

HARMONY SYNTHESIZER GUITAR PEDAL

By

Danielle Lange
Madhav Khirwar

Final Report for ECE 445, Senior Design, Fall 2021
TA: Feiyu

8 December 2021
Project No. 28

ii

Abstract

The product we developed over the course of the past semester is a harmony synthesizer
guitar pedal that is applicable in a variety of musical contexts. Our product saves a guitarist time
by simplifying orchestration/arrangement since it allows the guitarist to record/perform synth
parts alongside guitar parts. The guitarist has the option to use the product to simply double their
guitar part on the synth in unison, or to use the pedal to provide harmonic context to the melody
they are playing. It also allows them to plug the pedal into a DAW/external synthesizer for
simplified recording and custom timbres.

Our prototype was easy to add to an existing guitar pedal chain and was able to
successfully provide both one-to-one doubling as well as harmony to a guitarist.

iii

Contents

1. Introduction ... 1

1.1 Problem ... 1
1.2 Solution ... 1

1.3 Requirements ... 1
1.4 Subsystem List .. 2

2 Design .. 2

2.1 Block Diagram .. 3
2.2 Physical Design ... 3
2.3 Hardware ... 4

2.3.1 Input Buffer .. 4
2.3.2 Output Buffer .. 5
2.3.3 Power .. 5

2.3.3 Analog to Digital Convertor ... 6
2.3.3 Digital to Analog Convertor ... 6

2.4 Software .. 7
2.4.1 Frequency Analyzer Subsystem ... 7
2.4.2 Synthesizer Subsystem ... 10

3. Design Verification ... 11

3.1 Latency .. 11
3.2 Convenience .. 12

3.3 Frequency Range ... 12
3.4 ADC/DAC Sample Rate and Bitrate ... 13

4. Costs .. 14
4.1 Parts ... 14

4.2 Labor ... 14
5. Conclusion .. 15

5.1 Accomplishments .. 15
5.2 Uncertainties .. 15
5.3 Ethical considerations ... 15
5.4 Future work ... 15

References ... 17
Appendix A Requirement and Verification Table ... 19
Appendix B Schedule ... 23

iv

Appendix C Complete DSP Code in C/Arduino... 25

1

1. Introduction

1.1 Problem
A lot of guitarists these days, especially in the metal/indie scene, like to double/harmonize their
guitar parts with synthesizer parts overlayed on top [2]. This is usually done note-for-note, and
usually wastes a lot of effort as the guitarist must re-record the synth parts over the guitar tracks.
There is a lot of wasted effort that is directly proportional to how complex/fast the guitar parts
are.

1.2 Solution
This product is meant to act as a device (guitar pedal) that adds musical context/layering on the
notes played on a guitar. The guitarist will benefit from this product in that he/she can create more
specialized sounds by blending different notes and/or chords. This would make it easier for the
musician to achieve the specific sound/note that they desire.

Our product is marketable because the cost will save a lot of time for the artist when they are
tracking guitar parts and doubling them with synths, as well as cut down on the amount of stage
gear they need when performing live. Our approach is to use a DSP-capable microprocessor (such
as the MK20DX256VLH7 on the Teensy 3.2) to implement a novel kind of guitar pedal – one that
will add electronically synthesized harmonies to an analog guitar note played by the guitarist. This
will be in the form factor of a normal pedal, and the knobs will give the guitarist the option to
select what kinds of harmonies they want to overlay (Major 5th, Major triad, 7th, etc).

Our chassis for the pedal is of dimensions (14.5 cm, 12.1cm, 3.9cm), and has 2 female ¼ inch
connectors, one MIDI out, and one 9V DC power input. We wanted the dimensions to be such that
it fits on a standard guitar pedal board and is compatible with the rest of the guitarist’s signal chain.
In terms of controls, we want the guitarist to be able to specify the harmony they would like to
generate as well as the type of waveform (from square, sawtooth, or sinusoidal). The electric
guitar’s output will be connected to the input female ¼ inch connector on the pedalboard. The
guitarist can use the harmony selector switches on the pedal to select what harmonies to generate
as MIDI notes, and the waveform selector switches to select what waveform to generate. If the
guitarist wants to use their own external synth with a more elaborate/customized waveform
generator or signal chain, they can route the MIDI notes generated to the external synth. The output
of the pedal would then be connected to either an amplifier or the rest of the guitarist’s pedal chain.
The guitar signal itself is mixed as-is with the generated harmonies.

1.3 Requirements
We listed the high-level requirements as defined in our Final Design Document.

• Can resolve a frequency in the range 50-1500 Hz to the closest note in 12-tone equal
temperament tuning system with A at 440 Hz. Error tolerance of +/- 5%.

• ADC/DAC should be at a sample rate of at least 44.1 kHz and at least 16-bit resolution [8].
This is because CD quality audio has 16-bit resolution and is sampled at 44.1 kHz.

2

• Makes overall music production and performance significantly more convenient for the
guitarist.

• Total end-to-end latency should be under 10 milliseconds. For guitar, this is when guitarists
can ‘feel’ the performance getting sluggish even though listeners cannot tell the difference
[3].

Frequency resolution is important because we want our product to be able to work for all guitar
notes. We have the ADC/DAC requirement because it is a standard for CD audio quality. At a
lower bit resolution, the output of the guitar could sound noisy and not provide the same quality.
We want to make overall product convenient for consumers. This aligns with our main goal to
solve the problem of being able to harmonize and synthesis simultaneously. The Latency
requirement is necessary to our product because at 10ms a guitarist may notice the delay between
played and hearing a note [4]. Without this requirement it would be hard for the guitarist to play
on beat.

1.4 Subsystem List
• The Power Subsystem is responsible for delivering 9v DC power to the input buffer

subsystem, output buffer subsystem, and the Teensy. The Power Subsystem is takes input
from the power supply.

• The Input Buffer Subsystem is responsible for dividing the peak-to-peak voltage of the
guitar signal and biasing it to 0.6v so in can fall with range of voltage required by the
Teensy analog input pins. The guitar signal is the input of the Input Buffer Subsystem,
and the on-board ADC Subsystem is where the output goes.

• The Output Buffer Subsystem is responsible for reamplifying the signal, inversing the
input buffers modification to the signal. The output buffer takes input from the DAC in
the Teensy and then outputs to the speaker.

• The Combinational Subsystem is responsible for combining the original guitar signal
after ADC and the signal after synthesis.

• The ADC/DAC Subsystem is responsible for digitizing the buffered guitar signal input
for digital signal processing, and then converting the processed output back to an analog
signal to be buffered by the output buffer.

• The Frequency Analyzer Subsystem is responsible for recognizing what note the
guitarist has played from the signal after A/D conversion.

• The Synthesizer Subsystem is responsible for outputting the user-selected harmony as a
user-selected waveform based on the note recognized by the frequency analyzer.

2 Design

3

2.1 Block Diagram

2.2 Physical Design

Figure 2: From left to right on the pedal diagram above, there is the top panel of the guitar pedal. The switches on the top

turn individual harmonies on/off. The other three switches from top to bottom control the waveform, the major/minor
quality of the 3rd and 7th intervals, and toggle between True Bypass and discrete/continuous note recognition. The side

panel of the guitar has the ¼ inch input and output as well as the barrel 9V center negative jack.

Octave
Perfect 5th
3rd + 7th

Waveform

Major/Minor

Bypass/Discre
te ¼ inch IN

¼ inch OUT 9V DC Power

Figure 1: Block Diagram for our product broken down into systems and subsystems.

4

2.3 Hardware

2.3.1 Input Buffer

Figure 3: Input buffer schematic.

Note that in the Figure 3 L1 and V4 do not exist on the PCB they are the on-board circuitry of the
Teensy inputs they are there for clarity of design. Also note, the audio_input is the output of the
input buffer. The input signal to the ADC is attenuated by roughly a factor of 3, since this stage is
powered directly by the 9v power supply, it has roughly 9V peak-to-peak headroom. R3 and R4
will achieve this attenuation.

 !"
#$

=1+ !"%
$$%&!"%

 (1.0)

The 9v power supply is divided in half by R1 and R2 in Figure 3. The purpose is to bias the guitar
signal because the input to Teensy cannot read negative voltages. The circuit to the right of VOUT
in Figure 3 bias’s the signal to half of the reference voltage of the Teensy input which is 1.2v [1].
The original design only includes the right half of the circuit ending at VOUT. Since we changed
the audio board to be a DAC board instead the output of the input buffer will feed directly into
Teensy instead of the Teensy audio board. The difference with this is that the Teensy audio board
has an input voltage range of 0-3.3v whereas the Teensy can only take a range of 0-1.2v. We
decided to keep the original circuit since it is consistent with our output buffer logic and the guitar
signal still needs to be attenuated to make sure it fits in the acceptable range of the Teensy analog
voltage range.

Figure 4: Output of original input buffer vs whole input buffer

Note that the Figure 4 uses a guitar signal of 2v peak to peak which is well above the maximum
guitar note we is possible [12]. The result is a waveform that is almost exactly a third of the
original peak to peak voltage. The new part of the design will always bias the signal to roughly
0.6v.

5

0.595𝑣 =3. 3 $$%
$$%&!"%

 (1.1)
As seen in Equation (1.1) the attenuation is because of resistor R7 and R8 and the 3.3v output pin
from Teensy. This is useful for putting the signal exactly between the range of the Teensy
voltages so that there is the most room for the signal.
The alternative design to this subsystem that we were considering would include only R1, R2,
C2, LM358, R3, and R4 which is the left half of the circuit. This design would work with using
the Teensy audio board instead of the DAC board as we originally intended.

2.3.2 Output Buffer
The output signal from the DAC needs to be amplified by a factor of 3. This will reverse the signal
attenuation from the input buffer. This is important because with a smaller voltage the sound will
change its strength and have more room for noise. The outputs buffers schematic can be seen in
Figure 5.

Figure 5: Output buffer schematic

 !"
#$
	=1+$$%

!"%
 (1.2)

The gain of this buffer is represented by Equation (1.2). This is the exact opposite attenuation
from the input buffer seen in Equation (1.0) which is what we wanted.

2.3.3 Power
This subsystem’s purpose is to supply 9v to all the different parts of the design, as well as to ensure
that the Teensy receives 5v. Since the power supply needs to be compatible with the rest of the
guitarist’s pedalboard, it will take a 9V dc input. However, the Teensy microcontroller operates
on a maximum of 6v, so we will use a LM7805 voltage regulator ic to convert from 9V to 5V [6].
Since the Teensy operates on about 60mA of current, and the voltage drop is 4V across the voltage
regulator, this subsystem will dissipate about 0.25 Watts as heat [11]. This should not make it
appreciably hotter than room temperature and should still be quite safe to the circuit.
The digital signal processing that occurs on the Teensy board will occur in 3.3v. However, Teensy
has on-board voltage regulators that will step 5V down to 3.3V for DSP operations [1].

An alternative design would be to use a battery powered power supply. The problem with the
alternative is that batteries die after some time and will require replacing and spending more

6

money. Also, a battery provided less constant voltage because it weakens as it nears the end of
its battery life.

2.3.3 Analog to Digital Convertor
This subsystem manages converting the signal from analog to digital which is critical to

being able to harmonize the signals. ADC was implemented natively on the Teensy’s analog
input pins, which was a result of excluding the Teensy audio shield from our original design. The
MK20DX256VLH7 on the Teensy board is capable of ADC at 16-bit depth sampled at 44.1 kHz.
The pinout of the Teensy audio board can be seen in Figure 6.

Figure 6: The Analog to Digital Conversion is handled by the Teensy when input is received at pin A2 (16). This is where

the guitar signal is received after the input buffer.

2.3.3 Digital to Analog Convertor
This subsystem manages converting the signal from digital to analog after the addition of

the harmony notes. Since we are aiming for the highest harmony note to be an octave (double the
frequency of the input), the constraints and requirements of the DAC are higher. This was
implemented on a custom DAC board we implemented for the Teensy based on the PT8211
DAC chip, which is capable of 16-bit DAC at 44.1 kHz. The connections to the Teensy 3.2 can
be seen in Figure 7.

7

Figure 7: The DAC circuit is connected to the Teensy 3.2 as described in this image

2.4 Software
The general software for our product can be seen in Figure 8.

Figure 8: Graphic Representation of the DSP Signal chain as seen in Audio Design Tool [2]

2.4.1 Frequency Analyzer Subsystem

This subsystem is meant to recognize the note that the guitarist has played after Analog to Digital
Conversion. This was done by mapping the frequency of the played sound to the closest note in
the 12-tone equal temperament, A at 440 Hz system. In order to deduce the note that has been
played, we used the YIN algorithm to estimate fundamental frequency.

8

As described by Cheveigne and Kawahara [12], this is a 6-step autocorrelation in time-based
algorithm that estimates the fundamental frequency of a monophonic signal. In the above figure,
this is the component labelled ‘note2freq1’. The DSP system also recognizes a new note by
recognizing a peak in the guitar signal, so as to only read notes when a pick stroke or tap is
detected, and this is implemented in the component labelled ‘peak1’ above. The decay of a
guitar not can be seen in Figure 9.

Figure 9: Decay of a single picked guitar note.

Once a note is played, it then needs to be mapped to the correct frequency according to the 12
tone equal temperament system with A at 440 Hz. The following are the frequencies of the 12
notes on the guitar in the lowest frequencies [11]:

Table 2 Frequencies of the Lowest 12 Notes on an Electric Guitar
Note Frequency in Hz

E 82.407
F 87.307
F# 92.499
G 97.999
G# 103.826
A 110
A# 116.541
B 123.471
C 130.813
C# 138.591
D 146.832

The neck of a 24-fret guitar, as shown below, spans 4 octaves. Since an octave above a note is
the frequency of the note multiplied by 2. Thus, to calculate the set of notes that are possible on
the guitar neck, we took the above notes and doubled them for each available octave. This gave

9

us a set of 49 distinct notes possible on a guitar. At first glance this may seem incorrect as there
are 24 ways to fret each of the 6 strings. However, many notes are repeated on the guitar neck.
For reference see a guitar in Figure 9.

Figure 9: A 24-fret Ibanez Electric Guitar

We thus stored all 49 possible notes on the Teensy in a sorted array of floats, as seen in
Appendix C:

Then, in order to ‘freeze’ the output of the YIN algorithm to the ‘correct’ note, we perform
binary search through the sorted array with the YIN output as the target term. Numerically, the
closest term is then assigned as the played note. Binary search algorithm as in Appendix C:

10

2.4.2 Synthesizer Subsystem

 Once the correct note has been calculated by the frequency analyzer subsystem, the
Teensy reads the inputs at the switches via its digital input pins. The harmony notes that are
selected are calculated with intervallic multipliers. The following section of code sets the
frequency of each harmony note based on whether or not the interval is selected by the user, as in
Appendix C:

This note information is also passed onto the MIDI output that we were unfortunately

unable to test, due to shipping troubles with our MIDI connector package. The MIDI port
connection can be seen in Figure 10.

11

Figure 10: The MIDI port driven by the Teensy

Finally, the note information is also passed onto the internal waveform generators for

each interval. The switches connected to the Teensy’s digital inputs define the selected harmony,
and the waveforms are generated accordingly and passed onto the DAC subsystem.

3. Design Verification

3.1 Latency
The Latency of the end-to-end system must be less than 10ms. To verify this is simple. We
compared the oscilloscope readings from one end of the system to the other. The difference
between the peaks of the signal will show the total latency. The reason for this is that, as
described in an article by A. Swanson[4], 10ms seems to be the latency around which a
performer can ‘feel’ a lag even though the audience can’t perceive one.

Figure 112: Latency verification

12

Figure 11 shows that the peaks of each waveform are 5ms apart in time. A problem with this is
not knowing if it is several 5ms apart. This can be proved by showing the delay using a more
irregular waveform the problem with this is guitar signals too uniform. Our solution was to input
a high amount of noise from our computer as the input guitar signal.

Figure 123: Latency second latency verification

Figure 12 is again 5ms across each horizontal grid line. Note that the yellow signal is the output
signal where the red is the original guitar signal. We compared the yellow signal with the
waveform of the red signal 5ms before. While very noisy there is a pattern between the lowest
dips and the highest peaks of the original and final signal.

3.2 Convenience
An important verification for our project is verifying that it is convenient for the guitarist to use.
Part of the convenience factor is that we used switches instead of rotary potentiometers. The
reason being is the rotary potentiometers need to be spun which will more than likely require
turning it by hand. Verification for this is we played the guitar and made sure the switches and
button could be operated with our foot.

3.3 Frequency Range
Need product to resolve a frequency in the range 50-1500 Hz to the closest note in 12-tone equal
temperament tuning system with A at 440 Hz [12]. With an error tolerance of +/- 5%. For this
verification we demonstrated playing guitar notes with the binary search on. The binary search 12-
tone equal temperament is verified by design in the code used for Teensy. We chose to test within
this frequency range since it encapsulates the lowest and highest notes that can be produced on a
standard electric guitar with 6 strings and 24 frets tuned in standard EADGBE tuning. The actual
range of the frequencies is 82-1320 Hz.

13

3.4 ADC/DAC Sample Rate and Bitrate
ADC/DAC should be at a sample rate of at least 44.1 kHz and at least 16-bit resolution [7]. This
is because CD quality audio has 16-bit resolution and is sampled at 44.1 kHz. This is verified by
design. This is because the DAC board and the Teensy 3.2 ADC are both rated for a 16-bit
resolution and sampling rates of 44.1kHz [2].

14

4. Costs

4.1 Parts
The actual cost for all the parts used in our final project is 58.69 which is amazing. This is an
extremely cheap for what our product does and very exciting. The part-by-part calculation of this
is outlined in Table 2.

 Table 2 Parts Costs

Part Manufacturer Quantity Retail
Cost

($/Item)

Bulk
Purchase

Cost
($/Item)

Actual Cost
($/Item)

Teensy 3.2 PJRC 1 19.80 13.00 19.80
Break Away

Headers
SparkFun

Electronics
1 1.50 1.00 1.50

DPDT Switches SparkFun
Electronics

6 0.75 0.25 4.00

Footswitch SparkFun
Electronics

1 3.00 1.00 3.00

PT8211 DAC Princeton Tech 1 2.65 1.50 2.65
LM358-N Texas Instruments 2 1.57 0.05 0.20

L7805 SparkFun
Electronics

1 0.95 0.25 0.95

Power
Connector

SparkFun
Electronics

1 0.75 0.25 0.75

Audio Jack Markertek 4 2.25 0.60 2.25
PCB Board PCBWay 1 5.65 2.00 5.65

Power Supply
Connector

D’Addario
Accessories

1 9.99 5.00 9.99

Resistors Panasonic Electronic
Components

13 0.05 0.01 Free

Capacitors Texas Instruments 4 0.31 0.02 Free
Total 61.00 28.10 58.69

4.2 Labor
The expected cost per person assumes an average of the reported Computer and Electrical

Engineering graduating salaries from 2019-2020. They are sequentially 110,978 and 76,129
making the average 87,637 a year [1].

𝐿𝑎𝑏𝑜𝑟	𝑐𝑜𝑠𝑡 = ideal	salary	(hourly	rate) × actual	hours	spent	 × 2.5 (4)
Using the Equation (4) and with a combined total labor hour estimate of 150 hours we would
calculate labor cost to be 32,863,875$. The schedule for this work is outlined in Appendix B in
Table 6.

15

5. Conclusion

5.1 Accomplishments
This project was very successful. We wanted to make it easy for guitarist to harmonize and
synthesize their guitar notes without delay. This was able to be achieved along with all our high-
level requirements. There is not a marketed pedal with the same unique features as ours. We
even managed to increase the ease of use from our original design and expand on some of our
functionality. We had multiple modes of operation for continuous and discrete outputs. With the
switches used in place of rotary potentiometers the pedal will be operable while playing guitar.
Our final project can synthesize multiple different harmonies. Additionally, it can select between
multiple waveforms while also allowing combination with the guitar signal.

5.2 Uncertainties
Right before our final demo while trying to enclose the final product the Teensy begun to heat up
and stopped functioning. We were able to read up to 67 degrees Celsius. While there is no exact
internal thermal rating for the Teensy 3.2 our Teensy never was warm to the touch of measured
above 40 degrees Celsius until that moment. Considering our design had to include wires from
the prototyped circuit board due to not predetermining the connections to Teensy on our final
PCB order, touching connections is possible. From research a likely cause of failure is that the
5V pin of the Teensy was mistakenly connected any analog pin of the Teensy. All analog pins of
the Teensy are rated for only 3.3v [2]. Another reason to believe this is the Teensy was being
moved around to be secured in the enclosure which could of cause wire connections to touch.

5.3 Ethical considerations
As the IEEE code of ethics says we must “hold paramount the safety, health, and welfare of the
public, to strive to comply with ethical design and sustainable development” [6]. In order to do
this, we must consider the fact that someone can be unaware of the risks of the system and make
the audio output louder than safe for people's ears. Anything 80 dB and above can cause hearing
damage. To comply with an ethical standard our product will include a warning with the range of
dB that can cause hearing damage.

It is also a concern that because we are using circuitry that our design is rain proof. Water can
cause short circuiting which is a fire safety hazard. To do this we must make sure that our circuit
design is sealed enough to not let any water in. We would also need to ensure that all voltages and
currents are appropriately grounded to not make the strings of guitar live wires. This can be
extremely dangerous for the player and adhering to design standards will help prevent this.

The risk of electrical shock if mishandled also would be a safety hazard to children. From the AMC
ethic code 1.2 to avoid harm our team wants to avoid any possible risk to anyone's safety [3]. Our
team plans to put a safety warning on the product to keep away from small children to avoid a
hazard like this from occurring.

5.4 Future work
While we our happy with our product there are many ways to make it even better. For starters the
physical design could be better by adding engraved labels for each switch and connection. As
well as adding a led for signaling whether the power is on. Another way to expand on our project

16

is to add more of what we already have: harmonies, waveforms, and different effects. The one
complication of this is we would need an additional switch for each addition which could
overcrowd the board and make it less convenient to use. A solution to this would be using rotary
potentiometers but have multiple with all the same selections so you can still select multiple
waveforms and harmonies. The tradeoff would be making it hard to use with your foot while
playing but vastly increased functionality would be worth it.
Another improvement would be adding a rotary potentiometer to adjust gain across the input
channels. This would make is so that the combination of the guitar signal and the additional
signals would not need to have equal contribution to the output sound. This would allow the
guitarist to customize their sound to a higher degree.

17

References

[1]"Annual Reports | Illini Success - Illinois." University of Illinois at Urbana Champaign. 2021, Available

at: https://illinisuccess.illinois.edu/annual-reports/

[2] "Audio System Design Tool for Teensy Audio Library" 2021, Available at:

https://www.pjrc.com/Teensy/gui/

[3] "ACM Code of Ethics and Professional Conduct." The Association for Computing Machinery, 2021,

Available at: www.acm.org/code-of-ethics

[4] A. Swanson, "Latency and Its Effect on Performers." Church Production Magazine, 19 June 2017,

Available at: https://www.churchproduction.com/education/latency-and-its-affect-on-performers/

[5] B. Neunber, "Pedal Power Basics." Neunaber Audio, 2021, Available at:

https://neunaber.net/blogs/neunaber-audio-blog/13849473-pedal-power-basics

[6] "IEEE Code of Ethics." 2021, https://www.ieee.org/about/corporate/governance/p7-8.html

[7] Nicholas, "Doubling Guitar with Synthesizers - zZounds Music Blog." zZounds Music Blog, 2018,

Available at: https://blog.zzounds.com/2017/12/20/doubling-guitar-tracks-with-synthesizers/

[8] "SparkFun Electronics." 30 Sept. 2021, www.sparkfun.com/products

[9] Tom, "Electric Guitar Output Voltage Levels." 2021, Available at:

http://tomsguitarprojects.blogspot.com/2014/12/electric-guitar-output-voltage-levels.html

[10] "Op Amp Summing Amplifier: Virtual Earth Mixer » Electronics Notes." 2021, www.electronics-

notes.com/articles/analogue_circuits/operational-amplifier-op-amp/virtual-earth-mixer-summing-

amplifier.php

[11] Byron, "Proto Pedal Example: Programmable Digital Pedal" 2021, Available at:

https://learn.sparkfun.com/tutorials/proto-pedal-example-programmable-digital-pedal/all#assembly-

part-2-Teensy-and-controls

[12] Mottola, "Table of Musical Notes and Their Frequencies and Wavelengths" 2020, Available at:

https://www.liutaiomottola.com/formulae/freqtab.htm

18

[13] “Tom’s Guitar Projects”, "Electric Guitar Output Voltage Levels" 2014, Available at:

https://tomsguitarprojects.blogspot.com/2014/12/electric-guitar-output-voltage-levels.html

[14] D. Herres, "Waveforms in oscilloscopes and elsewhere" 2017, Available at:

https://www.testandmeasurementtips.com/waveforms-oscilloscopes-elsewhere/

19

Appendix A Requirement and Verification Table

Table 3 Hardware System Requirements and Verifications

Requirement Verification Verificatio
n status
(Y or N)

Explanation

Input buffer subsystem
should be able to divide
the peak-to-peak voltage
of an input signal by
approximately 3. It
should be able to do so
for signals between 2V
and 15V peak-to-peak
voltage.

1. Used oscilloscope to measure
input and output signals of
subsystem

2. Subtracted highest peak and
lowest peak of both
waveforms

3. Do so with waveform
generator for 2v and 15v peak
to peak

Y

The output of the input
buffers impedance is
greater than 100kΩ to
prevent signal
attenuation

1. Used multimeter to measure
the Current and Voltage at the
output of the input buffer.

2. Unconnected the input buffer
from Teensy and connected
multimeter across Teensy and
the input buffer.

3. Calculated Z=V/I.

Y

Output buffer should be
able to multiply the
peak-to-peak voltage
headroom of an input
signal by approximately
3. It should be able to do
so for signals between
0.5V and 5V peak-to-
peak voltage.

1. Used oscilloscope to measure
input and output signals of
subsystem

2. Subtracted highest peak and
lowest peak of both
waveforms

3. Do so with waveform
generator for 0.5v and 5v
peak to peak

Y

The output buffer
impedance is less than
100kOhms to prevent
signal attenuation

1. Used Multimeter to measure
voltage.

2. Unconnected the output
buffer from Teensy and
connected multimeter across
Teensy and the output buffer.

3. Calculated Z=V/I.

Y/N Verified but
mistake in
Design
document said
greater than
instead of less
than.

The output from the
DAC and the raw guitar
signal should be
balanced in rms
Voltage.

1. Used oscilloscope to measure
the waveform of the guitar
signal and the waveform from
the output of DAC

N Original
Design
changed the
output of
DAC is now
already

20

2. Calculated Voltage root mean
squared using 0.7 times peak
voltage.

combined
with the guitar
signal.
Balancing is
guaranteed by
software.

Be powered by an
external 9v power
supply rated under
500mA.

1. Use 9v power supply rated
under 500mA and test other
verifications of the power
supply with it.

Y

The voltage conversion
from 9V to 5V should
be accurate within ±5%.

1. Use multimeter to measure
voltage from input and output
of LM7805.

2. Calculate percent error of
output voltage from 5v

3. Calculate percent difference
error from 9v-5v and the
difference between the
measured values.

Y

The temperature of the
LM7805 should not
exceed 40 degrees C, to
ensure that none of the
other parts are negatively
affected and that the
pedal itself doesn’t
become too hot.

1. Use temperature sensor that
attaches to a multimeter to
measure the temperature of
the pins of the LM7805

Y

Table 4 ADC/DAC System Requirements and Verifications
Requirement Verification Verificatio

n status
(Y or N)

Explanatio
n

Output is equal to or less than 1Vrms . This
is because 1Vrms is a little more than the
highest guitar output voltages.

1. Use the serial monitor and rms
voltage function in the Teensy
Audio Library to calculate the
rms voltage of the output. It
should be well under 1V, so that
it is not very difficult to balance
with the original guitar signal.

Y

DAC should be able to convert in the
frequent range of 50-3000Hz with
maximum ±1% signal distortion. This is
a tighter boundary, as these are the
frequencies that the user will actually

1. An oscilloscope can be used to
measure the signal frequency
after the output buffer, and the
internal note2freq serial monitor
can be used to measure the

Y

21

hear and they need to be a lot more
accurate than the ones required for note
computation.

signal frequency from before D-
A conversion. They should be
within ±1% of each other.

ADC input is equal to or less than 1vrms .
This is because 1Vrms is a little more
than the highest guitar output voltages
[12].

1. Use the serial monitor and rms
voltage function in the Teensy
Audio Library to calculate the rms
voltage of the input. It should be
less than 1v, since 1v is only rarely
reached even with high-gain guitar
pickups and strong pick strokes.

Y

The digital signal is communicated to
the microcontroller.

1. Use the serial monitor and rms
voltage function in the Teensy
Audio Library to calculate the
rms voltage of the input.

2. It should be less than 1V, since
1V is only rarely reached even
with high-gain guitar pickups and
strong pick strokes.

Y

ADC should be able to convert in the
frequent range of 50-1500Hz with
maximum ±5% signal distortion. This is
because even with ±5% signal
distortion, the fundamental frequency
will be close enough to a ‘correct’ note
that it can be resolved to it.

1. An oscilloscope can be used to
measure the signal frequency after
the input buffer, and the internal
note2freq serial monitor can be
used to measure the signal
frequency from the ADC. They
should be within ±5% of each
other.

Y

Table 5 DSP Subsystem Requirements and Verifications
Requirement Verification Veri

ficat
ion

statu
s

(Y
or
N)

Explanation

Should be able to resolve a frequency
to the nearest ‘correct’ note within 5
milliseconds.

1. This can be verified by attaching
an oscilloscope to the input signal
from the guitar as well as the
output from the frequency
analyzer, and from the plot of the

Y

22

waveforms calculating the time
difference between the starts of
the two signals

Tie break to the higher note. 1. This can be ensured by using the
waveform generator to input a
frequency exactly halfway
between two notes, and ensuring
that the output note is the higher
one

Y

Latency should be under 5
milliseconds.

1. This can be verified by attaching
an oscilloscope to the input signal
from the guitar as well as the
output from the frequency
analyzer, and from the plot of the
waveforms calculating the time
difference between the starts of
the two signals.

Y

Should be able to calculate at least the
following harmonies: unison, fifth,
major third, minor third, major 7th,
minor 7th.

1. The outputted notes can be
manually checked against chord
charts to ensure that the correct
harmonies are being generated.

Y

Should allow the guitarist to quickly
select the desired harmony setting

1. This can be done by checking if a
guitarist can use only one hand to
change the settings, and if it can
be done within ~2 seconds

Y

The MIDI notes should be able to drive
any MIDI-controlled device and should
externally appear as a standard MIDI
controller.

1. To ensure that the output is MIDI
standard compatible, one can connect
a laptop and use multiple digital
instruments in a DAW, and compare
the generated notes with the expected
notes using a software keyboard.

N Unfortunatel
y, our
expensive
MIDI
connectors
got lost in
shipping so
we were
unable to
actually test
the MIDI
port

23

Appendix B Schedule

Table 6 Schedule

Week Danielle Madhav

Aug 23rd-Aug 29th -Commented on an Initial post -Made idea post

Aug 30th-Sept 5th -Lab Safety Training
-CAD assignment

-Lab Safety Training
-CAD assignment

Sept 6th-Sept 12th -Project approval submitted Project approval submitted

Sept 13th-Sept 18th -Soldering assignment
-Did project proposal
-Researched guitar terms and made
study guide

-Soldering assignment
-Did project proposal
-Helped Danielle get acquainted
with guitar terminology

Sept 20th-Sept 26th -Started Design Document -Started Design Document

Sept 27th- Oct 3rd -Research the PCB layout
-Practice speaking for Design review
-order Teensy Audio Board

-Research most suitable
 microcontroller and parts
-Practice speaking for Design review
-order Teensy audio board

Oct 4th-10th -Research the PCB layout about
Teensy microcontroller/audio board
-Had Design review
-Eagle the PCB layout

-Researched frequency estimation
algorithms
-Had Design review
-Eagle the PCB layout

Oct 11th-17th -Redid entire PCB on Eagle -Researched audio libraries

Oct 18th-24th -Met in lab,
ordered all missing parts

- Ordered missing parts, started
 testing Teensy with audio library

Oct 25th- 31st -

Nov 1st-7th -Built the power, input buffer, output
buffer, and combinational buffer on
Breadboard
-Verified power, input buffer, output
buffer on breadboard

- Programmed Teensy with
 barebones guitar doubling code
- Debugged Teensy port connections
- Got good results for baseline
 functionality on breadboard

Nov 8th-14th -Redid the Schematic and PCB
design on Eagle

 -Ordered new PCB with Danielle
-Wrote code for advanced
functionality

Nov 15th-21th -Tried to get good sound from
 combinational logic on board

-Ordered another PCB just to be sure

24

-Soldered a backup PCB -Had a smaller footprint, ended up
using it

Nov 22nd- 28th -Used copy of PCB to debug the
power
-Debugged output buffer
-Worked on getting signals to
 combine

-Used new PCB to get I/O buffers,
Teensy with Audio Shield working
-Got great results with Audio Shield,
But better cost effectiveness with
DAC chip
-Prepared chassis with switches and
digital connections

Nov 29th- Dec 5th -Work on mock demo
-insulate project
-Collect remaining verifications for
my part

Work on mock demo
-insulate project and put in chassis
-Collect remaining verifications
for my part

Dec 6th- 13th -Continue to work on Presentation
-Present
-Do my parts of final report
including conclusion, block
diagram, cost, hardware system

-Final Presentation
-Final Paper

25

Appendix C Complete DSP Code in C/Arduino

#define GUITAR_NOTE_COUNT 49
#define FREQUENCY_MULTIPLIER 0.9666

#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <SerialFlash.h>

AudioInputAnalog adc1; //xy=291,153
AudioSynthWaveform waveform4; //xy=298,573
AudioSynthWaveform waveform3; //xy=304,524
AudioSynthWaveform waveform2; //xy=305,470
AudioSynthWaveform waveform1; //xy=306,422
AudioAnalyzePeak peak1; //xy=538,517
AudioMixer4 mixer1; //xy=579,381
AudioAnalyzeNoteFrequency notefreq1; //xy=627,155
AudioMixer4 mixer2; //xy=774,253
AudioOutputPT8211 pt8211_1; //xy=955,293
AudioConnection patchCord1(adc1, notefreq1);
AudioConnection patchCord2(adc1, 0, mixer1, 0);
AudioConnection patchCord3(adc1, peak1);
AudioConnection patchCord4(waveform4, 0, mixer2, 1);
AudioConnection patchCord5(waveform3, 0, mixer1, 3);
AudioConnection patchCord6(waveform2, 0, mixer1, 2);
AudioConnection patchCord7(waveform1, 0, mixer1, 1);
AudioConnection patchCord8(mixer1, 0, mixer2, 0);
AudioConnection patchCord9(mixer2, 0, pt8211_1, 0);

void setup() {
 // put your setup code here, to run once:
 AudioMemory(100);
 notefreq1.begin(0.15);

 waveform1.begin(WAVEFORM_SINE);
 waveform1.amplitude(0.1);
 waveform1.frequency(50);
 waveform1.pulseWidth(0.15);

 waveform2.begin(WAVEFORM_SINE);
 waveform2.amplitude(0.1);
 waveform2.frequency(50);
 waveform2.pulseWidth(0.15);

26

 waveform3.begin(WAVEFORM_SINE);
 waveform3.amplitude(0.1);
 waveform3.frequency(50);
 waveform3.pulseWidth(0.15);

 waveform4.begin(WAVEFORM_SINE);
 waveform4.amplitude(0.1);
 waveform4.frequency(50);
 waveform4.pulseWidth(0.15);

 mixer1.gain(0, 5);
 pinMode(2, INPUT);
 pinMode(4, INPUT);
 pinMode(6, INPUT);
 pinMode(8, INPUT);
 pinMode(10, INPUT);

}

void loop() {
 // put your main code here, to run repeatedly:
float guitar_notes[GUITAR_NOTE_COUNT] = {82.41, 87.31, 92.50, 98.00, 103.8, 110.0,
116.5, 123.5,
 130.8, 138.6, 146.8, 155.6, 164.8, 174.6, 185.0, 196.0, 207.7, 220.0, 233.1, 246.9,
 261.6, 277.2, 293.7, 311.1, 329.6, 349.2, 370.0, 392.0, 415.3, 440.0, 466.2, 493.9,
 523.3, 554.4, 587.3, 622.3, 659.3, 698.5, 740.0, 784.0, 830.6, 880.0, 932.3, 987.8,
 1047, 1109, 1175, 1245 , 1319};

 int wave_style_continuous = digitalRead(2);
 int major_minor = digitalRead(4);
 int octave_on = digitalRead(6);
 int third_on = digitalRead(8);
 int fifth_on = digitalRead(10);

// if(wave_style){}

 if (peak1.available())
{
 float peakv = peak1.read();

 waveform1.amplitude(sqrt(10000*peakv));
 waveform2.amplitude(sqrt(10000*peakv));
 waveform3.amplitude(sqrt(10000*peakv));

27

 if (notefreq1.available())
{

 float target_freq = notefreq1.read();

 float prob = notefreq1.probability();

 float note = bin_search(guitar_notes, 0, 48, target_freq *
FREQUENCY_MULTIPLIER);

 if (!wave_style_continuous){
 if (target_freq < 80){target_freq = 82;}
 if (target_freq > 1400){target_freq = 1350;}
 }
 else{note = target_freq;}

 if(octave_on){waveform1.frequency(note * 0.5);}
 else{waveform1.frequency(0);}

 if(fifth_on){waveform2.frequency(note * 1.49831);}
 else{waveform2.frequency(0);}

 if(third_on){
 if(!major_minor){
 waveform3.frequency(note * 1.18921);
 waveform4.frequency(note * 1.782);
 } // minor
 else{
 waveform3.frequency(note * 1.25992);
 waveform4.frequency(note * 1.888);
 } //major
 }
 else{waveform3.frequency(0);}

 Serial.printf("Frequency:%3.2f | Note:%3.2f | Probability: %.2f | PeakIn:
%.5f\n",target_freq, note, prob, peakv);
 }

 }

28

}

float bin_search(float *arr, int start_idx, int end_idx, float search_val) {

 if(start_idx == end_idx)
 return arr[start_idx] <= search_val ? arr[start_idx] : arr[start_idx];

 int mid_idx = start_idx + (end_idx - start_idx) / 2;

 if(search_val < arr[mid_idx])
 return bin_search(arr, start_idx, mid_idx, search_val);

 float ret = bin_search(arr, mid_idx+1, end_idx, search_val);
 return ret == 0 ? mid_idx : ret;
}

