 ○ Though the container should be inconspicuous, providing notice of the alarm system on the container is necessary.
 ■ Alarm must receive an appropriate amount of voltage to serve as an effective deterrent but also not cause hearing damage from excess volume

3.2 Safety

● Our only safety concern at the moment is the Lithium-ion battery pack that we plan to use in the device due to its portable nature.
 ○ Lithium-ion technology has some flammability concerns
 ■ Put the battery pack in a compartment with fire suppression?
 ■ Give the horn a secondary function as a fire alarm?
 ○ The final product should have means to mitigate dangerous levels of energy flow to the systems
○ Isolate & insulate the battery pack from the rest of the system to prevent short circuits from occurring
○ Rely on charging our Li-ion batteries from outside the device and in a safe environment

● Voltage regulator will need to include the function of preventing the battery voltage from decaying below 3.0V or exceeding 4.2V
 ○ In the event this threshold is breached, the microcontroller should detect this and give an emergency shutdown signal