
Final Report

EpiCap - A Wearable EEG

December 8, 2021

ECE 445 - Fall 2021

Team 9

Shiru Shong (shirus2)

Qihang Zhao (qihangz2)

Casey Bryniarski (bryniar2)

TA: Melia Josephine

With help from Jennifer Cortes and Kenny Leung

1

Abstract

Our project, EpiCap, was motivated by designing a discreet, portable medical device that
monitors a patient’s EEG signals from the electrodes placed against his/her scalp. EpiCap
continuously processes the EEG data to determine whether a seizure activity is occurring. When
a seizure is detected, the device stores this EEG data and records a video of the patient’s eye
movement from an onboard camera. As both the EEG data and video recordings are stored on an
onboard SD card, a physician would use this valuable information to determine a diagnosis. A
physician will also be able to visualize the EEG data collected from the EpiCap through
open-source software, OpenBCI GUI.

2

Table of Contents

1. Introduction 3
1.1 Problem Statement 3
1.2 Solution 3

2. Design 6
2.1 Power Subsystem 6
2.2 Logic Subsystem 7

2.2.1 Microcontroller 7
2.2.2 Python API and Raspberry Pi 8

2.3 Storage Subsystem 8
2.4 Sensor Subsystem 9
2.5 Camera Subsystem 10

3. Verification 10
3.1 Power Subsystem 10
3.2 Logic Subsystem 10

3.2.1 Microcontroller 10
3.3 Storage Subsystem 11

3.3.1 microSD Card - STM32 11
3.4 Sensor Subsystem 11

3.4.1 Electrodes 11
3.4.2 ADC 11

3.5 Camera Subsystem 12

4. Cost 13
4.1 Parts 13
4.2 Labor 14
4.3 Schedule 15

5. Conclusion 16
5.1 Accomplishments 16
5.2 Uncertainties 16
5.3 Ethical Considerations 16
5.4 Future Work 17

6. References 18

Appendix A - Requirement and Verification Tables 19
Appendix B - Software Flowchart 27
Appendix C - Firmware/Software Code 28

3

1. Introduction
1.1 Problem Statement

Electroencephalograms (EEGs) are procedures that measure electrical activity at the very
perimeter of the brain. Physicians use the results of these tests to diagnose and determine courses
of treatment for abnormal brain behavior, such as epilepsy. A typical EEG test, however, presents
difficulties to the patient and physician. Patients can be admitted to a hospital, occupying an
inpatient bed, while sleep-deprived and off medication, in hopes that a seizure occurs and can be
assessed; which leads to an increase in healthcare resource utilization [1]. As the average
hospital stay for epilepsy patients is 3.6 days, the accumulated hospital costs for epilepsy
annually totaled approximately $2.5 billion [2]. Additionally, a survey showed that the average
annual cost of epilepsy per person was $15,414 [3]; which includes outpatient, inpatient, ED, and
treatment costs.

Ambulatory options, which are more cost-effective than outpatient/inpatient treatments,
do exist. However, as many of these ambulatory types of equipment are bulky, not portable, or
discreet; patients are forced to stay home and surrender important responsibilities that impact the
patients’ normal everyday activity such as work. People with a history of epilepsy were observed
to have a lower annual income and a higher probability of unemployment [4].

1.2 Solution
If the present ambulatory technology was further miniaturized, we can create a device as

discreet as a baseball cap that allows the wearers to carry on about their day while remaining
monitored for EEG activity. Such a device would eliminate the bulky, inconvenient present
ambulatory systems, and draw less attention in public. EEG patients would have the ability to
wear it to work and would be able to record important EEG data if a seizure was to occur.

We propose a discrete ambulatory EEG that can monitor patients, come off standby when
an event is occurring, and measure brain activity while also utilizing a camera to further record
muscle activity (or inactivity), essential data to arrive at a diagnosis and severity of an event. The
benefit of having a seizure captured on video is the seamless synchronization to the patient’s
brain waves recorded from the EEG data. Moreover, the device will include onboard storage that
will save EEG data and camera footage from a seizure event. We can then use the onboard SD
cards to have the EEG data and camera footage can be viewed on a physician's PC. Our device
has three high-level requirements, which were met individually, ensuring that most parts of the
device are working:

1. The EEG cap must be discreet and all the main devices components must be within the
cap and cap visor (enclosure volume = 72 mm x 36 mm x 25 mm).

2. Record EEG data at 240 +/- 5% Hz sampling rate for at least 24 hours and be able to
store EEG data‒ electrical activity of the brain during a seizure on the flash storage.

3. The EEG cap will track the patient’s eye and arm movement to shoulder height by using
the wide-angle camera (minimum 240p) located in the cap visor.

4

The EpiCap requires the following subsystems in order to operate successfully: power
subsystem, microcontroller/processing subsystem, onboard flash storage, and a camera module
as shown in Figure 1. The power supply would provide the proper 3.3V and 5V to the board to
ensure that the system can be running for at least 24 hours. The microcontroller subsystem,
which consists of the STM32F2, would be the central processing unit of the system and would be
dealing with commands such as saving EEG traces and saving camera footage to onboard storage
when detected seizures. The onboard flash storage would store EEG data and eye/arm movement
camera footage. Lastly, the camera subsystem consists of a wide-angle camera in order to track
the patient’s eye and arm movements.

Figure 1. EpiCap Initial High-Level Block Diagram with STM32

As we faced several firmware problems with the STM32F2, we decided to create another
board that satisfies our three high-level requirements with Raspberry Pi Zero W as the main
microcontroller shown in Figure 2. The main changes include the Raspberry Pi Zero W being
directly connected to the ADC unit through SPI and the Camera Module through CSI. We do not
require an onboard storage unit as the Raspberry Pi Zero W has its own onboard SD storage.
Therefore, all the EEG data and camera footage will be saved to the Raspberry Pi Zero W SD
storage.

5

Figure 2. EpiCap Initial High-Level Block Diagram with Raspberry Pi Zero W

2. Design
2.1 Power Subsystem
Our power subsystem prioritizes portability and low noise. Portability is a must since we

have to present a device that could remain secure and unobtrusive clipped to the visor of a
baseball cap. The economy of scale limited our battery choices to either LiPo, NiMH, or alkaline
disposable batteries. Due to their ubiquity, high performance, and high power/weight ratio, we
chose a LiPo cell to power our project. Moreover, we sought to find an off-the-shelf solution to
reduce our onboard complexity. For this, we chose a USB battery pack, commonly used to
charge cell phones in an emergency.

Due to the nature of EEG measurements, we also require a power source that provides a
very low noise reference voltage. We compare the signals at the electrodes placed on the scalp to
this reference voltage to achieve sub-uV measurements. This eliminates any possible noise
present if our wearer's head was a floating voltage. While our reference voltage in this case was
5V, it could have potentially been different had we gone with a different ADC.

6

Figure 3. Simulation of our power rail
As could be gathered from the figure, our simulation promises that the linear regulator

cancels quite a large bit of noise. We were able to take real-world measurements once our circuit
was soldered onto a bare board for unit testing and confirmed that we reached our requirements.
While the linear regulator cancelled much of the rechargeable battery pack's noise, we still were
only left with a 3.3V rail. In order to create our 5V bias rail, we selected an inductorless charge
pump, the LTC3204. We ran our low-noise 3.3V supply from earlier into the input of the charge
pump, and were able to confirm that our output in simulation was very low noise, and a major
improvement from the original 5V rail we used.

We confirmed functionality some more when we unit tested our power rail on a bare
board. Our output from the charge pump was a very low noise, but clean, 5V signal.

2.2 Logic Subsystem
2.2.1 Microcontroller
Our logic subsystem had a few goals. It first had to have enough onboard RAM to handle

monitoring 8 channels of 24-bit voltage data at 240Hz. Come time to record, it had to be able to
buffer both these data with 240p video data and store all of it on a microSD card.

While very many microcontrollers would and could be used to buffer our ADC voltage
data, we found very few that could process our 240p video signal. The 32-bit architecture of the
STM32 is suited for arithmetic tasks on our 24-bit EEG data compared to architectures using 8-
and 16-bit radixes. Moreover, the STM32 lines offered a proprietary DCMI digital camera
interface that had a robust driver and reference implementations that could potentially save us
time interfacing our camera submodule.

This potential logic/control unit also required a means of getting data onto an SD card.
Many microcontrollers use a scheme known as DMA, or direct memory access, to pull data
straight from registers to an output. STM32 implemented the standard SDIO protocol in drivers,
and allowed us to use DMA to send data to the SD card directly from our buffers.

7

Other microcontroller options we looked at were ATMega series ones similar to the one
Arduino uses, as well as PIC32MX series microcontrollers. We explored, too, modules that
involved the ESP32 line of chips from Espressif. None of these options were able to be as
performant as the STM32 option, and all of them required additional memory ICs, DRAM, in
order to provide us with enough space to buffer video data. These additional complications led us
to pick the STM32 series.

The algorithm behind the STM32 microcontroller is straightforward. We grab 10 sets of
EEG data from the 8 channels of the ADC, calculate their average and compare this average with
the average of previous 10 sets of EEG data. To calculate the average, we use the equation:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑆𝑢𝑚
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 = ∑∣𝑥∣

𝑛

To Compare this average with the previous average, we use the following logic:
● If 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ≃ 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒:

The patient is not in a state of seizure.
● If > Threshold*():𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒

The patient is in a state of seizure.

2.2.2 Python API and Raspberry Pi
We also have our backup PCB board which uses the Raspberry Pi as a microcontroller to

communicate among ADS1299, itself, and camera through the SPI port. The Python API deals
with the SPI port and uses another GPIO thread to process the samples from ADS1299. Those
samples are managed into a NumPy array by the registered callback and are processed to the
length corresponding to the number of channels. Even though they provide these arrays to us, we
still need a FIFO buffer to store these data, since we need to store 2 arrays into the SD filesystem
to do the comparison. We also import the os library to make a direct system call to call the
camera module, output the footage, and save it in the date-time format in a folder called Videos
into the SD card.

2.3 Storage Subsystem
Our storage subsystem had to prioritize usability and familiarity - this was one of the few

parts of our device that would be regularly handled by patients and physicians. Due to their
ubiquity and small size, microSD storage cards were far and away our first choice for onboard
storage media. They provided a safer means of privacy than a wireless alternative, offered very
high capacity at low prices (less than $1 per GB of storage), and due to their use in phones,
computers, and tablets, end users wouldn't require much additional training to properly extract
test data from our device. Other alternatives present were USB mass storage devices, and larger
SD cards, but they posed a threat to our device's small footprint and any performance increase
they could offer was out of the scope of our device.

Our STM32 firmware used a reference implementation, instantiating a FAT16 filesystem
on our SD card before writing data to it. FAT16 is a common, small footprint filesystem that
offers portability and cross-compatibility with all major operating systems, affording our data to

8

be read by physicians with Mac, PC, or Linux computers. Our 24-bit ADC data would be sent
from an on-board buffer and written to a text file, while our 240p video signal would be written
frame by frame to a headless video file, like h.264 format.

2.4 Sensor Subsystem
Our sensor subsystem had three tasks to take: it must implement a way to communicate

with and be controlled by our logic unit, it must be able to measure and discriminate ~uV EEG
signals, and it must allow us to sample at a rate at least at 240Hz. Due to the unique use case of
our project, we required a "biopotential ADC" that offered a reference voltage or biasing output
as well, in order to actually perform an EEG reading.

EEGs take readings from electrodes placed on the patient's scalp. If the patient's head was
a floating voltage, the electrodes wouldn't have any consistent signal to discriminate against.
Instead, EEGs always have a few electrodes, in our case, ear clips, that supply this reference
voltage that is later subtracted to achieve our EEG measurements. It is integral that we have this
bias, or else we face taking inaccurate measurements from the wearer [6].

We explored our options for biopotential ADCs in Table 1 below. TI's ADS1299 was the
only IC that didn't require additional amplifiers, isolation ICs, or additional packages in the
reference layout of the device. We determined that the ADS1299 would be performant enough
for our needs, since it is also used by the OpenBCI project to achieve research-grade EEGs,
while providing us with the most efficient use of space on the PCB in LQFP package size.

Table 1. EEG-capable ADCs

Manufacturer [6][7][8] Package Options Sample resolution

Texas Instruments ADS1299 LQFP 24 bit resolution

Analog AD7177-2 TSSOP 24 or 32 bit resolution

Maxim Integrated MAX11040K TSSOP 24 or 16 bit resolution

Since all of the chips we looked at implemented a SPI communication/control bus, this
requirement ended up being a moot point. We didn't think we would have much of an issue
comparing the devices in this aspect, since SPI is an industry-standard and our ADCs operated at
bandwidths far below what SPI is capable of.

While we were able to pick an ADC that didn't require much conditioning, we still were
encouraged to isolate each lead with bias capacitors per TI's reference implementation. We also
drew heavily from OpenBCI's implementation of the ADS1299, which proved to be a successful
product that had full functionality while remaining in a small footprint. For this, we chose an RC
circuit that provided a low-pass filter in order to prevent spurious discharges from reaching our
sensitive sensors.

9

No matter what option we went with, ADCs are extremely sensitive to electrostatic
discharge [9]. Static electricity is generated by a person's clothing, and the stored charge is
released when a person touches a ready path to ground, or handles electronics similar to ours. We
mitigate this hazard through TVS diodes. While there were plenty of options available, we went
with TI again for their small footprint TVS diodes, each rated to burn at 12V. These diodes
provided us with enough protection that, in the event of a wearer or someone else having a static
charge, could burn the TVS diode without harming the $40 ADC onboard the device. The TVS
diode would also pose much less of a stress to repair compared to reworking the 64-pin ADC
package.

2.5 Camera Subsystem
The camera module, which consists of an OV5647 Wide Angle FOV 160° 5-Megapixel

camera, would be directly connected to the Raspberry Pi Zero W microcontroller through the
CSI port. The Python program on the Raspberry Pi Zero W would trigger the camera to turn on
and start recording when detected a seizure. The camera module would send the processed
camera footage to be stored on the onboard SD card of the Raspberry Pi Zero W (Appendix C,
Figure XX). The OV5647 camera module has a maximum transfer rate of 60 fps and VGA
resolution (640x480). The camera footage will be stored onto the onboard storage of the
Raspberry Pi Zero W. To allow ease of use by the physician, the camera footage should be
written to a file that can be easily viewed by an open-source multimedia player.

3. Verification
3.1 Power Subsystem
The power subsystem sets specific ripple voltage tolerances for each power rail

(Appendix A, Table XX.1). We populate and solder only the components essential to the power
rail and then measure each output with a multimeter. We then use an oscilloscope to measure our
5V input to GND, to determine the baseline ripple. We then measure our 3.3V output from our
linear regulator to our GND, and use an oscilloscope to ensure our output voltage and ripple are
within our tolerances. Finally, we measure the voltage across the output capacitors on the charge
pump, to verify we have a stable 5V rail, and determine whether our ripple voltage on that rail is
within tolerances via an oscilloscope.

3.2 Logic Subsystem
3.2.1 Microcontroller
We first verify our STM32 functionality by connecting our SWDIO, GND, SWCLK, 5V,

nRST, and SWO pins from our modified ST Link v2.1 to the corresponding headers on the
board. We flash a firmware payload to the device and determine if the IC is functioning. We then
use the SWO/SWDIO trace feature to verify individual parts of our firmware as they are
executed by the chip.

10

3.2.2 Python API and Raspberry Pi
The requirement for the python API was that we must be able to ssh onto the Pi and get

the demo ADC data. By compiling the code and booting the whole system up, we were able to
get the EEG data in a form of array, and store these data into a txt file named with
year-month-day-hour-minute-second. On the other hand, the camera module successfully
receives the “turn on” signal from the Raspberry Pi, and saves the footage into a trg file named
with year-month-day-hour-minute-second.

3.3 Storage Subsystem
3.3.1 microSD Card - STM32
The requirement of our storage was to be able to store EEG and video data to an onboard

SD card. Our STM32 board firmware was able to write an empty FAT16 filesystem to the SD
card, but not achieve communication with the ADC, and unable to write data to the microSD
card. We confirm that the FAT16 filesystem is being created by our device by inserting a wiped
(blank) microSD onto the carriage present on the STM32 board. We can then run the firmware
for a few minutes, making sure our filesystem firmware executes in our software trace. We then
check the microSD card on a laptop to determine whether a FAT16 file is present, using lsblk or a
similar utility.

3.3.2 microSD Card - Raspberry Pi
Our microSD card onboard the Pi served as both the storage for our host OS, our boot

partition, and our space for saved data. We were able to write Python code that saved video data
in h.264 format to this onboard SD card. We were also able to save test ADC data from our
ADS1299 over SPI.

3.4 Sensor Subsystem
3.4.1 Electrodes
We verified the functionality of our electrodes and headset using the OpenBCI Cyton

board. We were able to establish a connection and collect data from the headset and visualize it
using the OpenBCI software suite.

3.4.2 ADC
Our ADC could be split into analog and digital components. Our analog side connects to

our electrodes and headset, and the digital side communicates with our logic subsystem over SPI.
To verify the digital component, we sent a test stream instruction over SPI to our ADC chip. We
were able to retrieve a stream of test data to confirm that we could talk to the chip. To verify our
analog component, we connected our OpenBCI headset and electrode leads to our protected
ADC headers, and compared our measurements with the ones retrieved by the OpenBCI Cyton
board. Unfortunately, due to issues with our biasing circuit, we weren't able to get accurate EEG
results when the entire project was connected together.

11

3.5 Camera Subsystem
The requirements for the camera module were of the following: the camera module must

have a minimum of 60 fps and 240p resolution (Appendix A, Table XX.1), be able to track both
eye movements and arm movements above shoulder height (Appendix A, Table XX.2), camera
module size must be less than 40x40 mm and weigh less than 30g (Appendix A, Table XX.3),
and the camera footage must be stored onto the onboard SD card with the correct file extension
in the respective folder (Appendix A, Table XX.4). To verify that the camera has 60 fps and 240p
resolution, we chose the OV5647 camera module which allows us to configure the camera to
record 640x480p at 60 fps. The datasheet states that the size of the camera is 24x9 mm and the
weight is less than 2g, which meets our specifications. Once we ran the Python program, we
were able to verify that the wide-angle camera was able to record the patient’s eye movements
and arm movements above shoulder height (Appendix C, Figure XX). Once the video recording
is taken, we were also able to verify that the output file has the extension of ‘.h264’ by reading
the SD card on the laptop and that the file is saved into a Videos folder on the SD card
(Appendix C, Figure XX).

12

4. Cost
4.1 Parts

Table 2. Cost of Each Component Used for EpiCap
Component Quantity Cost per Component Total Cost

Raspberry Pi Zero W 1 $5.000 $5.000

B006603 ArduCam Pi Zero OV5642 Camera Module 2 $17.990 $35.980

STM32F205ZCTx MCU 4 $13.730 $54.920

LD1117S33TR_SOT223 Linear Regulator 5 $0.438 $2.190

LTC3204EDC-5#TRPBF 2 $4.270 $8.540

ADS1299IPAG 8 Channel ADC 1 $70.880 $70.880

DM3BT-DSF-PEJS microSD Card Carriage 2 $2.300 $4.600

SDSDQM-032G-B35 microSDHC card, 32G 2 $5.850 $11.700

Single-cell LiPo battery, 5000 mAh 1 $13.390 $13.390

1568-PRT-15217-ND LiPo Battery Charger 1 $9.100 $9.100

W3A45C102MAT2A 1000pF Capacitor Array 10 0.248 $2.480

RC1206FR-0710KL 10 kOhm Resistor 10 0.074 $0.740

TPD4E1B06DCKR TVS Diode 12 0.56 $6.720

CAY16-2201F4LF 2.2kOhm Resistor Array 10 0.086 $0.860

RC1206FR-07680RL 680 Ohm Resistor 10 0.074 $0.740

RC1206FR-07220RL 220 Ohm Resistor 10 0.074 $0.740

CRT0805-BY-1004ELF 1MOhm Resistor 10 0.179 $1.790

RC0805JR-0747KL 47 kOhm Resistor 10 0.036 $0.360

C0805C225K8RAC7210 2.2 uF Capacitor 10 0.162 $1.620

0805AC101KAT2A 100 pF Capacitor 10 0.54 $5.400

CC0805BRNPO9BN2R2 2.2 pF Capacitor 10 0.124 $1.240

C0805X104K1RACAUTO 0.1 uF Capacitor 50 0.2144 $10.720

C0805C106K8PAC 10 uF Capacitor 10 0.632 $6.320

C0805X105K5RACAUTO 1 uF Capacitor 30 0.86 $25.800

PMK212BBJ107MG-T 100 uF Capacitor 10 1.13 $11.300

C0805X102K5RAC3316 1000 pF Capacitor 10 0.193 $1.930

2223 Raspberry Pi Header Pin 2 2.5 $5.000

SMLMN2ECTT86C SMD LED 5 0.75 $3.750

Total: $303.810

13

4.2 Labor
From the 2019-2020 annual Illini Success Report, an electrical engineer has an average

salary of $76,129 while a computer engineer has an average salary of $99,145 [5]. Assuming a
total of 100 billable hours per engineer as there are 10 weeks we worked on the technical part of
the project and 10 hours per week. We would also require an additional $125/hr for our
company's upkeep. As Casey and Shiru are electrical engineer students while Qihang is a
computer engineering student, the total labor cost would be the following:
𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 2 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑠: $36. 63/ℎ𝑟 × 100 × 2 = $7, 326
𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 1 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟: $47. 67/ℎ𝑟 × 100 = $4, 767
𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡: 7326 + 4767 + 125(100) = $24, 593

As we did not require the machine shop’s assistance, the total labor cost would be
$24,593 for 3 works in total.

14

4.3 Schedule
Table 3. Project Schedule and Task Allocation for Each Worker

Week Shiru Shong Casey Bryniarski Qihang Zhao

9/27 Complete Design Document. Complete Schematic for
EpiCap.

Complete Design Document.

10/4 Complete Design Review.
Get the PCB board approved
and order first around. Buy
all the necessary components
for the project. Test
OpenBCI EpiCap.

Complete Design Review.
Finalize & Review PCB. Get
the PCB board approved and
order the first round. Test
OpenBCI EpiCap.

Complete Design Review.
Finalize & Review PCB.
Buy all the necessary
components for the project.
Test with OpenBCI GUI.

10/11 Complete unit-testing for
each component. Complete
PCB Board by soldering and
mounting components.

Complete unit-testing for
each component. Complete
PCB Board by soldering and
mounting components.

Work on the firmware of the
microcontroller with other
subsystems.

10/18 Test onboard hardware
system, identify and fix
issues. Start Version 2 PCB
design.

Test onboard hardware
system, identify and fix
issues. Start Version 2 PCB
design.

Finish the firmware code for
the microcontroller.

10/25 Finish on-board hardware
testing. Execute the whole
EpiCap testing, including
firmware. Order Version 2
PCB board design.

Finish on-board hardware
testing. Execute the whole
EpiCap testing, including
firmware. Order Version 2
PCB board design.

Test firmware code with the
entire hardware component.
Start Version 2 firmware
coding.

11/1 Complete the Version 2 PCB
board and perform the final
debugging process.

Complete the Version 2 PCB
board and perform the final
debugging process.

Finish Version 2 firmware
coding and continue the
firmware debugging process.

11/8 Perform final complete
system testing. Prepare for
Mock Demo and
demonstration.

Perform final complete
system testing. Prepare for
Mock Demo and
demonstration.

Perform final complete
system testing. Prepare for
Mock Demo and
demonstration.

11/15 Mock demo. Mock demo. Mock demo.

11/22 Fall break. Fall break. Fall break.

11/29 Demonstration. Work on
presentation. Start the final
paper.

Demonstration. Work on
presentation. Start the final
paper.

Demonstration. Work on
presentation. Start the final
paper.

12/6 Final presentation and final
paper.

Final presentation and final
paper.

Final presentation and final
paper.

15

5. Conclusion
5.1 Accomplishments
Although we were not able to achieve all of our high-level requirements, we were able to

successfully complete 2 out of 3 of them. Not only that, we were able to demonstrate that each
individual module is fully functional through unit testing. One of the biggest accomplishments
was overcoming the challenge of getting the first PCB with the STM32F2 hardware system to
work. We had to solder a handful of components that were difficult to solder such as the
LTC3204 charge pump and the STM32F2 chip. We also had to cut traces on the board while
jumping wires as we discovered a number of PCB trace errors. In the end, we were able to
successfully flash the firmware to the STM32F2 board, which verifies that our hardware system
works. When we flashed the firmware, we were able to observe register values changing in the
STM32, which is a good sign of the firmware being partially functional. One of the other
accomplishments is that our camera module is fully functional as the Raspberry Pi was able to
communicate with the camera and record the video successfully. Due to an error in our biasing
circuit, we were not able to receive accurate EEG signals from the electrodes connected to the
ADC unit. However, the Raspberry Pi was still able to successfully communicate with the ADC
unit and receive test data to be stored on the SD card. We believe that we are one board iteration
away from having a fully functional EpiCap device due to our biasing circuit error.

5.2 Uncertainties
Due to the time constraints within the semester, we were unable to test our project against

real-world and clinical examples of EEGs, and EEGs during seizure symptoms. Our detection
scheme is a placeholder that, through tweaks and iterations against clinical cases, would give
way to a more robust and proven detection scheme. We are confident that our initial detection
scheme we describe could remain mostly intact, save for a few tweaks to our buffer's length and
our threshold we set to distinguish seizure vs. resting EEG activity.

5.3 Ethical Considerations
There could be several concerns regarding our project. The cap confronts several risks

and vulnerabilities as a result of the use of rechargeable lithium-ion batteries, electrodes, cables,
chips, flash storage, camera, and the possibility of a patient's unexpected fall.

First, there are electrodes that remain in contact with the scalp in the event of a seizure.
Even though this is a special hat that collects medical EEG information, we still need to make
sure patients do not feel any difference or discomfort wearing the hat compared to a regular hat.
As stated in the subsystem requirements, the electrodes must be readily adapted to different ball
caps and different hat sizes. We must also take precautions that our device does not create more

16

danger for a patient in the event of a fall. In order to solve these issues, we will adjust the gap
between the cap and the patient's head by using one of the most common ways of fixing an
ordinary cap: an elastic strap, which can better keep the cap on the patient’s head steadily and
capture important EEG information in the scenario that the patient falls. We will also line up our
wires and chips so that they are distributed around the edge of the hat so that the patient will not
be injured by these parts if they fall.

The second concern is that EpiCap is a wearable gear, and patients will need to wear it
for long periods to get complete EEG data. If any materials are mixed with chemicals that are
harmful to the human body, it is potentially dangerous for the patient and may lead to an
erroneous diagnosis from doctors. In order to solve this problem, we need to ensure that both the
battery and board present no hazard to the patient - especially in the event of high heat, moisture,
and any sort of mechanical shock where according to the IEEE Code of ethics I.1: we must “hold
paramount the safety, health, and welfare of the public…” [10].

The third concern is that the EpiCap will collect highly confidential EEG data of the
patient. We must ensure that patient information can only be accessed by the doctor and is kept
confidential to visitors, as according to the IEEE Code of ethics I.1 we must “hold paramount the
safety, health, and welfare of the public…”[10]. In order to solve this issue, we can design a
password system for doctors and encrypt all patient information. For example, each doctor will
have separate accounts and passwords. When the doctor receives data from the GSM chip, they
will give their patient an identification number. As a result, only the corresponding physician has
the patient's EEG data, which cannot be viewed by the outside viewer.

The fourth concern is that the EpiCap will not have the danger of electrocution from the
electrodes. We must ensure that no patients or doctors get hurt according to the IEEE Code of
ethics I.1 we must “hold paramount the safety, health, and welfare of the public…”[10]. In order
to solve this issue, we can attach a layer of insulation material to the inside of the hat, to avoid
direct contact between any electrodes to the skin of patients.

We will rigorously test our design to ensure that the final product is safe for patients and
doctors alike. We intend to comply with the IEEE code and the corresponding safety or regulator
standards such as OSHA or FCC. Additionally, we will seek and accept any improvements
regarding our project and due to the nature of our design, we will need to work with the medical
school, so that we will appropriately credit others' efforts, according to IEEE code of ethics I.5:
“to seek, accept, and offer honest criticism of technical work…” [10].

5.4 Future Work

We believe that if we correct our biasing circuit, we could produce a board that fits neatly
on our Raspberry Pi Zero W and performs our EEG measurements. If this is accomplished, we
may begin testing the device and the software detection scheme in a clinical setting.

17

6. References

[1] S.-Y. Chen, N. Wu, L. Boulanger, and P. Sacco, “Antiepileptic drug treatment patterns
and economic burden of commercially-insured patients with refractory epilepsy with partial
onset seizures in the United States,” Journal of Medical Economics, vol. 16, no. 2, pp. 240–248,
2012. [Accessed September 25, 2021].

[2] Healthcare Cost and Utilization Project, 2014 National Data. [Online]. Available:
hcupnet.ahrq.gov/. [Accessed September 25, 2021].

[3] J. A. Cramer, Z. J. Wang, E. Chang, A. Powers, R. Copher, D. Cherepanov, and M. S.
Broder, “Healthcare utilization and costs in adults with stable and uncontrolled epilepsy,”
Epilepsy Behav., vol. 31, pp. 356–362, 2014. [Accessed September 25, 2021].

[4] Kobau R, Zahran H, Thurman DJ, et al. Epilepsy surveillance among adults—19
states, Behavioral Risk Factor Surveillance System, 2005. MMWR Surveill Summ.
2008;57(6):1-20. [Accessed September 25, 2021].

[5] Texas Instruments, “ADS1299-x Low-Noise, 4-, 6-, 8-Channel, 24-Bit,
Analog-to-Digital Converter for EEG and Biopotential Measurements,” ADS1299 datasheet, Oct
2016 [Revised Jan. 2017].

[6] Maxim Integrated, “24-/16-Bit, 4-Channel, Simultaneous-Sampling, Cascadable,
Sigma-Delta ADCs,” MAX11040K datasheet, May 2015.

[7] Analog Devices, “32-Bit, 10 kSPS, Sigma-Delta ADC with 100 μs Settling and True
Rail-to-Rail Buffers,” AD7177-2 datasheet, Mar. 2015 [Revised Mar. 2016].

[8] TI Precision Labs, “EOS and ESD on ADC,” Texas Instruments,
https://training.ti.com/eos-and-esd-adc. Accessed 6 September 2021.

[9] “Part of University of Illinois,” Box. [Online]. Available:
https://uofi.account.box.com/login. [Accessed: 08-Dec-2021].

[10] IEEE, “IEEE code of ethics,”. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 28-Sep-2021].

18

Appendix A - Requirement and Verification Tables
Table 4. Requirements and Verification Table for ADC

Requirements Verification Verification Status

1. Must be sampling at a rate
of 240 +/-5% Hz.

1.
a. Send ADS command

to stream 240Hz test
data over SPI, and
confirm 240Hz
functionality with
timestamps

Verified

2. Must not pick up any
external signals from other
peripherals on the board.

2.
a. Perform an EEG test

with leads, but no
head, in the hat, for a
long duration, in a
reasonably EM-free
area.

b. While recording data,
poll every other
peripheral in
sequence, for a minute
or so each, making
sure there's another
minute of dead time in
between devices
running.

c. View the data.
Identify and determine
any concerning,
spurious, emissions.

Not verified

3. Provide reasonably low
noise (<µV).

3.
a. Provide a low-power

analog signal to the
ADC in the range of
µV.

b. Take oscilloscope
measurements to

Not verified

19

measure the output
voltage ripple signal is
less than 1 µV.

Table 5. Requirements and Verification Table for Electrodes

Requirements Verification Verification Status

1. Must remain in contact
with the scalp in the event of
a seizure

1.
a. Wear the EpiCap with

all the electrodes in
contact with the scalp.
Confirm that all the
electrodes do detect
electrical signals
initially, using a
continuity check on a
multimeter.

b. Move around and
re-enact big physical
movements such as
falling, jumping,
walking, etc.

c. Confirm that all the
electrodes are still in
contact with the scalp
and collect electrical
signals from the brain
accurately.

Verified

20

2. Must be collecting accurate
electrical signals (can have
+/- 5% error).

2.
a. Provide a low-power

analog signal,
generated from the
function generator to
the one electrode lead
of the original
OpenBCI Ultracortex
Mark IV Cap.

b. Use the OpenBCI
GUI software to
record the EEG data
received by the Cyton
8-channel board.

c. Repeat steps A and B
with our own EpiCap
board. Ensure that the
EEG data collected
from our board stays
within the 5% error of
the data collected
from the OpenBCI
Cap.

d. Repeat steps A, B, and
C with the 7 other
electrodes used for the
8 channel electrode
input.

Steps a. and b. verified

21

Table 6. Requirements and Verification Table for Rechargeable Lithium Polymer Battery

Requirements Verification Verification Status

3. During discharging at
maximum current and
voltage, the temperature of
the Li-Po battery would be
less than 27℃.

3.
a. Charge the Li-Po

battery entirely to
4.2V to ensure that the
cell voltage is at its
highest.

b. Discharge the battery
and use an IR
thermometer to ensure
that the battery does
not discharge at a
temperature greater
than 27℃.

Verified

4. Must be able to power the
board at full capacity for at
least 24 hours.

4.
a. Connect the fully

charged LiPo battery
to the board with all
the devices connected.

b. While connected to
the board, discharge
the LiPo battery at an
operating voltage of
3.5-4.2V for 24 hours.

c. Use a voltmeter to
ensure that the battery
cell voltage drop is
greater than 3.2V
(preferably between
3.5-3.7V).

Verified

22

Table 7. Requirements and Verification Table for Linear Regulator

Requirements Verification Verification Status

1. Provide 3.3V+/- 5% from a
3.5-4.2V source.

1. Measure output voltage
using an oscilloscope to
ensure that the output voltage
stays within 5% of 3.3V

Verified

3. Maintain a temperature
range of 20℃ to 27℃.

3. Use the IR thermometer to
make sure the voltage
regulator stays in the
temperature range of 20℃ to
27℃.

Verified

Table 8. Requirements and Verification Table for Charge Pump with LDO

Requirements Verification Verification Status

1. Step up to 5V+/- 5% from
a 3.5-4.2V source.

1. Measure output voltage
using an oscilloscope to
ensure that the output voltage
stays within 5% of 5V

Verified

3. Maintain a temperature
range of 20℃ to 27℃.

3. Use the IR thermometer to
make sure the voltage
regulator stays in the
temperature range of 20℃ to
27℃.

Verified

Table 9. Requirements and Verification Table for Logic Unit

Requirements Verification Verification Status

1. Microcontroller must
successfully boot under
battery power

1.
a. Attempt to flash

firmware over
SWDIO/SWCLK using
ST Link v2.1 peripheral

Verified

23

2. Microcontroller must
communicate with ADC

2.
a. Send "start stream"

instruction to ADC using
SPI controller

b. Observe test data stream
and confirm device
functionality

c. Perform test without
ADC populated to
confirm SPI
communication

Verified

3. Microcontroller must be
able to write to SD FAT32
filesystem

3.
a. Using a computer, wipe

all the contents and
filesystems off of a
microSD card

b. Insert the microSD card
into the carriage on the
board.

c. Flash firmware that
implements creating the
FAT16 filesystem on the
microSD card

d. Determine if microSD
card has new FAT16
partition created from
device

Verified

4. Microcontroller must be
able to send a "begin
recording" alert to our camera
peripheral

4.
a. Create a microSD card

formatted with a
Raspbian distribution.
Write firmware for our
MCU that will loop over
and send data to the
UART serial terminal
pins we share with the
Raspberry Pi

Unverified

24

b. Connect 3.3V DC power
supply to battery
terminals present on
board, and flash our
MCU with our test
firmware.

c. Connect leads to expose
Raspberry Pi's serial
terminal and establish a
connection with our test
PC.

d. Verify Raspberry Pi has
successfully booted via
our serial terminal. Using
a script, verify that the
other serial tty present on
the Pi is receiving our
dummy MCU data being
sent.

5. Microcontroller must be
able to raise an alarm
depending on ADC voltage
detecting a seizure-like
activity or a bad contact

5.
a. Flash firmware to the

device that can interpret
all of our ADC leads'
data and send printf()
statements to console
regarding our seizure
criteria or a bad contact

b. Connect 3.3V DC power
supply to battery
terminals present on
board, and flash our
MCU with our test
firmware.

c. Send test data that
determine edge cases of
our criteria down our
EEG leads. Determine
that our intended
detection behavior is

Unverified

25

present in our serial
output.

Table 10. Camera Module R&V Table

Requirements Verification Verification Status

1. Must have a minimum 60
fps and 240p resolution.

1. Write a device script to
record and save a short video
from the camera, saving it to
onboard SD. Determine the
fidelity of the video using
software playback in VLC.

Verified

2. Be able to track both eye
movements and arm
movements to shoulder height
from the camera footage
(verify that it is mounted at a
reasonable angle on the cap
visor).

2.
a. Mount the camera on the

cap visor at the desired
angle.

b. Use the microcontroller
to turn on the camera and
collect footage in order
to process and save the
final camera footage onto
the SD card.

c. Verify using the saved
camera footage that both
eye movements and arm
moments to shoulder
height can be observed
from the camera footage.

d. Repeat steps A, B, and C
if the verification fails.

Verified

3. Camera size is less than
40x40 mm and weight less
than 30g.

3.
a. Measure the length and

width of the camera chip
to ensure that it is less
than 40x40 mm.

b. Weigh the camera chip to
ensure that it is less than
30g.

Verified

26

4. Camera footage is stored
on the onboard SD card with
the correct ‘.h264’file
extension in the appropriate
folder.

4.
a. Run the python script

for the camera module
to record an output
test file.

b. Confirm that the
output test file is
uncorrupted and has a
‘.h264’ file extension
and is located in the
Videos folder.

Verified

Appendix B - Software Flowchart

Figure 4. Microcontroller Firmware Flowchart

27

Appendix C - Firmware/Software Code
The code below shows how the program receives the EEG data and how the program

stores these data into the SD card. As you can see there is a DefaultCallback function, which is
called every time the ADS1299 is initialized. This attached registered client, DefaultCallback,
will receive the EEG data from ADS1299, and process them into a ring buffer. Every time the
ring buffer is full, these data will be added together. The buffer is cleared and stores the next 80
numbers. After we have 2 sums, we will compare them to see if there is a large difference. If
there is a large difference, we will store these data into a txt file named with
year-month-day-hour-minute-second.
def DefaultCallback(data):

print (repr(data))

global prev

global cur

global flag

global buf

if flag == 0:

for i in range(len(data)):

buf.append(data[i])

prev = prev + data[i]

if (buf.get())[0] != None:

flag = 1

(buf.get())[0] = 0

if flag == 1:

for i in range(len(data)):

buf.append(data[i])

cur = cur + data[i]

if (buf.get())[0] != 0:

prev = cur

cur = 0

if (cur/80) >= 1.5*(prev/80):

os.system('python3 Record_test.py')

file_path = 'Data/'

now = datetime.now()

str_time = datetime.strftime(now,'%Y-%m-%d %H:%M:%S')

sys.stdout = open(file_path+str_time+'.txt', "w")

init ads api

ads = ADS1299_API()

init device

ads.openDevice()

attach default callback

ads.registerClient(DefaultCallback)

configure ads

ads.configure(sampling_rate=1000)

28

Figure 5. ads_test.py.
Arrays below are the result of what we receive from the ADS1299 and the same numbers

closed to 0 means we do not put the electrodes on a patient’s head.
ADS1299 API test stream starting

array([-1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08,

-1.21e-08, -1.21e-08])

array([-1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08,

-1.21e-08, -1.21e-08])

array([-1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08,

-1.21e-08, -1.21e-08])

array([-1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08,

-1.21e-08, -1.21e-08])

array([-1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08,

-1.21e-08, -1.21e-08])

array([-1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08,

-1.21e-08, -1.21e-08])

array([-1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08, -1.21e-08,

-1.21e-08, -1.21e-08])

...

ADS1299 API test stream stopping

Test Over

Figure 6. Test stream over SPI of ADC data.

Figure 7 shows the program that turns on and triggers the camera to record for a period of
time, in this case, 20 seconds. The camera recording is written to a ‘.h264’ file and the name is
specified by the date and time the recording was taken. The camera file will be located in a
folder called Videos on the Raspberry Pi Zero W’s SD card. If the file is successfully saved to
the Videos folder, ‘New Files create’ will be printed out in the command terminal (if the user is
to unit test the camera module).

Figure 7. Python Code for Camera Module

29

Figure 8 displays that the camera module successfully saves the output file to the camera
module in the Videos folder. The output file also has the correct file extension and can be
identified with the date and time the video was taken.

Figure 8. Output File Name of Video Recordings

Figure 9 displays the camera footage taken from the output file. This screenshot of the
camera footage verifies that the camera module is able to capture the patient’s eye movements
and arm movements above shoulder height.

Figure 9. Camera Footage from the Output File

