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Abstract 
 
 

The product we developed over the course of the past semester is a harmony synthesizer 
guitar pedal that is applicable in a variety of musical contexts. Our product saves a guitarist time 
by simplifying orchestration/arrangement since it allows the guitarist to record/perform synth 
parts alongside guitar parts. The guitarist has the option to use the product to simply double their 
guitar part on the synth in unison, or to use the pedal to provide harmonic context to the melody 
they are playing. It also allows them to plug the pedal into a DAW/external synthesizer for 
simplified recording and custom timbres. 

Our prototype was easy to add to an existing guitar pedal chain and was able to 
successfully provide both one-to-one doubling as well as harmony to a guitarist. 
 
 
  



iii 
 

Contents 
 
1. Introduction ................................................................................................................................. 1 

1.1 Problem ........................................................................................................................... 1 
1.2 Solution ........................................................................................................................... 1 

1.3 Requirements ......................................................................................................................... 1 
1.4 Subsystem List ...................................................................................................................... 2 

2 Design .......................................................................................................................................... 2 

2.1 Block Diagram ...................................................................................................................... 3 
2.2 Physical Design ..................................................................................................................... 3 
2.3 Hardware ............................................................................................................................... 4 

2.3.1 Input Buffer .................................................................................................................... 4 
2.3.2 Output Buffer .................................................................................................................. 5 
2.3.3 Power .............................................................................................................................. 5 

2.3.3 Analog to Digital Convertor ........................................................................................... 6 
2.3.3 Digital to Analog Convertor ........................................................................................... 6 

2.4 Software ................................................................................................................................ 7 
2.4.1 Frequency Analyzer Subsystem ..................................................................................... 7 
2.4.2 Synthesizer Subsystem ................................................................................................. 10 

3. Design Verification ................................................................................................................... 11 

3.1 Latency ................................................................................................................................ 11 
3.2 Convenience .................................................................................................................... 12 

3.3 Frequency Range ................................................................................................................. 12 
3.4 ADC/DAC Sample Rate and Bitrate ................................................................................... 13 

4. Costs .......................................................................................................................................... 14 
4.1 Parts ..................................................................................................................................... 14 

4.2 Labor ................................................................................................................................... 14 
5. Conclusion ................................................................................................................................ 15 

5.1 Accomplishments ................................................................................................................ 15 
5.2 Uncertainties ........................................................................................................................ 15 
5.3 Ethical considerations ......................................................................................................... 15 
5.4 Future work ......................................................................................................................... 15 

References ..................................................................................................................................... 17 
Appendix A Requirement and Verification Table ..................................................................... 19 
Appendix B Schedule ................................................................................................................... 23 



iv 
 

Appendix C Complete DSP Code in C/Arduino........................................................................... 25 



1 
 

1. Introduction 

1.1 Problem 
A lot of guitarists these days, especially in the metal/indie scene, like to double/harmonize their 
guitar parts with synthesizer parts overlayed on top [2]. This is usually done note-for-note, and 
usually wastes a lot of effort as the guitarist must re-record the synth parts over the guitar tracks. 
There is a lot of wasted effort that is directly proportional to how complex/fast the guitar parts 
are.  

1.2 Solution 
This product is meant to act as a device (guitar pedal) that adds musical context/layering on the 
notes played on a guitar. The guitarist will benefit from this product in that he/she can create more 
specialized sounds by blending different notes and/or chords. This would make it easier for the 
musician to achieve the specific sound/note that they desire. 

 
Our product is marketable because the cost will save a lot of time for the artist when they are 
tracking guitar parts and doubling them with synths, as well as cut down on the amount of stage 
gear they need when performing live. Our approach is to use a DSP-capable microprocessor (such 
as the MK20DX256VLH7 on the Teensy 3.2) to implement a novel kind of guitar pedal – one that 
will add electronically synthesized harmonies to an analog guitar note played by the guitarist. This 
will be in the form factor of a normal pedal, and the knobs will give the guitarist the option to 
select what kinds of harmonies they want to overlay (Major 5th, Major triad, 7th, etc).  
 
Our chassis for the pedal is of dimensions (14.5 cm, 12.1cm, 3.9cm), and has 2 female ¼ inch 
connectors, one MIDI out, and one 9V DC power input. We wanted the dimensions to be such that 
it fits on a standard guitar pedal board and is compatible with the rest of the guitarist’s signal chain. 
In terms of controls, we want the guitarist to be able to specify the harmony they would like to 
generate as well as the type of waveform (from square, sawtooth, or sinusoidal). The electric 
guitar’s output will be connected to the input female ¼ inch connector on the pedalboard. The 
guitarist can use the harmony selector switches on the pedal to select what harmonies to generate 
as MIDI notes, and the waveform selector switches to select what waveform to generate. If the 
guitarist wants to use their own external synth with a more elaborate/customized waveform 
generator or signal chain, they can route the MIDI notes generated to the external synth. The output 
of the pedal would then be connected to either an amplifier or the rest of the guitarist’s pedal chain. 
The guitar signal itself is mixed as-is with the generated harmonies. 
 
 

1.3 Requirements 
We listed the high-level requirements as defined in our Final Design Document.  

• Can resolve a frequency in the range 50-1500 Hz to the closest note in 12-tone equal 
temperament tuning system with A at 440 Hz. Error tolerance of +/- 5%. 

• ADC/DAC should be at a sample rate of at least 44.1 kHz and at least 16-bit resolution [8]. 
This is because CD quality audio has 16-bit resolution and is sampled at 44.1 kHz. 
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• Makes overall music production and performance significantly more convenient for the 
guitarist. 

• Total end-to-end latency should be under 10 milliseconds. For guitar, this is when guitarists 
can ‘feel’ the performance getting sluggish even though listeners cannot tell the difference 
[3]. 
 

Frequency resolution is important because we want our product to be able to work for all guitar 
notes. We have the ADC/DAC requirement because it is a standard for CD audio quality. At a 
lower bit resolution, the output of the guitar could sound noisy and not provide the same quality. 
We want to make overall product convenient for consumers. This aligns with our main goal to 
solve the problem of being able to harmonize and synthesis simultaneously. The Latency 
requirement is necessary to our product because at 10ms a guitarist may notice the delay between 
played and hearing a note [4]. Without this requirement it would be hard for the guitarist to play 
on beat.  
 

1.4 Subsystem List 
• The Power Subsystem is responsible for delivering 9v DC power to the input buffer 

subsystem, output buffer subsystem, and the Teensy. The Power Subsystem is takes input 
from the power supply. 

• The Input Buffer Subsystem is responsible for dividing the peak-to-peak voltage of the 
guitar signal and biasing it to 0.6v so in can fall with range of voltage required by the 
Teensy analog input pins. The guitar signal is the input of the Input Buffer Subsystem, 
and the on-board ADC Subsystem is where the output goes. 

• The Output Buffer Subsystem is responsible for reamplifying the signal, inversing the 
input buffers modification to the signal. The output buffer takes input from the DAC in 
the Teensy and then outputs to the speaker. 

• The Combinational Subsystem is responsible for combining the original guitar signal 
after ADC and the signal after synthesis.  

• The ADC/DAC Subsystem is responsible for digitizing the buffered guitar signal input 
for digital signal processing, and then converting the processed output back to an analog 
signal to be buffered by the output buffer. 

• The Frequency Analyzer Subsystem is responsible for recognizing what note the 
guitarist has played from the signal after A/D conversion. 

• The Synthesizer Subsystem is responsible for outputting the user-selected harmony as a 
user-selected waveform based on the note recognized by the frequency analyzer. 

2 Design 
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2.1 Block Diagram 

2.2 Physical Design 

 
Figure 2: From left to right on the pedal diagram above, there is the top panel of the guitar pedal. The switches on the top 

turn individual harmonies on/off. The other three switches from top to bottom control the waveform, the major/minor 
quality of the 3rd and 7th intervals, and toggle between True Bypass and discrete/continuous note recognition. The side 

panel of the guitar has the ¼ inch input and output as well as the barrel 9V center negative jack. 

Octave 
Perfect 5th 
3rd + 7th  

Waveform  

Major/Minor 

Bypass/Discre
te  ¼ inch IN 

¼ inch OUT 9V DC Power 

Figure 1: Block Diagram for our product broken down into systems and subsystems. 
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2.3 Hardware 

2.3.1 Input Buffer 
 

 
Figure 3: Input buffer schematic. 

Note that in the Figure 3 L1 and V4 do not exist on the PCB they are the on-board circuitry of the 
Teensy inputs they are there for clarity of design. Also note, the audio_input is the output of the 
input buffer. The input signal to the ADC is attenuated by roughly a factor of 3, since this stage is 
powered directly by the 9v power supply, it has roughly 9V peak-to-peak headroom. R3 and R4 
will achieve this attenuation. 

   !"
#$

=1+ !"%
$$%&!"%

                                                           (1.0) 
                      

 
The 9v power supply is divided in half by R1 and R2 in Figure 3. The purpose is to bias the guitar 
signal because the input to Teensy cannot read negative voltages. The circuit to the right of VOUT 
in Figure 3 bias’s the signal to half of the reference voltage of the Teensy input which is 1.2v [1]. 
The original design only includes the right half of the circuit ending at VOUT. Since we changed 
the audio board to be a DAC board instead the output of the input buffer will feed directly into 
Teensy instead of the Teensy audio board. The difference with this is that the Teensy audio board 
has an input voltage range of 0-3.3v whereas the Teensy can only take a range of 0-1.2v. We 
decided to keep the original circuit since it is consistent with our output buffer logic and the guitar 
signal still needs to be attenuated to make sure it fits in the acceptable range of the Teensy analog 
voltage range. 
 

 
Figure 4: Output of original input buffer vs whole input buffer 

Note that the Figure 4 uses a guitar signal of 2v peak to peak which is well above the maximum 
guitar note we is possible [12]. The result is a waveform that is almost exactly a third of the 
original peak to peak voltage. The new part of the design will always bias the signal to roughly 
0.6v. 
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0.595𝑣 =3. 3 $$%
$$%&!"%

                                                   (1.1) 
As seen in Equation (1.1) the attenuation is because of resistor R7 and R8 and the 3.3v output pin 
from Teensy. This is useful for putting the signal exactly between the range of the Teensy 
voltages so that there is the most room for the signal.  
The alternative design to this subsystem that we were considering would include only R1, R2, 
C2, LM358, R3, and R4 which is the left half of the circuit. This design would work with using 
the Teensy audio board instead of the DAC board as we originally intended. 

2.3.2 Output Buffer 
The output signal from the DAC needs to be amplified by a factor of 3. This will reverse the signal 
attenuation from the input buffer. This is important because with a smaller voltage the sound will 
change its strength and have more room for noise. The outputs buffers schematic can be seen in 
Figure 5. 

 
 

 
Figure 5: Output buffer schematic 

 
   !"
#$
	=1+$$%

!"%
                                                                  (1.2)              

The gain of this buffer is represented by Equation (1.2). This is the exact opposite attenuation 
from the input buffer seen in Equation (1.0) which is what we wanted. 

2.3.3 Power 
This subsystem’s purpose is to supply 9v to all the different parts of the design, as well as to ensure 
that the Teensy receives 5v. Since the power supply needs to be compatible with the rest of the 
guitarist’s pedalboard, it will take a 9V dc input. However, the Teensy microcontroller operates 
on a maximum of 6v, so we will use a LM7805 voltage regulator ic to convert from 9V to 5V [6]. 
Since the Teensy operates on about 60mA of current, and the voltage drop is 4V across the voltage 
regulator, this subsystem will dissipate about 0.25 Watts as heat [11]. This should not make it 
appreciably hotter than room temperature and should still be quite safe to the circuit. 
The digital signal processing that occurs on the Teensy board will occur in 3.3v. However, Teensy 
has on-board voltage regulators that will step 5V down to 3.3V for DSP operations [1]. 
 
An alternative design would be to use a battery powered power supply. The problem with the 
alternative is that batteries die after some time and will require replacing and spending more 
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money. Also, a battery provided less constant voltage because it weakens as it nears the end of 
its battery life.  

2.3.3 Analog to Digital Convertor 
This subsystem manages converting the signal from analog to digital which is critical to 

being able to harmonize the signals. ADC was implemented natively on the Teensy’s analog 
input pins, which was a result of excluding the Teensy audio shield from our original design. The 
MK20DX256VLH7 on the Teensy board is capable of ADC at 16-bit depth sampled at 44.1 kHz. 
The pinout of the Teensy audio board can be seen in Figure 6. 

 

 
Figure 6: The Analog to Digital Conversion is handled by the Teensy when input is received at pin A2 (16). This is where 

the guitar signal is received after the input buffer. 

2.3.3 Digital to Analog Convertor 
This subsystem manages converting the signal from digital to analog after the addition of 

the harmony notes. Since we are aiming for the highest harmony note to be an octave (double the 
frequency of the input), the constraints and requirements of the DAC are higher. This was 
implemented on a custom DAC board we implemented for the Teensy based on the PT8211 
DAC chip, which is capable of 16-bit DAC at 44.1 kHz. The connections to the Teensy 3.2 can 
be seen in Figure 7. 
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Figure 7: The DAC circuit is connected to the Teensy 3.2 as described in this image 

2.4 Software 
The general software for our product can be seen in Figure 8. 

 
Figure 8: Graphic Representation of the DSP Signal chain as seen in Audio Design Tool [2] 

 

2.4.1 Frequency Analyzer Subsystem 
 
This subsystem is meant to recognize the note that the guitarist has played after Analog to Digital 
Conversion. This was done by mapping the frequency of the played sound to the closest note in 
the 12-tone equal temperament, A at 440 Hz system. In order to deduce the note that has been 
played, we used the YIN algorithm to estimate fundamental frequency. 
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As described by Cheveigne and Kawahara [12], this is a 6-step autocorrelation in time-based 
algorithm that estimates the fundamental frequency of a monophonic signal. In the above figure, 
this is the component labelled ‘note2freq1’. The DSP system also recognizes a new note by 
recognizing a peak in the guitar signal, so as to only read notes when a pick stroke or tap is 
detected, and this is implemented in the component labelled ‘peak1’ above.  The decay of a 
guitar not can be seen in Figure 9. 
 
 

 
Figure 9: Decay of a single picked guitar note.  

 
Once a note is played, it then needs to be mapped to the correct frequency according to the 12 
tone equal temperament system with A at 440 Hz. The following are the frequencies of the 12 
notes on the guitar in the lowest frequencies [11]: 
 

Table 2 Frequencies of the Lowest 12 Notes on an Electric Guitar 
Note Frequency in Hz 

E 82.407 
F 87.307 
F# 92.499 
G 97.999 
G# 103.826 
A 110 
A# 116.541 
B 123.471 
C 130.813 
C# 138.591 
D 146.832 

 
The neck of a 24-fret guitar, as shown below, spans 4 octaves. Since an octave above a note is 
the frequency of the note multiplied by 2. Thus, to calculate the set of notes that are possible on 
the guitar neck, we took the above notes and doubled them for each available octave. This gave 
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us a set of 49 distinct notes possible on a guitar. At first glance this may seem incorrect as there 
are 24 ways to fret each of the 6 strings. However, many notes are repeated on the guitar neck. 
For reference see a guitar in Figure 9.  
 
 

 
 

Figure 9: A 24-fret Ibanez Electric Guitar 
 
We thus stored all 49 possible notes on the Teensy in a sorted array of floats, as seen in 
Appendix C: 
 

 
 
Then, in order to ‘freeze’ the output of the YIN algorithm to the ‘correct’ note, we perform 
binary search through the sorted array with the YIN output as the target term. Numerically, the 
closest term is then assigned as the played note. Binary search algorithm as in Appendix C: 
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2.4.2 Synthesizer Subsystem 
 
 Once the correct note has been calculated by the frequency analyzer subsystem, the 
Teensy reads the inputs at the switches via its digital input pins. The harmony notes that are 
selected are calculated with intervallic multipliers. The following section of code sets the 
frequency of each harmony note based on whether or not the interval is selected by the user, as in 
Appendix C: 
 

 
This note information is also passed onto the MIDI output that we were unfortunately 

unable to test, due to shipping troubles with our MIDI connector package. The MIDI port 
connection can be seen in Figure 10.  
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Figure 10: The MIDI port driven by the Teensy 

 
 
Finally, the note information is also passed onto the internal waveform generators for 

each interval. The switches connected to the Teensy’s digital inputs define the selected harmony, 
and the waveforms are generated accordingly and passed onto the DAC subsystem. 

 

3. Design Verification 

3.1 Latency 
The Latency of the end-to-end system must be less than 10ms. To verify this is simple. We 
compared the oscilloscope readings from one end of the system to the other. The difference 
between the peaks of the signal will show the total latency. The reason for this is that, as 
described in an article by A. Swanson[4], 10ms seems to be the latency around which a 
performer can ‘feel’ a lag even though the audience can’t perceive one.  
 

 
Figure 112: Latency verification 
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Figure 11 shows that the peaks of each waveform are 5ms apart in time. A problem with this is 
not knowing if it is several 5ms apart. This can be proved by showing the delay using a more 
irregular waveform the problem with this is guitar signals too uniform. Our solution was to input 
a high amount of noise from our computer as the input guitar signal. 
 
 
 
 
 
 
 

 

 
Figure 123: Latency second latency verification 

Figure 12 is again 5ms across each horizontal grid line. Note that the yellow signal is the output 
signal where the red is the original guitar signal. We compared the yellow signal with the 
waveform of the red signal 5ms before. While very noisy there is a pattern between the lowest 
dips and the highest peaks of the original and final signal. 

3.2 Convenience 
An important verification for our project is verifying that it is convenient for the guitarist to use. 
Part of the convenience factor is that we used switches instead of rotary potentiometers. The 
reason being is the rotary potentiometers need to be spun which will more than likely require 
turning it by hand. Verification for this is we played the guitar and made sure the switches and 
button could be operated with our foot.  

3.3 Frequency Range 
Need product to resolve a frequency in the range 50-1500 Hz to the closest note in 12-tone equal 
temperament tuning system with A at 440 Hz [12]. With an error tolerance of +/- 5%. For this 
verification we demonstrated playing guitar notes with the binary search on. The binary search 12-
tone equal temperament is verified by design in the code used for Teensy. We chose to test within 
this frequency range since it encapsulates the lowest and highest notes that can be produced on a 
standard electric guitar with 6 strings and 24 frets tuned in standard EADGBE tuning. The actual 
range of the frequencies is 82-1320 Hz. 
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3.4 ADC/DAC Sample Rate and Bitrate 
ADC/DAC should be at a sample rate of at least 44.1 kHz and at least 16-bit resolution [7]. This 
is because CD quality audio has 16-bit resolution and is sampled at 44.1 kHz. This is verified by 
design. This is because the DAC board and the Teensy 3.2 ADC are both rated for a 16-bit 
resolution and sampling rates of 44.1kHz [2]. 
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4. Costs 

4.1 Parts 
The actual cost for all the parts used in our final project is 58.69 which is amazing. This is an 
extremely cheap for what our product does and very exciting. The part-by-part calculation of this 
is outlined in Table 2. 
 

 Table 2 Parts Costs 

Part Manufacturer Quantity Retail 
Cost 

($/Item) 

Bulk 
Purchase 

Cost 
($/Item) 

Actual Cost 
($/Item) 

Teensy 3.2 PJRC 1 19.80 13.00 19.80 
Break Away 

Headers 
SparkFun 

Electronics 
1 1.50 1.00 1.50 

DPDT Switches SparkFun 
Electronics 

6 0.75 0.25 4.00 

Footswitch SparkFun 
Electronics 

1 3.00 1.00 3.00 

PT8211 DAC  Princeton Tech 1 2.65 1.50 2.65 
LM358-N Texas Instruments 2 1.57 0.05 0.20 

L7805 SparkFun 
Electronics 

1 0.95 0.25 0.95 

Power 
Connector 

SparkFun 
Electronics 

1 0.75 0.25 0.75 

Audio Jack Markertek 4 2.25 0.60 2.25 
PCB Board PCBWay 1 5.65 2.00 5.65 

Power Supply 
Connector 

D’Addario 
Accessories 

1 9.99 5.00 9.99 

Resistors  Panasonic Electronic 
Components 

13 0.05 0.01 Free 

Capacitors Texas Instruments 4 0.31 0.02 Free 
Total   61.00 28.10 58.69 

 

4.2 Labor 
The expected cost per person assumes an average of the reported Computer and Electrical 

Engineering graduating salaries from 2019-2020. They are sequentially 110,978 and 76,129 
making the average 87,637 a year [1]. 

𝐿𝑎𝑏𝑜𝑟	𝑐𝑜𝑠𝑡 = ideal	salary	(hourly	rate) × actual	hours	spent	 × 2.5                         (4) 
Using the Equation (4) and with a combined total labor hour estimate of 150 hours we would 
calculate labor cost to be 32,863,875$. The schedule for this work is outlined in Appendix B in 
Table 6. 
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5. Conclusion 

5.1 Accomplishments 
This project was very successful. We wanted to make it easy for guitarist to harmonize and 
synthesize their guitar notes without delay. This was able to be achieved along with all our high-
level requirements.  There is not a marketed pedal with the same unique features as ours. We 
even managed to increase the ease of use from our original design and expand on some of our 
functionality. We had multiple modes of operation for continuous and discrete outputs. With the 
switches used in place of rotary potentiometers the pedal will be operable while playing guitar. 
Our final project can synthesize multiple different harmonies. Additionally, it can select between 
multiple waveforms while also allowing combination with the guitar signal.  

5.2 Uncertainties 
Right before our final demo while trying to enclose the final product the Teensy begun to heat up 
and stopped functioning. We were able to read up to 67 degrees Celsius. While there is no exact 
internal thermal rating for the Teensy 3.2 our Teensy never was warm to the touch of measured 
above 40 degrees Celsius until that moment. Considering our design had to include wires from 
the prototyped circuit board due to not predetermining the connections to Teensy on our final 
PCB order, touching connections is possible. From research a likely cause of failure is that the 
5V pin of the Teensy was mistakenly connected any analog pin of the Teensy. All analog pins of 
the Teensy are rated for only 3.3v [2]. Another reason to believe this is the Teensy was being 
moved around to be secured in the enclosure which could of cause wire connections to touch. 

5.3 Ethical considerations 
As the IEEE code of ethics says we must “hold paramount the safety, health, and welfare of the 
public, to strive to comply with ethical design and sustainable development” [6]. In order to do 
this, we must consider the fact that someone can be unaware of the risks of the system and make 
the audio output louder than safe for people's ears. Anything 80 dB and above can cause hearing 
damage. To comply with an ethical standard our product will include a warning with the range of 
dB that can cause hearing damage. 
 
It is also a concern that because we are using circuitry that our design is rain proof. Water can 
cause short circuiting which is a fire safety hazard. To do this we must make sure that our circuit 
design is sealed enough to not let any water in. We would also need to ensure that all voltages and 
currents are appropriately grounded to not make the strings of guitar live wires. This can be 
extremely dangerous for the player and adhering to design standards will help prevent this. 
 
The risk of electrical shock if mishandled also would be a safety hazard to children. From the AMC 
ethic code 1.2 to avoid harm our team wants to avoid any possible risk to anyone's safety [3]. Our 
team plans to put a safety warning on the product to keep away from small children to avoid a 
hazard like this from occurring. 
 

5.4 Future work 
While we our happy with our product there are many ways to make it even better. For starters the 
physical design could be better by adding engraved labels for each switch and connection. As 
well as adding a led for signaling whether the power is on. Another way to expand on our project 
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is to add more of what we already have: harmonies, waveforms, and different effects. The one 
complication of this is we would need an additional switch for each addition which could 
overcrowd the board and make it less convenient to use. A solution to this would be using rotary 
potentiometers but have multiple with all the same selections so you can still select multiple 
waveforms and harmonies. The tradeoff would be making it hard to use with your foot while 
playing but vastly increased functionality would be worth it. 
Another improvement would be adding a rotary potentiometer to adjust gain across the input 
channels. This would make is so that the combination of the guitar signal and the additional 
signals would not need to have equal contribution to the output sound. This would allow the 
guitarist to customize their sound to a higher degree. 
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Appendix A Requirement and Verification Table 
 
Table 3 Hardware System Requirements and Verifications   

Requirement Verification Verificatio
n status  
(Y or N) 

Explanation 

Input buffer subsystem 
should be able to divide 
the peak-to-peak voltage 
of an input signal by 
approximately 3. It 
should be able to do so 
for signals between 2V 
and 15V peak-to-peak 
voltage. 

1. Used oscilloscope to measure 
input and output signals of 
subsystem  

2. Subtracted highest peak and 
lowest peak of both 
waveforms 

3. Do so with waveform 
generator for 2v and 15v peak 
to peak 

 

Y  

The output of the input 
buffers impedance is 
greater than 100kΩ to 
prevent signal 
attenuation 
 

1. Used multimeter to measure 
the Current and Voltage at the 
output of the input buffer. 

2. Unconnected the input buffer 
from Teensy and connected 
multimeter across Teensy and 
the input buffer. 

3. Calculated Z=V/I. 

Y  

Output buffer should be 
able to multiply the 
peak-to-peak voltage 
headroom of an input 
signal by approximately 
3. It should be able to do 
so for signals between 
0.5V and 5V peak-to-
peak voltage. 

1. Used oscilloscope to measure 
input and output signals of 
subsystem  

2. Subtracted highest peak and 
lowest peak of both 
waveforms 

3. Do so with waveform 
generator for 0.5v and 5v 
peak to peak 

Y  

The output buffer 
impedance is less than 
100kOhms to prevent 
signal attenuation 

1. Used Multimeter to measure 
voltage. 

2. Unconnected the output 
buffer from Teensy and 
connected multimeter across 
Teensy and the output buffer. 

3. Calculated Z=V/I. 

Y/N Verified but 
mistake in 
Design 
document said 
greater than 
instead of less 
than. 

The output from the 
DAC and the raw guitar 
signal should be 
balanced in rms 
Voltage. 

1. Used oscilloscope to measure 
the waveform of the guitar 
signal and the waveform from 
the output of DAC 

N Original 
Design 
changed the 
output of 
DAC is now 
already 
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2. Calculated Voltage root mean 
squared using 0.7 times peak 
voltage. 
 

combined 
with the guitar 
signal. 
Balancing is 
guaranteed by 
software. 

Be powered by an 
external 9v power 
supply rated under 
500mA. 

1. Use 9v power supply rated 
under 500mA and test other 
verifications of the power 
supply with it. 

Y  

The voltage conversion 
from 9V to 5V should 
be accurate within ±5%. 

1. Use multimeter to measure 
voltage from input and output 
of LM7805. 

2. Calculate percent error of 
output voltage from 5v 

3. Calculate percent difference 
error from 9v-5v and the 
difference between the 
measured values. 

Y  

The temperature of the 
LM7805 should not 
exceed 40 degrees C, to 
ensure that none of the 
other parts are negatively 
affected and that the 
pedal itself doesn’t 
become too hot. 
 

1. Use temperature sensor that 
attaches to a multimeter to 
measure the temperature of 
the pins of the LM7805 

Y  

 
 

Table 4 ADC/DAC System Requirements and Verifications   
Requirement Verification Verificatio

n status  
(Y or N) 

Explanatio
n 

Output is equal to or less than 1Vrms . This 
is because 1Vrms is a little more than the 
highest guitar output voltages. 

1. Use the serial monitor and rms 
voltage function in the Teensy 
Audio Library to calculate the 
rms voltage of the output. It 
should be well under 1V, so that 
it is not very difficult to balance 
with the original guitar signal. 

Y  

DAC should be able to convert in the 
frequent range of 50-3000Hz with 
maximum ±1% signal distortion. This is 
a tighter boundary, as these are the 
frequencies that the user will actually 

1. An oscilloscope can be used to 
measure the signal frequency 
after the output buffer, and the 
internal note2freq serial monitor 
can be used to measure the 

Y  
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hear and they need to be a lot more 
accurate than the ones required for note 
computation. 

signal frequency from before D-
A conversion. They should be 
within ±1% of each other. 

ADC input is equal to or less than 1vrms . 
This is because 1Vrms is a little more 
than the highest guitar output voltages 
[12]. 
 

1. Use the serial monitor and rms 
voltage function in the Teensy 
Audio Library to calculate the rms 
voltage of the input. It should be 
less than 1v, since 1v is only rarely 
reached even with high-gain guitar 
pickups and strong pick strokes. 

 

Y  

The digital signal is communicated to 
the microcontroller. 

1. Use the serial monitor and rms 
voltage function in the Teensy 
Audio Library to calculate the 
rms voltage of the input. 

2.  It should be less than 1V, since 
1V is only rarely reached even 
with high-gain guitar pickups and 
strong pick strokes. 
 

Y  

ADC should be able to convert in the 
frequent range of 50-1500Hz with 
maximum ±5% signal distortion. This is 
because even with ±5% signal 
distortion, the fundamental frequency 
will be close enough to a ‘correct’ note 
that it can be resolved to it. 

1. An oscilloscope can be used to 
measure the signal frequency after 
the input buffer, and the internal 
note2freq serial monitor can be 
used to measure the signal 
frequency from the ADC. They 
should be within ±5% of each 
other. 
 

 

Y  

 
 

Table 5 DSP Subsystem Requirements and Verifications   
Requirement Verification Veri

ficat
ion 

statu
s  

(Y 
or 
N) 

Explanation 

Should be able to resolve a frequency 
to the nearest ‘correct’ note within 5 
milliseconds. 

1. This can be verified by attaching 
an oscilloscope to the input signal 
from the guitar as well as the 
output from the frequency 
analyzer, and from the plot of the 

Y  
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waveforms calculating the time 
difference between the starts of 
the two signals 

Tie break to the higher note. 1. This can be ensured by using the 
waveform generator to input a 
frequency exactly halfway 
between two notes, and ensuring 
that the output note is the higher 
one 

Y  

Latency should be under 5 
milliseconds. 

1. This can be verified by attaching 
an oscilloscope to the input signal 
from the guitar as well as the 
output from the frequency 
analyzer, and from the plot of the 
waveforms calculating the time 
difference between the starts of 
the two signals. 

 

Y  

Should be able to calculate at least the 
following harmonies: unison, fifth, 
major third, minor third, major 7th, 
minor 7th.  

1. The outputted notes can be 
manually checked against chord 
charts to ensure that the correct 
harmonies are being generated. 
 

Y  

Should allow the guitarist to quickly 
select the desired harmony setting 

1. This can be done by checking if a 
guitarist can use only one hand to 
change the settings, and if it can 
be done within ~2 seconds 

 
 

 

Y  

The MIDI notes should be able to drive 
any MIDI-controlled device and should 
externally appear as a standard MIDI 
controller. 

1. To ensure that the output is MIDI 
standard compatible, one can connect 
a laptop and use multiple digital 
instruments in a DAW, and compare 
the generated notes with the expected 
notes using a software keyboard. 

N Unfortunatel
y, our 
expensive 
MIDI 
connectors 
got lost in 
shipping so 
we were 
unable to 
actually test 
the MIDI 
port 
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Appendix B Schedule  
 

Table 6 Schedule  

Week  Danielle Madhav 

Aug 23rd-Aug 29th -Commented on an Initial post -Made idea post 

Aug 30th-Sept 5th -Lab Safety Training 
-CAD assignment 

-Lab Safety Training 
-CAD assignment 

Sept 6th-Sept 12th -Project approval submitted  Project approval submitted 

Sept 13th-Sept 18th -Soldering assignment 
-Did project proposal 
-Researched guitar terms and made 
study guide 
 

-Soldering assignment 
-Did project proposal 
-Helped Danielle get acquainted 
with guitar terminology 
 

Sept 20th-Sept 26th -Started Design Document -Started Design Document 

Sept 27th- Oct 3rd -Research the PCB layout 
-Practice speaking for Design review 
-order Teensy Audio Board 

-Research most suitable 
 microcontroller and parts 
-Practice speaking for Design review 
-order Teensy audio board 

Oct 4th-10th -Research the PCB layout about  
Teensy microcontroller/audio board 
-Had Design review 
-Eagle the PCB layout 

-Researched frequency estimation 
algorithms 
-Had Design review 
-Eagle the PCB layout 

Oct 11th-17th -Redid entire PCB on Eagle -Researched audio libraries  

Oct 18th-24th -Met in lab,  
ordered all missing parts 

- Ordered missing parts, started 
 testing Teensy with audio library 

Oct 25th- 31st - 
 

Nov 1st-7th -Built the power, input buffer, output 
buffer, and combinational buffer on  
Breadboard 
-Verified power, input buffer, output 
buffer on breadboard 

- Programmed Teensy with 
 barebones guitar doubling code 
- Debugged Teensy port connections 
- Got good results for baseline 
 functionality on breadboard 

Nov 8th-14th -Redid the Schematic and PCB  
design on Eagle 

 -Ordered new PCB with Danielle 
-Wrote code for advanced 
functionality  

Nov 15th-21th -Tried to get good sound from  
 combinational logic on board 

-Ordered another PCB just to be sure 
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-Soldered a backup PCB  -Had a smaller footprint, ended up 
using it 

Nov 22nd- 28th -Used copy of PCB to debug the  
power  
-Debugged output buffer 
-Worked on getting signals to 
 combine 

-Used new PCB to get I/O buffers, 
Teensy with Audio Shield working 
-Got great results with Audio Shield,  
But better cost effectiveness with 
DAC chip 
-Prepared chassis with switches and 
digital connections 

Nov 29th- Dec 5th -Work on mock demo 
-insulate project 
-Collect remaining verifications for 
my part 

Work on mock demo 
-insulate project and put in chassis 
-Collect remaining verifications 
for my part 

Dec 6th- 13th -Continue to work on Presentation 
-Present 
-Do my parts of final report 
including conclusion, block 
diagram, cost, hardware system 

-Final Presentation 
-Final Paper 
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Appendix C Complete DSP Code in C/Arduino 
 

#define GUITAR_NOTE_COUNT 49 
#define FREQUENCY_MULTIPLIER 0.9666 
 
#include <Audio.h> 
#include <Wire.h> 
#include <SPI.h> 
#include <SD.h> 
#include <SerialFlash.h> 
 

AudioInputAnalog         adc1;           //xy=291,153 
AudioSynthWaveform       waveform4;      //xy=298,573 
AudioSynthWaveform       waveform3;      //xy=304,524 
AudioSynthWaveform       waveform2;      //xy=305,470 
AudioSynthWaveform       waveform1;      //xy=306,422 
AudioAnalyzePeak         peak1;          //xy=538,517 
AudioMixer4              mixer1;         //xy=579,381 
AudioAnalyzeNoteFrequency notefreq1;      //xy=627,155 
AudioMixer4              mixer2;         //xy=774,253 
AudioOutputPT8211        pt8211_1;       //xy=955,293 
AudioConnection          patchCord1(adc1, notefreq1); 
AudioConnection          patchCord2(adc1, 0, mixer1, 0); 
AudioConnection          patchCord3(adc1, peak1); 
AudioConnection          patchCord4(waveform4, 0, mixer2, 1); 
AudioConnection          patchCord5(waveform3, 0, mixer1, 3); 
AudioConnection          patchCord6(waveform2, 0, mixer1, 2); 
AudioConnection          patchCord7(waveform1, 0, mixer1, 1); 
AudioConnection          patchCord8(mixer1, 0, mixer2, 0); 
AudioConnection          patchCord9(mixer2, 0, pt8211_1, 0); 
 
void setup() { 
  // put your setup code here, to run once: 
  AudioMemory(100); 
  notefreq1.begin(0.15); 
 
  waveform1.begin(WAVEFORM_SINE); 
  waveform1.amplitude(0.1); 
  waveform1.frequency(50); 
  waveform1.pulseWidth(0.15); 
 
  waveform2.begin(WAVEFORM_SINE); 
  waveform2.amplitude(0.1); 
  waveform2.frequency(50); 
  waveform2.pulseWidth(0.15); 
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  waveform3.begin(WAVEFORM_SINE); 
  waveform3.amplitude(0.1); 
  waveform3.frequency(50); 
  waveform3.pulseWidth(0.15); 
 
   
  waveform4.begin(WAVEFORM_SINE); 
  waveform4.amplitude(0.1); 
  waveform4.frequency(50); 
  waveform4.pulseWidth(0.15); 
 
  mixer1.gain(0, 5); 
  pinMode(2, INPUT);  
  pinMode(4, INPUT); 
  pinMode(6, INPUT); 
  pinMode(8, INPUT);  
  pinMode(10, INPUT);    
   
 
} 
 
void loop() { 
  // put your main code here, to run repeatedly: 
float guitar_notes[GUITAR_NOTE_COUNT] = {82.41, 87.31, 92.50, 98.00, 103.8, 110.0, 
116.5, 123.5, 
 130.8, 138.6, 146.8, 155.6, 164.8, 174.6, 185.0, 196.0, 207.7, 220.0, 233.1, 246.9, 
  261.6, 277.2, 293.7, 311.1, 329.6, 349.2, 370.0, 392.0, 415.3, 440.0, 466.2, 493.9, 
 523.3, 554.4, 587.3, 622.3, 659.3, 698.5, 740.0, 784.0, 830.6, 880.0, 932.3, 987.8, 
  1047,  1109,  1175,  1245 , 1319};  
 
   int wave_style_continuous = digitalRead(2); 
   int major_minor = digitalRead(4); 
   int octave_on = digitalRead(6); 
   int third_on = digitalRead(8); 
   int fifth_on = digitalRead(10); 
 
//   if(wave_style){} 
 
   
  if (peak1.available()) 
{ 
    float peakv = peak1.read(); 
 
    waveform1.amplitude(sqrt(10000*peakv)); 
    waveform2.amplitude(sqrt(10000*peakv)); 
    waveform3.amplitude(sqrt(10000*peakv)); 
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       if (notefreq1.available()) 
{ 
 
         
        float target_freq = notefreq1.read(); 
 
        float prob = notefreq1.probability(); 
 
       float note = bin_search(guitar_notes, 0, 48, target_freq * 
FREQUENCY_MULTIPLIER); 
 
        if (!wave_style_continuous){ 
          if (target_freq < 80){target_freq = 82;} 
          if (target_freq > 1400){target_freq = 1350;} 
          } 
        else{note = target_freq;} 
        
 
         
        if(octave_on){waveform1.frequency(note * 0.5);} 
        else{waveform1.frequency(0);} 
         
        if(fifth_on){waveform2.frequency(note * 1.49831);} 
        else{waveform2.frequency(0);} 
      
        if(third_on){ 
          if(!major_minor){ 
            waveform3.frequency(note * 1.18921);  
            waveform4.frequency(note * 1.782);  
            } // minor 
          else{ 
            waveform3.frequency(note * 1.25992); 
            waveform4.frequency(note * 1.888); 
            } //major 
          } 
         else{waveform3.frequency(0);} 
  
         
        Serial.printf("Frequency:%3.2f | Note:%3.2f | Probability: %.2f | PeakIn: 
%.5f\n",target_freq, note, prob, peakv); 
     }  
 
      
 
   } 
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} 
 

float bin_search(float *arr, int start_idx, int end_idx, float search_val) { 
 
   if( start_idx == end_idx ) 
      return arr[start_idx] <= search_val ? arr[start_idx] : arr[start_idx]; 
 
   int mid_idx = start_idx + (end_idx - start_idx) / 2; 
 
   if( search_val < arr[mid_idx] ) 
      return bin_search( arr, start_idx, mid_idx, search_val ); 
 
   float ret = bin_search( arr, mid_idx+1, end_idx, search_val ); 
   return ret == 0 ? mid_idx : ret; 
} 
 

  
 
 


