

Team 9: EpiCap ECE 445

Shiru Shong, Casey Bryniarski, Qihang Zhao

12/3/2021

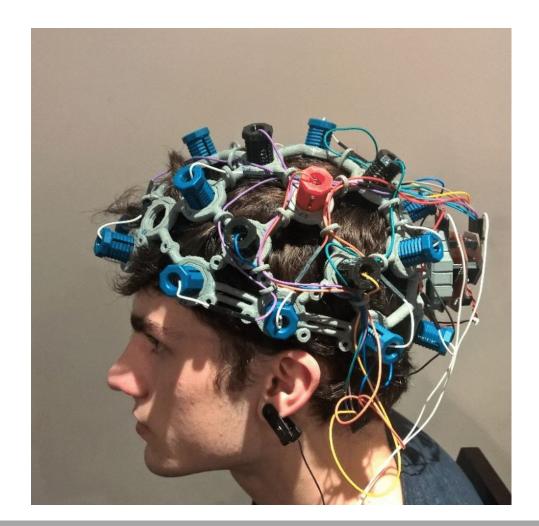
Problem

- Expensive hospital bills for epilepsy patients
 - \$2.5 billion annually
- Epilepsy patients: lower annual income and higher unemployment
- Sleep deprived

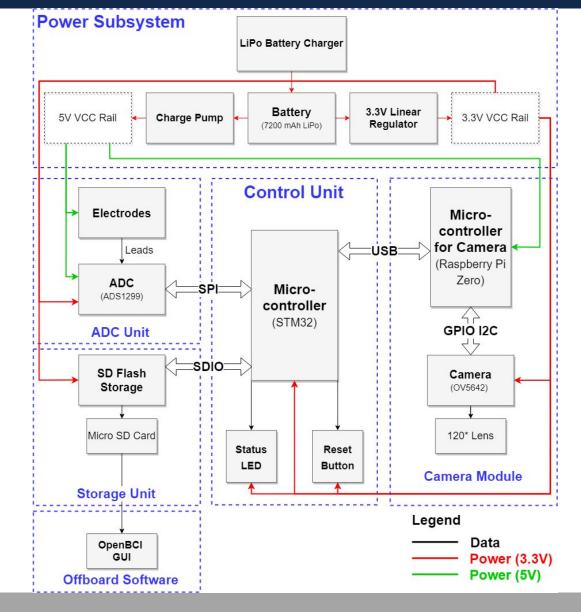
Current Outpatient Solution

- Bulky ambulatory equipments
 - Surrender important responsibilities
 - \circ Affect social activities
- No video recording

Solution

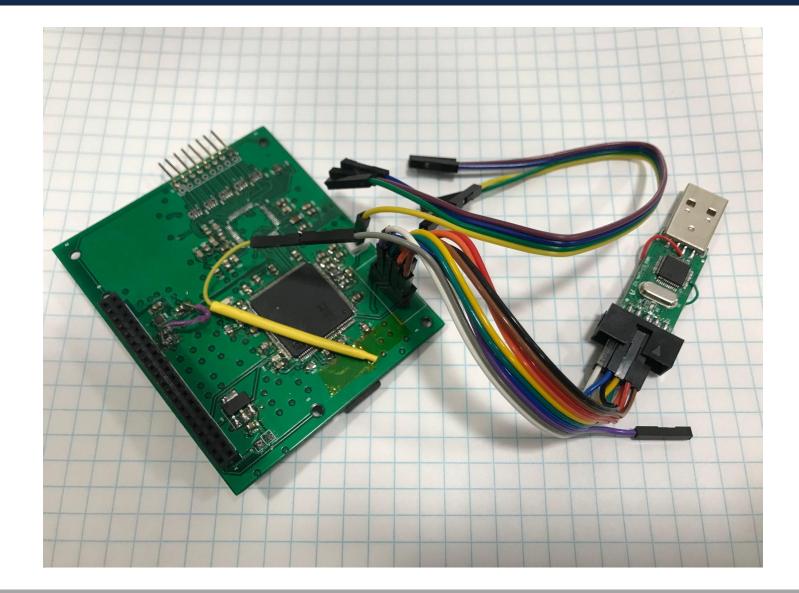

- Continue daily activities
- Not bulky
- Has video recording functions

Solution

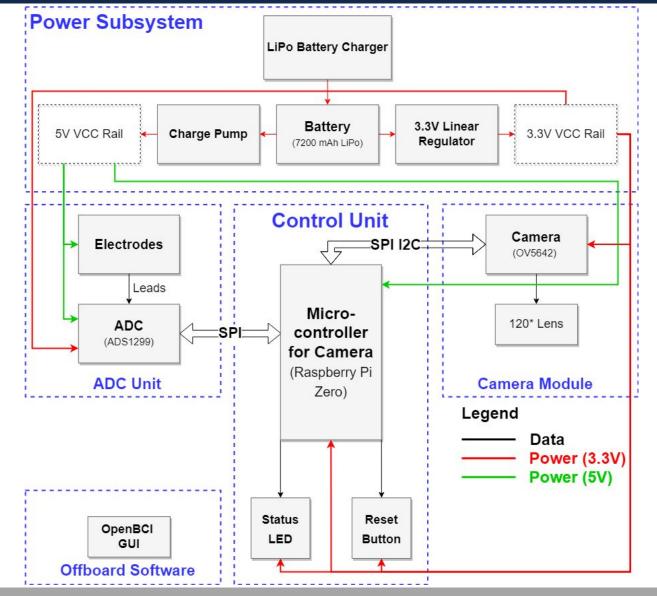


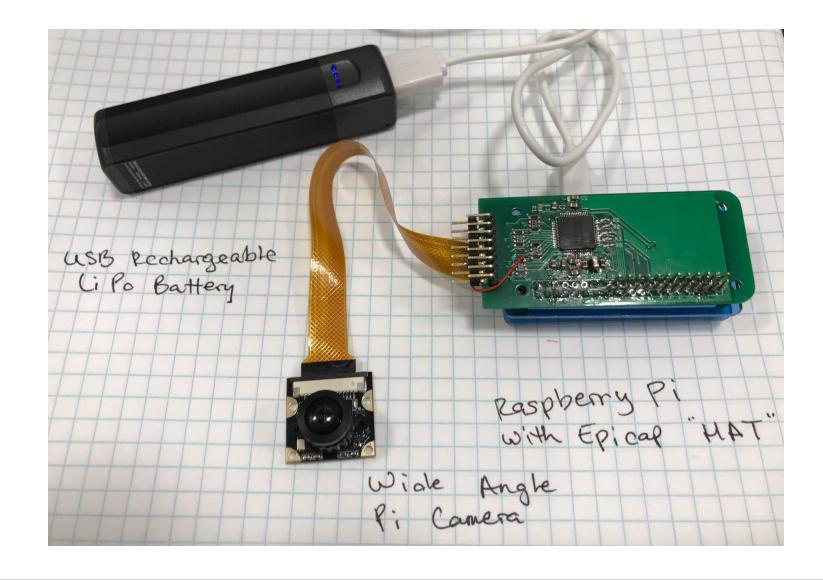
High Level Requirements

- The EEG cap must be discreet and all the main devices components must be within the cap and cap visor (enclosure volume = 72 mm x 36 mm x 25 mm).
- Record EEG data at 240 +/- 5% Hz sampling rate for at least 24 hours and be able to store EEG data— electrical activity of the brain during a seizure on the flash storage.
- The EEG cap will track the patient's eye and arm movement to shoulder height by using the wide-angle camera (minimum 240p) located in the cap visor.



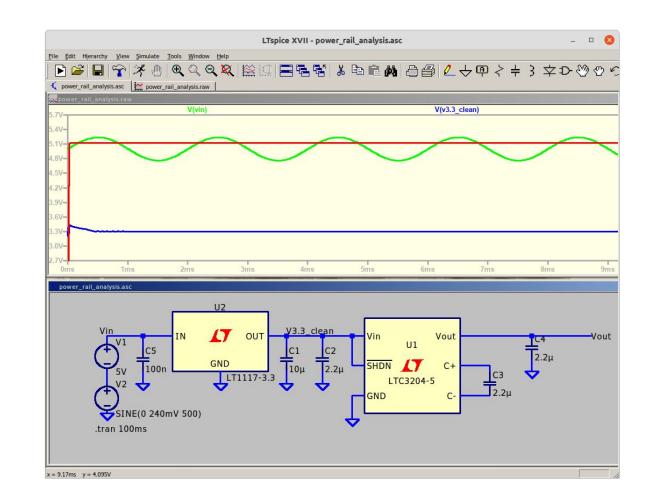
Block Diagram #1





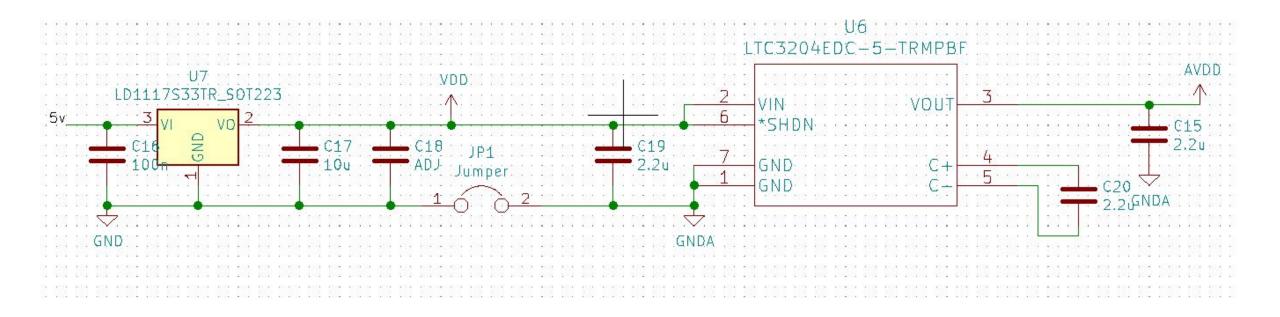
Block Diagram #2

Design

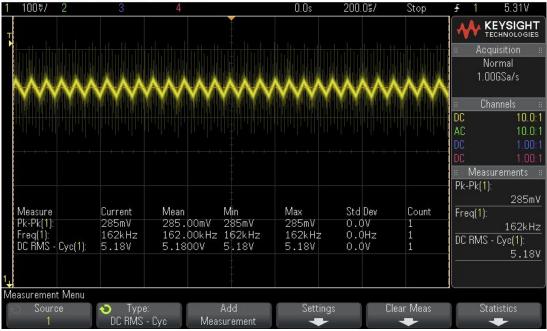


We require...

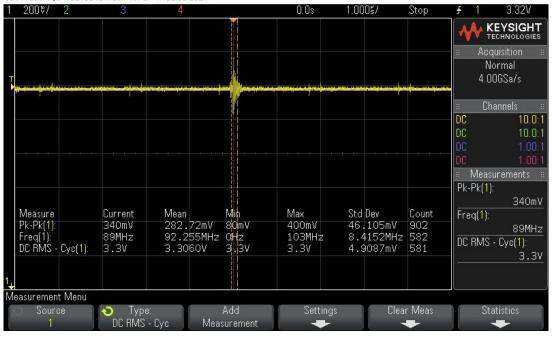
- Battery power
 - We can't have patients confined to a wall outlet.
- 3.3V and 5V lines
 - $\circ~$ 3.3V logic, 5V bias for our sensor


Simulation

- Simulated with measured ~240mV ripple of USB portable battery output
- Output noise of 5V rail (critical)
 o sub -uV result



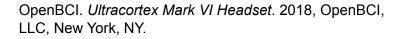
Implementation



Measurement

DS0-X 3034A, MY52103431: Sun Nov 07 17:06:09 2021

DS0-X 3034A, MY52103431: Sun Nov 07 17:02:58 2021



Summary

- Able to achieve goal of sub 2% voltage ripple for our power rails
 Simulation no substitute for physical testing
- Able to reduce voltage ripple from USB battery by order of 4
- Able to utilize Raspberry Pi 5V rail and USB battery capability

Quick preface on EEGs

- Ear clips get bias voltages for scalp electrodes
- Scalp electrodes compared against these references
- Send signal over SPI to ADC
 - Begin streaming data to our logic subsystem

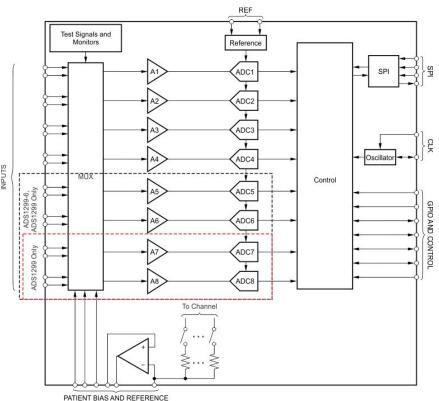
Sensor Subsystem

Introduction

- ADC analog to digital converter
 - $\circ~$ Must be able to discriminate ~uV and sample ~240 Hz
 - Control, data over SPI

• Trade offs

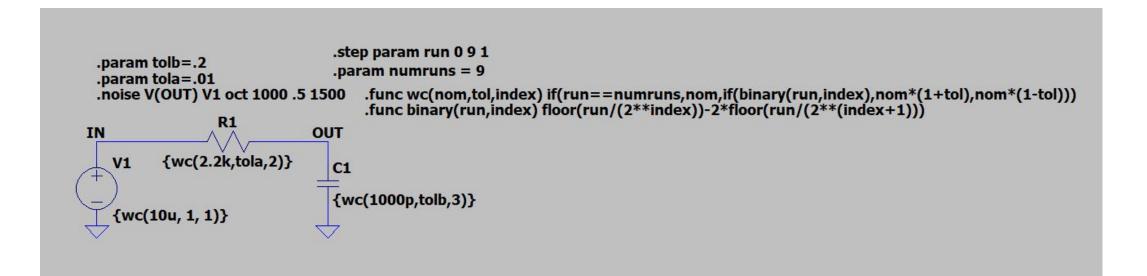
- \circ $\,$ More sensitivity more susceptible to ESD $\,$
 - Noise from other parts in our system
- \circ $\,$ More leads vs. space constraints



Texas Instruments. *TQFP64 package*. 2016, Texas Instruments, Inc., Dallas, TX.

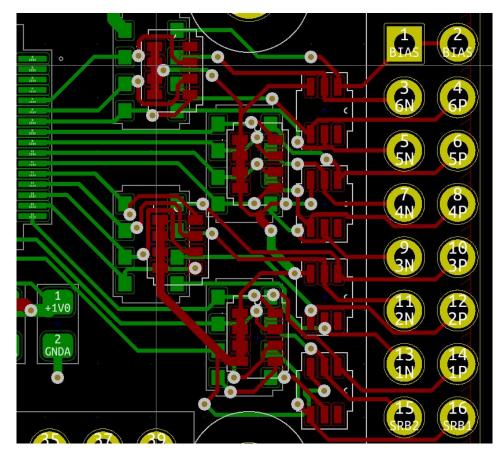
Signal Conditioning

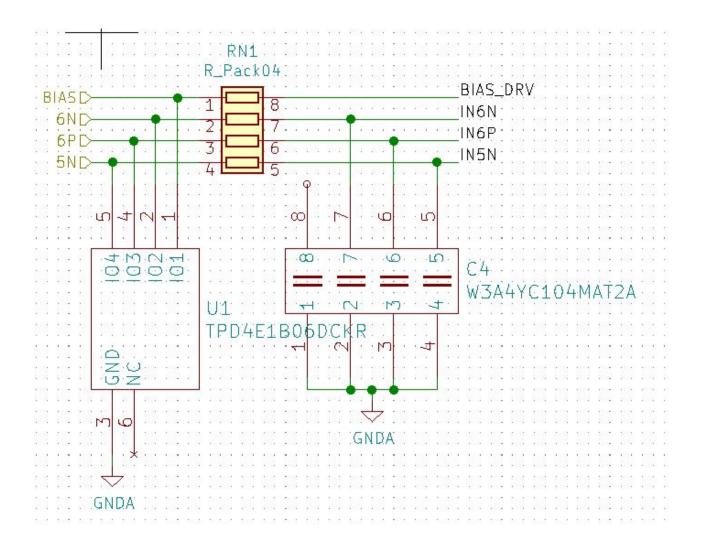
- High speed communication can create noise elsewhere
 Split ground planes between 3v3 and 5v
- TVS diodes
 - Protects from static electricity
- Size/Mechanical considerations
 - Use resistor and capacitor arrays whenever possible



Texas Instruments.ADS1299 Block kDiagram. 2018, Texas Instruments, Inc., Dallas, TX.

Simulation - Isolation


- RC network creates low-pass filter
- Result signal attenuated beginning at 240Hz



Sensor Subsystem

Implementation

Sensor Subsystem

Implementation RN1 R_Pack04 BIAS_DRV BIASD C1 INON 6ND .1u 2 INOP 6PD R1 3 INSN 1M SND BIAS_DRV. C2 1u AVDD GNDA C3 14 YDD AVODD-HH AYDD AGNDD-01034 8 100 9 C4 + N 9 4 W3A4YC104MAT2A RN2 GNDA U1 R_Pack04 GNDA TPD4E1B06DCKR IN5P GNDA IN4N NCON 23 IN4P 4PI - 6 IN3N VDD 3ND 4 OEZ SPONSOESSTADOD PT LC SOU GNDA INBN_ NBN C DVD IN8P 47 8 *DRDY 4 IN7N 3 46 GPID4 GPID3 GNDA IN7M 03 IN7P_ 45 × C5 M7P = = = INGN W3A4YC104MAT2A GPI02 N6N -N m st. 43 UЗ IN6P Б N6P DOU TPD4E1B06DCKR IN5N_ RN3 AD51299:AD51299-4PAG 42 IN5N GPI01 41 IN5P___ M R_Pack04 B 800 IN5P DAISY_IN AD51299-4PAG 40 INSP IN4N 9 IN4N SCL **DSCLK** \Rightarrow IN2N IN4P 10 39 2ND IN4P *05 -OCS GND IN2P IN3N 11 38 4 2PD-IN3N START -OSTART 3 START CLK 37 *RESET 36 *PWDN 35 DIN 34 GNDA IN1N IN3P 12 1ND-IN3P -INZN 13 IN2N RESET 4 IN2P 14 RN4 N2P -OPWDN GNDA IN1N 15 R_Pack04 ININ DIN -OHOSI _IN1P _SR82_IN IN1P 16 33 1PD-INT P IN DGND 8 103 102 9 C13 SRBZD _ SRB1_IN _ SRBID W3A4YC104MATZA 4 6 H N M -+ U4 GND AVS5D 825 TPD4E1B06DCKR AVDD NCON Z, 5RB1J 40103 00 0 ш Ŷ Cfi . 07 $\overline{\Delta}$ C14 MO = = _ _ GNDA GNDA .1u • 1u W3A4YC104MATZA M t. C9 U5 -N GND 104 TPD4E1B06DCKR \Rightarrow GNDA GND 4 GNDA C12 .1u E11 4 m va 11 GNDA 11 Ð \uparrow 4 GNDA. GNDA GNDAGNDAGNDA

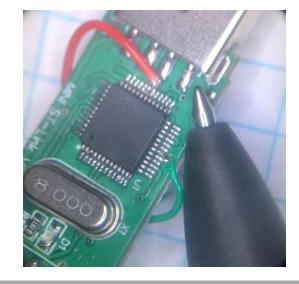
ADC Results

- Biasing capacitors have trouble remaining charged on new board
- Successfully able to communicate between Pi and ADC chip (logic side)
- Firmware pin assignments too hard to recover from

The STM32

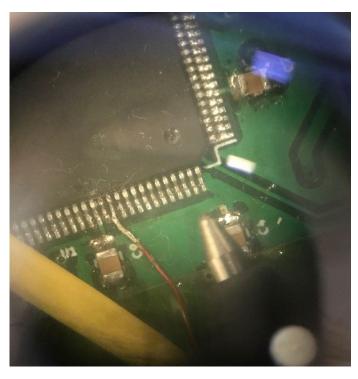
- Common microcontroller in use
 - Popular in automotive, appliance, high-reliability applications
- Configurable pins
 - \circ Flexibility
- Adequate computing power
 - Must have enough memory for ADC + video task
 - Proved hard to source specific product line
- Proprietary "DCMI" camera interface

Mouser Electronics. *LQFP144 Package*. 2014, Mouser Electronics, Inc., Mansfield, TX



STM32 Results

- Chose SWDIO to debug
 - Was able to flash firmware and trace through our program as it executed on chip
- Chose to omit external crystal oscillator
 - Rely on internal RC clock
- Prioritized cleanliness of traces when assigning pins
 Readily configurable but tricky to modify in IDE

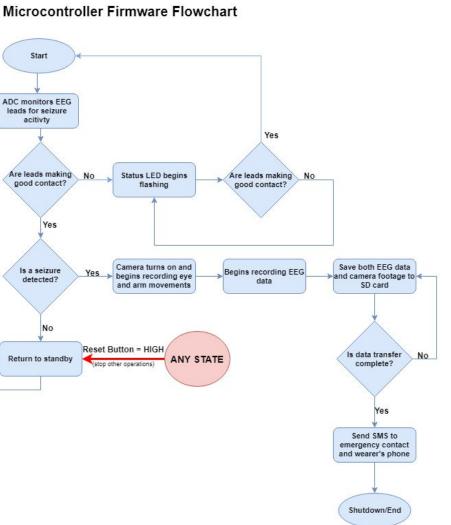


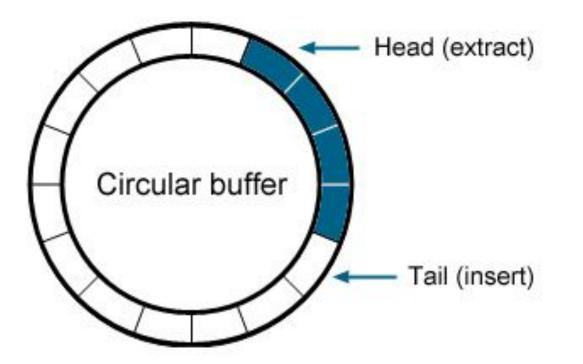
Jumps made on STLink 2.1 Programmer for nRST and SWO

Control Subsystem

STM32 Results

Our SWO pin to STLink




Control Subsystem 2: The Raspberry Pi

- Already present in design, and much more powerful than STM32
- Essentially a desktop PC
- Has fewer GPIO pins, but isn't a hassle to solder

- ADC receives and sends the EEG data to STM32 board or Raspberry Pi
- STM32 calculates their average, and compares it with the average of the previous set of data.
- If current average is larger than a threshold, STM32 will send a signal to the camera to ask it to start the recording.

• A single, fixed-size buffer, which connects end to end, achieves buffering the data streaming without storing any unused data.

Software Algorithm (animation)

average(buf[0:4]) = average(buf[5:9])

STM32 board failed to communicate with the ADC

- Our STM32 does not have an external crystal, HSE, to set up the system clock, so we always meet the trace no synchronization problem.
 - Relying on internal HSI clock can cause temperature-dependent jitter
 - May create communication issues with high-speed SPI and JTAG debug lanes

• STM32 has invalid SPI communication because of the wrong pin assignment (PA4 for CS and any other Pin for DRDY)

Ringbuffer

• A single, fixed-size buffer, which connects end to end, achieves buffering the data streaming without storing any unused data.

SPI communication and system call

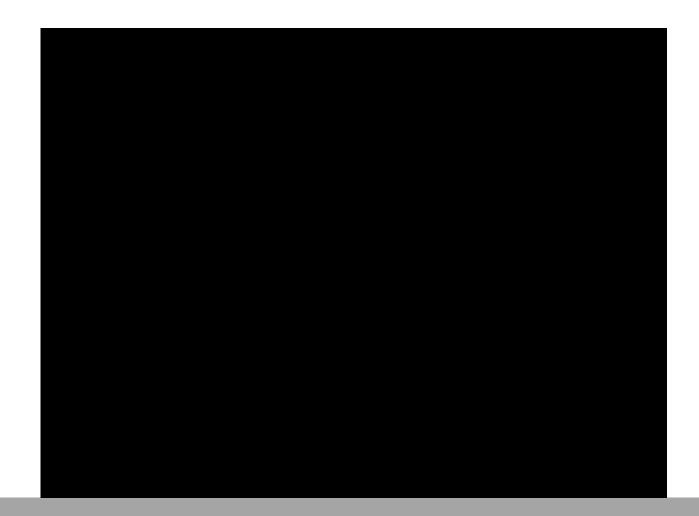
• We directly make a system call to the camera part in the ADC file, to avoid any unexpected exception or bugs.

Shell script

• We set up a shell script to let the whole project can run automatically when our Pi OS boots up.

We require...

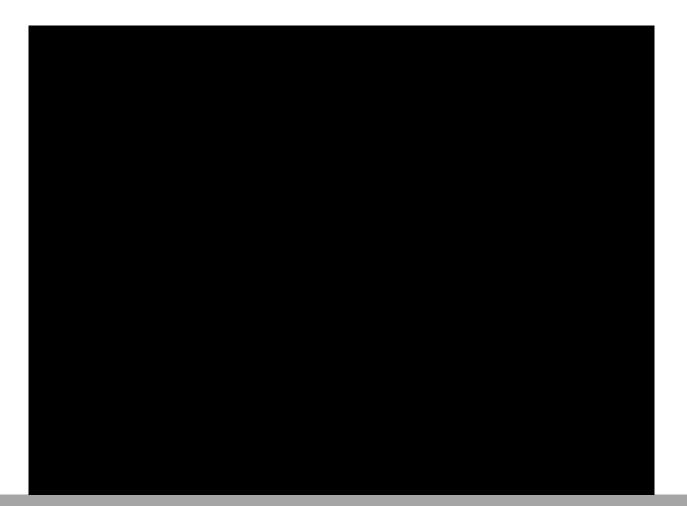
- Wide-angle camera that can record patient's eye and arm movement to shoulder height (minimum 240p → 480p)
 - Wide Angle FOV160° 5-Megapixel
 - Located at cap visor
- Start recording when detects a seizure
- Save file onto an SD card for physician use later



Implementation

g ⁹ login as: pi g ⁹ pi@raspberrypi.local's password: Linux raspberrypi 5.10.17+ #1421 Thu May 27 1	3:58:02 BST 2021 armv61		
The programs included with the Debian GNU/Lir the exact distribution terms for each program individual files in /usr/share/doc/*/copyrigh	are described in the		
Debian GNU/Linux comes with ABSOLUTELY NO WAR permitted by applicable law. Last login: Wed Dec 1 15:17:35 2021	RANTY, to the extent		
SSH is enabled and the default password for t This is a security risk - please login as the a new password.			
Desktop Downloads Picturespycache pi@raspberrypi:~ \$ ls Bookshelf Documents Music Public	RaspberryPiADS1299 Templates	video.h264	
pi@raspberrypi:~ \$ cd RaspberryPiADS1299/ pi@raspberrypi:~/RaspberryPiADS1299 \$ ls ads_test.py ads_test.py.save changelog.md ads_test.pyh build Data	dist images MANIFES eegout.txt LICENSE Raspber	T RaspberryPiADS1299.egg-i	nfo Record_test.py setup.cfg test.py requirements.txt setup.py Videos
pi@raspberrypi:~/RaspberryPiADS1299 \$ nano Re pi@raspberrypi:~/RaspberryPiADS1299 \$ nano Re pi@raspberrypi:~/RaspberryPiADS1299 \$ python3 New files create pi@raspberrypi:~/RaspberryPiADS1299 \$ cd Vide	cord_test.py Record_test.py		
pi@raspberrypi:-/RaspberryPiADS1299/Videos \$ '2021-11-30 18:35:39.h264' '2021-11-30 22:04 '2021-11-30 18:41:38.h264' '2021-11-30 22:24 '2021-11-30 19:40:04.h264' '2021-11-30 22:50 pi@raspberrypi:-/RaspberryPiADS1299/Videos \$	ls :54.h264' '2021-12-01 00:00: :18.h264' '2021-12-01 00:21: :00.h264' '2021-12-01 00:22:	10.h264' '2021-12-01 00:27:13.h264'	'2021-12-01 14:43:36.h264'

Results



Visualization of EEG Data

- Software tool for visualizing, recording, and streaming EEG data
- Data: live-time, played back, saved to your computer in .txt format
- Widgets
 - Time Series
 - FFT Plot
 - \circ Head Plot

Visualization of EEG Data

Conclusion

Steps to iterate upon

- Work more with Raspberry Pi
 - \$5 per Pi vs. \$10 per for STM32 in 3000+ bulk order
 - Raspberry Pi HAT standard
- Redesign board
 - Solve biasing circuit issues
- Software implementation
 - Validate using formal methods

