
Affordable Analog Synthesizer

By

Breanne Warner

Michael Jamrozy

Yash Bhushappaga

Final Report for ECE 445, Senior Design, Fall 2021

TA: Feiyu Zhang

8 December 2021

Project No. 18

Contents
1. Introduction 3

1.1 Problem and Solution 3

1.2 High level Requirements 3

1.3 Summary 3

2 Design 4

2.1 Block Diagram 4

2.2 Physical Design 4

2.3 Module Descriptions: 5

2.3.1 Microcontroller 5

2.3.2 Voltage Controlled Oscillator 5-6

2.3.3 Voltage Controlled Filter 6-7

2.3.4 Voltage Controlled Amplifier 7-8

2.3.5 Envelope Generator 8-9

2.3.6 Low Frequency Oscillator 9

3. Design Verification 10

3.1 Synthesizer Verification 10

3.2 Microcontroller Verification 10

3.2 Microcontroller Verification 10

4. Costs 11

4.1 Parts 11

4.2 Labor 11

5. Conclusion 11-12

5.1 Accomplishments 12-13

5.2Uncertainties and Future work 13-14

5.3 Ethics and Safety Considerations 14-15

References 16

Appendix A Requirement and Verification Table 16-18

Appendix B Arduino Code 19

Appendix C PCB Design 20

2

1. Introduction

1.1 Problem and Solution
After analyzing the build costs and average market value, our team realized that music synthesizers are

extremely expensive making them unreasonable to buy for a lot of individuals. There exist people who

are interested in creating music using synths but may not be able to do so because of budget

restrictions. The objective of the project is to create an affordable analog synthesizer. Also, According to

Technavio, “the music synthesizers market is poised to grow by USD 62.90 million during 2021-2025,

progressing at a CAGR of over 2% during the forecast period” [10]. Being able to create an affordable

model holds values with the growth in market and demand for music synthesizers, as well as

documentation for the homemade solution that we make.

Creating the synthesizer from scratch and utilizing cost analysis to obtain cheaper parts will help

implement an effective and cost effective product which will meet the demands for an affordable music

synthesizer.

1.2 High Level Requirements
1. To produce sounds using sawtooth wave and square wave with a controllable duty cycle. To be

able to recreate the following kinds of effects: tremolo (variations in volume), vibrato (variations

in pitch), sweeping cutoff filter, and resonance.

2. Produce the correct pitches for at least 24 consecutive keys, from the MIDI keyboard centered

around A4 (440Hz) being able to produce sounds between 220 Hz and 880 Hz [9].

3. Have the ability to read key inputs from a file containing a sequence of key events on an SD card

and play them back through the synthesizer as if they were notes being played on the keyboard.

1.3 Summary
We looked at many early analog synthesizers as inspiration for our design, especially the Minimoog. This

creates sounds using a technique called subtractive synthesis, where oscillators produce a wave with

frequency corresponding to the key being pressed. These waves are typically rich in harmonics, like

square waves and sawtooth waves, and then they go through a low pass filter, hence the name

‘subtractive synthesis.’ The wave is also shaped by an envelope generator for amplitude and cutoff

frequency. This makes it possible to produce a sound which, for example, starts off with higher

harmonics that decay as the note is held, mimicking some acoustic instruments. Additionally, various

control voltages can be modulated by a low frequency oscillator, such as the cutoff of the filter or the

frequency of the oscillator. In our design we attempted to recreate the oscillator, low pass filter,

amplifier, envelope generator and low pass filter, and use a microcontroller to receive input from an

external MIDI keyboard or SD card.

3

2 Design

2.1 Block Diagram

Figure 1: Block Diagram for All Modules Combined

2.2 Physical Design

Figure 2: Box with PCB inside it

4

2.3 Module Descriptions

2.3.1 Microcontroller

The microcontroller is part of the MIDI module and is mainly used to interface with the external MIDI

keyboard and SD card and DAC. It’s purpose is to receive the MIDI messages and produce a voltage on

the DAC, ranging from 0 to 5V, that corresponds with the frequency of the note. The DAC and SD card are

connected through SPI pins, and the ISP programmer is also connected to the SPI bus. The MIDI

connector connects to the ATMega through it’s UART pin. An opto-isolator (in this case the 6N138) is

required to get a UART signal from the MIDI connector [6].

Figure 3: MIDI Input to UART

2.3.2 Voltage Controlled Oscillator
The voltage controlled oscillator is designed to create a complex waveform whose frequency follows an

exponential curve with the input voltage. In this way, a control voltage of 2.5 would result in 440 Hz, the

A4 note, and every 100 mV increase would increase the frequency by a half step (difference between

two consecutive keys on a keyboard). The waveform is a mixture of a sawtooth and square wave with a

ratio controllable by a potentiometer. The VCO design works by using an exponential voltage-to-current

sink [4], which is then integrated by an op amp to produce a ramp up [5]. Once this reaches 5V, a

transistor allows the capacitor to discharge, resetting the voltage back to zero and marking the end of

one period. A square wave is generated from the sawtooth with an op amp used as a comparator. This

was a trade-off between using two separate VCOs, like are used in many synthesizers we used as

inspiration, and increasing the complexity of the design. Our design has the limitation that both

5

waveforms have the same frequency, while in real synthesizers it is often possible to change the relative

pitch between the oscillators to produce various intervals.

Figure 4: VCO Schematic

Figure 5: VCO Simulation

2.3.3 Voltage Controlled Filter
The VCO’s output waveform then gets filtered by a low pass filter with resonance. Our design is based on

the Moog Ladder Filter patent [3], where the control voltage changes the bias current to some

transistors which affect the filter’s cutoff frequency. Resonance is achieved by using the output as

negative feedback, and the amount of resonance is controlled by a potentiometer. To generate the bias

current, the same exponential voltage-to-current sink is used as in the VCO.

6

FIgure 6: Frequency Response of VCF with Increasing Control Voltage, Maximum Resonance

2.3.4 Voltage Controlled Amplifier
The filtered waveform then is amplified by the voltage controlled amplifier. The control voltage comes

mainly from the envelope generator, which triggers whenever a key is pressed. This voltage creates a

bias current to a differential pair of transistors, which controls their gain. Then op amps are used to

convert the differential signal to a single-ended signal. Our VCA design isn’t perfect, and the control

voltage has a limited range where it is good, so we planned to keep our inputs within this range. This is

because the collectors of the transistors are very close to 12V when the bias current is small, and the op

amps don’t work very well so close to their supply voltage.

7

Figure 7: VCA. Blue: Control Voltage, Red: Output

2.3.5 Envelope Generator
We implemented an ADSR envelope generator, which stands for attack, decay, sustain and release.

Attack is how long it takes the envelope to reach its maximum value once the key is pressed, decay is

how long it takes for it to drop down to the sustain level, and release is how long it takes to drop to zero

once the key is released. We implemented the envelope generator using comparators and some logic

gates to determine which of the ADSR stages it is currently in, and this signal gets integrated to produce

a linear ramp. Potentiometers for the various stages allow for changing the integrated voltage, making it

possible to control the timing of the various stages.

8

Figure 8: Envelope Generator. Red: Trigger, Blue: Output

2.3.6 Low Frequency Oscillator
The low frequency oscillator is intended to be used as a modulating input to the various control voltages

in the other subcircuits. We implemented it with a simple 555 timer circuit, taking the output from the

charging and discharging capacitor to give something close to a triangle wave. A potentiometer controls

this charging speed, thus changing the frequency. The output is then shifted to be centered around 0V

and then the signal goes to the four modulating inputs we included in our design.

Figure 9: LFO Expected Output

9

3. Design Verification
Unfortunately we did not get most of our original design working as specified by the verification in

Appendix A. These verifications for the synthesizer subsystem mainly involve viewing the signal through

an oscilloscope and checking that it matches with the simulated plots seen above. We did however get a

few parts to work, which will be explored next.

3.1 Synthesizer Module
Refer to the Requirements and Verification table in Appendix A.1 for the Synthesizer module. The

verification that was able to be demoed is the output of the Low Frequency Oscillator (LFO). The voltage

controlled oscillator, VCO, input for the LFO was simulated using the oscilloscope. As referenced in the

design, the LFO takes in the VCO output. During the build the VCO output was not transmitting which led

the team to building a VCO output simulation on the breadboard to then create the expected output

from the LFO as seen below.

Figure : Oscilloscope Output from LFO

3.2 Microcontroller Module
Refer to the Requirements and Verification table in Appendix A.2 for the microcontroller module. In

order to test the microcontroller, we probed the output from the DAC to see if there was an output. The

DAC was able to output 1V and 3V. Also, to signify that the microcontroller was programmable we wrote

a program that would have a blinking light display to show that the program was loaded to the

microcontroller, refer to Appendix B.

3.3 Power Module
Refer to the Requirements and Verification table in Appendix A.3 for the microcontroller module. To test

the power module we were able to use the power supply with +12V and -12V as well as +5V and -5V. The

power supply for the synthesizer module was verified by probing the power supply and the readings

were accurate.

10

4. Costs

4.1 Parts
Table 1. Parts List

Item Unit Cost Quantity Total Cost Manufacturer

100k Potentiometer $0.86 20 $17.20 Adafruit

10k Potentiometer $0.95 2 $1.90 Adafruit

Knobs $0.45 20 $9.00 Adafruit

Power Switch (DPDT) $1.25 1 $1.25 Adafruit

Switch (speaker,
SD/Keyboard) $0.64 2 $1.28 Mouser

Button $0.95 2 $1.90 Adafruit

Speaker $1.95 1 $1.95 Adafruit

Power Supply $14.95 1 $14.95 Adafruit

DC Barrel Jack $0.95 2 $1.90 Adafruit

Audio Jack $0.68 1 $0.68 Mouser

MIDI Connector $1.75 1 $1.75 Mouser

SD Connector $1.95 1 $1.95 Sparkfun

TMA 5V Switching
Regulator $4.50 1 $4.50 Mouser

ATMega328 $2.58 1 $2.58 Digikey

DAC (MCP4921) $2.58 1 $2.58 Mouser

Quad Op Amp (TL074) $0.75 18 $13.48 Mouser

Optoisolator (6N138) $0.80 1 $0.80 Digikey

Diodes (1N914) $0.10 10 $0.97 Mouser

NPN BJT (BC547) $0.18 20 $3.50 Mouser

Quad NAND (74HC00) $0.55 2 $1.10 Mouser

Voltage Comparator
(LM311) $0.53 3 $1.59 Mouser

3.3V Regulator
(LM1117) $0.60 1 $0.60 Digikey

N-channel JFET (J111) $0.41 3 $1.23 Mouser

ISP Programmer
Headers $0.46 1 $0.46 Digikey

11

MTA 100 2-pin
connector $0.14 15 $2.09 Digikey

MTA 100 3-pin
connector $0.18 15 $2.72 Digikey

WM4200 2-pin header $0.16 15 $2.39 Digikey

WM4201 3-pin header $0.22 15 $3.35 Digikey

4.2 Labor
In order to analyze the fixed labor costs for having a three person team, it was estimated based
off of an average UIUC ECE graduate makes per year in 2021. According to The Grainger
College for Engineering ECE graduates in 2018-2019 starting salaries average $91,781/year [2]
based on 40 hour work weeks on average. Breaking this down into hourly wage of $44.16/ hour
on average, and the expectation for the team will be that each person commits at least 10 hours
a week to this course.

3 𝑡𝑒𝑎𝑚 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 × $44. 16/ℎ𝑜𝑢𝑟() × 10 ℎ𝑜𝑢𝑟/𝑤𝑒𝑒𝑘 𝑥 10 𝑤𝑒𝑒𝑘𝑠 𝑥 2. 5 = $33, 120

The total cost is calculated by combining the labor cost as well as how much the total is for the
parts being used. The total amount for all the parts is $99.63 thus the total amount is:

 $33, 120 + $99. 63 = $33, 219. 60

5. Conclusion

5.1 Accomplishments
Upon testing the design utilizing the original PCB and realizing that the PCB orders would not suffice for

the expected output a new version of the project was created in order to meet our high-level

requirements. We utilized a Raspberry Pi which generated audio samples in real time and played them

through an external speaker. We did not succeed in connecting it to a MIDI keyboard, so we instead used

a standard keyboard where one row of keys simulated one octave of a piano keyboard, and the bottom

row of keys controlled some of the effects that were originally intended to be set with potentiometers.

When connected to a monitor, these controls are displayed as well as debug information we used while

programming. The Raspberry Pi boots from an SD card, so this gave us an easy way of meeting our

original requirement to play songs from the SD card, which we implemented. They are stored as text files

with a sequence of notes specified by duration, note and octave. For example “8F4” represents an eighth

note F sharp (capitals indicate sharp) note in the fourth octave, and a file contains many such words

separated by whitespace. This version of the project utilizing the Raspberry Pi is very compromised; it is

not analog like we wanted, there is some delay between pressing a key and hearing it, the use of a

computer keyboard is not ideal, it takes a long time to start working because of the boot time, it only

works with an external speaker, and the kinds of sounds we could get from it were fairly limited. It

12

sounded more like an old video game than what we had anticipated, though this likely could have been

fixed with a better program. However, it can produce basic waveforms at the pitch corresponding to the

key being pressed, shape the waveform with an envelope, filter them with a low pass filter, and play back

notes from an SD card, so it mostly met our high level requirements.

We also managed to get some parts of our original design working, mainly the low-frequency oscillator,

the power subsystem and parts of the microcontroller. We could successfully program the

microcontroller and output voltages between 0-5V through the DAC. We also built a wooden case to

contain our PCBs.

5.2 Uncertainties
Looking into the future of the project, there are many things that could be improved upon and additional

work added on. First, the overall PCB design would need to be improved. The reason for splitting up our

original PCB design was to accommodate for the size constraints when ordering PCBs through the school.

There was not enough room on one 10cm by 10cm PCB to fit all the necessary components and

connections on one board. Even after splitting it between three boards the components were very close

together, which made troubleshooting difficult, and since we needed power and signal wires running

between the PCBs they became very difficult to manage. We had intended to use four types of MTA

connectors (3 pin male/female and 2 pin male/female) for connecting potentiometers to the board and

connecting wires between boards, but we either forgot to order two of these kinds or misplaced them,

forcing us to solder wires directly to the board. This also made the PCBs very difficult to manage because

now connections couldn’t be easily detached. This leads into another uncertainty about if this had an

affect on the performance of the PCB. For example, each component was very close together which may

have created issues with connectivity between parts as well as it being difficult to debug. The future

project work would be to redesign and simplify the synthesizer module, exploring different ways to

create square, triangle and saw-tooth waves. This could include cutting down on the size of the design,

only using one PCB, or even using a DSP chip to assist in the production of sound.

This was our first time using KiCAD and designing a PCB, and the PCB turned out to be complicated and

divided among three boards. It is not that surprising then that we found errors in our PCB layout. For

example, when troubleshooting our voltage-controlled oscillator we discovered that two pins which

should have been connected, the output of an op amp and a resistor, were not. In our schematic they

were connected, but somehow we missed connecting them in the PCB editor and didn’t notice any

issues. We soldered a wire between these pins which fixed this one specific issue, but still the VCO as a

whole didn’t work and there were likely other issues in the PCB. We did not have the time to go through

every part of the design and find all possible errors.

One uncertainty of the project is the power supply. The power supply we chose is very noisy which

causes a peak to peak voltage difference of 300mV. While there were many expensive power supplies

with +12V and -12V, we needed to buy a cheap one to stay on budget, and we forgot to consider noise

when purchasing it. A 100mV change to the VCO input causes a different note to be played, so 300mV

peak-to-peak noise would have been unacceptable, and we observed noise in the power supply causing

13

noise on this input. It might be necessary to pay the high price for a good power supply in order to have

a usable analog synthesizer.

Additionally, there was uncertainty in some of the components we used. We planned to use a switching

5V regulator, but it wasn’t working in our PCB and when we tested it on its own we couldn’t seem to get

it working. We probably were connecting it wrong, but still it wasn’t clear from the datasheet how it was

supposed to be connected. This wasn’t a major issue because we had a linear voltage regulator as a

backup, but we had a similar issue with the 6N138 optoisolator, used for MIDI input. There is an official

reference schematic using an opto-isolator for getting UART from MIDI [6], but the particular component

used there is obsolete and we could not buy it. Instead we used a modern optoisolator, but we had

difficulty figuring out how to use it. In the end our MIDI input wasn’t working and although we didn’t

find out the specific issue, it was likely a problem with how we connected the 6N138 in our schematic,

since we ended up making an educated guess on how to use it and that probably was wrong.

5.3 Future work
If we were to work on this in the future, we would focus on getting the PCB right. We would use only one

large PCB, and we would place the components in a more ordered and logical way and add more space

between the components to make troubleshooting easier. This would also make placing the traces much

easier, and it would probably help us catch issues like missing traces. Additionally, we would build out

our circuit designs on a breadboard first, before ordering the PCB, to make sure our designs for the MIDI

input and synthesizer subsystem are working. We tried doing this, but it was taking up too much time

and the PCBs were already ordered so there wasn’t much we could do if we found out the design didn’t

work at this stage. We would also make sure to buy a better, less noisy power supply.

5.2 Ethical considerations
In the planning stages of the project, and after reviewing IEEE Code of Ethics document,
section 7, we did not perceive there to be a privacy risk of data or information that is stated in
the first statement of the IEEE Code of Ethics. We did not use any user specific data in the
design and therefore no user security was at risk or needed to be protected. In section 1.5 the
ethics document specifies that it is a professional's opportunity to acknowledge and correct
errors [1]. Throughout the process of designing and building, the team was able to uphold this
and work towards effectively debugging to correct errors that we came across. For example, we
ensured that we went through verifying why something would not work if we could not fix it in
time for the final demo. Also, in the design stage, we planned to uphold the code detailed in the
ACM Code of Ethics and Professional Conduct [7]. Specifically, ACM states in Section 2,
Professional Responsibilities, professionals working should ensure that they are creating high
quality work and communicating with either stakeholders or team for transparency. We were
able to uphold and maintain this while developing the project as the team communicated with
each other when there were issues or when a new direction for the project was proposed and
made. It was important to do so so that the team was always aware of any design changes and
challenges.

14

Also, in regard to ethics at a design level, many books and other resources exist for our project
to explain the circuits in synthesizers, and our project has been implemented before.
Schematics of many old synthesizers can be found easily online. Some particular circuits have
also been patented, though most of these patents are old and have expired, such as the patent
for the Moog ladder filter [3]. If we use any designs from some reference material, patent or
schematic, we will need to first make sure that we can legally use it and then reference where it
came from.

15

References
[1] "IEEE Code of Ethics", ieee.org, 2016. [Online]. Available:

http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 15- Sep- 2021].

[2] Grainger College of Engineering, “2018-2019 Illini Success Survey Outcomes*
UNDERGRADUATE STUDENTS,”
https://ecs.engineering.illinois.edu/files/2020/04/UG-ECE-2018-2019.pdf. [Online].
Available: https://ecs.engineering.illinois.edu/files/2020/04/UG-ECE-2018-2019.pdf.
[Accessed: 22-Sep-2021].

[3] R. A. Moog, “ Electronic high-pass and low-pass filters employing the base to emitter diode
resistance of bipolar transistors,” United States Patent 3475623A, Oct. 28, 1969.

[4] A. Lanterman, “Exponential Voltage-to-Current Conversion & Tempco Resistors,” in
ECE4450 (Analog Circuits for Music), 5-Apr-2021.

[5] H. Chamberlin and H. Chamberlin, “Basic Analog Modules,” in Musical applications of
microprocessors, Indianapolis, Indiana: Hayden, 1987, pp. 177–220.

[6] B. J, “ MIDI Tutorial ,” MIDI tutorial. [Online]. Available:
https://learn.sparkfun.com/tutorials/midi-tutorial/hardware--electronic-implementation.
[Accessed: 27-Sep-2021].

[7] “The code affirms an obligation of computing professionals to use their skills for the benefit
of society.,” Code of Ethics. [Online]. Available: https://www.acm.org/code-of-ethics.
[Accessed: 15-Sep-2021].

[8] “AnalogWrite,” analogWrite() - Arduino Reference. [Online]. Available:
https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/.
[Accessed: 28-Sep-2021].

[9] Note names, MIDI numbers and frequencies. [Online]. Available:
https://newt.phys.unsw.edu.au/jw/notes.html. [Accessed: 30-Sep-2021].

[10] Technavio, “Global music SYNTHESIZERS MARKET: 48% growth to emerge from North
America DURING 2021-2025: Technavio,” Global Music Synthesizers Market | 48%
Growth to emerge from North America During 2021-2025 | Technavio, 21-Apr-2021.
[Online]. Available:
https://www.prnewswire.com/news-releases/global-music-synthesizers-market--48-growt
h-to-em erge-from-north-america-during-2021-2025--technavio-301273258.html.
[Accessed: 15-Sep-2021].

16

https://learn.sparkfun.com/tutorials/midi-tutorial/hardware--electronic-implementation
https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/

Appendix A Requirement and Verification Table
Table 1 Synthesizer System Requirements and Verifications

Requirement Verification Verificatio
n status
(Y or N)

1. Voltage-controlled oscillator, with

a voltage input from 0-5V,

produces square and saw waves

with frequency dependent on

input voltage..

a. Probe sawtooth and square wave
wires, check that they look good on
the oscilloscope. Increase control
voltage from 0 to 5V and verify that
frequency increases.

N

1. A mixer combines the outputs of

the two oscillators into any ratio.

a. View the oscilloscope as the

potentiometer is turned, verify that

square and sawtooth are mixed.

N

1. Low-pass filter with controllable

cutoff and resonance. The cutoff is

voltage-controlled within a range

of 0 to 5 volts. Resonance is

controlled simply by a variable

resistor which adjusts the

feedback into the filter.

a. Verify that the voltage controlled
cutoff works: Connect the input of
the filter to the VCO’s square wave.
View the output of the filter on an
oscilloscope. Sweep the cutoff
control voltage, and make sure the
resulting square wave becomes
smoother as the cutoff decreases.

b. Now keep the voltage fixed and vary
the resonance to the filter. Check to
see that the resonance appears on
the oscilloscope. On the
oscilloscope, resonance appears as
ripples after steep transitions.

N

1. When the trigger line goes high,

the envelope starts increasing

(attack phase), then decreases

during the decay, then stays at a

constant sustain level, and then

drops to around 0V during the

release phase after the trigger

goes low.

a. Connect the output of the envelope
generator to the oscilloscope and
program the microcontroller to set
the trigger signal every few seconds.
Verify that oscilloscope output is as
expected from the simulation, and
see that turning the potentiometers
affects attack, decay, sustain and
release time.

N

1. The voltage controlled amplifier
has two inputs, the audio signal
coming from the filter as well as
the amplitude envelope from the
envelope generator. The envelope
controls the gain of the amplifier.

a. Get the input signal from the VCO’s
square wave, and vary the control
voltage. Check that as it increases
the amplitude on the oscilloscope
increases and as voltage decreases
the amplitude decreases.

N

17

1. The low frequency oscillator will
generate a triangle wave from
about 1 Hz to 20 Hz. It’s output will
be in the range from -2V to 2V. It
can be used to modulate other
parameters of the synthesizer in
varying amounts.

a. Verify that the waveform is a triangle
wave with the oscilloscope and that
its frequency changes as the
potentiometer is changed.

b. Connect the synthesizer output to a
speaker. Verify that for each knob
(volume, pitch, filter cutoff, square
wave duty cycle), turning it increases
the modulation of that particular
sound.

Y

Table 2 MIDI System Requirements and Verifications Table

Requirement Verification Verificatio
n status
(Y or N)

1. Microcontroller can be
programmed from ISP headers

a. Program some test code to blink the
LEDs, upload it and check that it
works.

Y

1. Microcontroller can receive inputs
from the external MIDI connector.

a. Probe the UART input pin on the
ATMega. Verify that when a key
on the keyboard is pressed, there
is some digital data being sent to
the microcontroller. This verifies
that the MIDI to UART circuit
works.

b. Write code using the Arduino
MIDI library to light and LED
whenever a key is pressed, and
turn it off when no key is pressed.

N

1. Microcontroller can output a
specific voltage onto the DAC
(MCP4921) over the SPI lines. This
voltage

a. First, verify that communicating
with the DAC works. Write a
program that toggles the voltage
between two arbitrary values (e.g.
1V and 3V) every second. Verify
this is working by probing the
DAC output with a multimeter.

b. Combine this with the MIDI library
so that output voltage
corresponds with the key
pressed. A4 should result in 2.5V
and every key up or down from
there increases or decreases
voltage by 100 mV. Check with a

Y

18

multimeter while holding down
various keys.

1. The microcontroller can read
data from an SD Card.

a. Upload a test program using the
SD library to blink LEDs. It should
read a text file on the card, and
every ‘1’ character turns the LED
on while ‘0’ turns it off. Put some
test code onto

b. Update the code so that it reads
key inputs from the file and
outputs correct voltages to the
DAC. Verify by listening to the
output.

N

Table 3 Power and Output Requirements and Verifications Table

Requirement Verification Verificatio
n status
(Y or N)

1. Power system provides +12, -12
and Ground to the circuit within
0.1V.

a. Check power levels with the
multimeter. For noise, view the
signal with an oscilloscope and
measure peak-to-peak noise
variations.

Y

1. Produce 5V from the 12V input for
use by the microcontroller.

a. Verify with a multimeter. Measure
between ground and the 5V
output, and check that it is indeed
5V.

Y

1. Produce 3.3V from 5V for use by
the SD card.

a. Verify with a multimeter like
above but with 3.3V.

N

1. Output is audible with an external
speaker.

a. Plug in an external speaker to the
line out and verify it sounds like
the audio signal.

Y

1. Output is audible with the built-in
speaker.

a. Listen and make sure it sounds
like the audio signal.

N

19

Appendix B Arduino Code (microcontroller without MIDI)

Appendix C PCB Design
PCB Board 1 PCB Board 2

PCB Board 3

20

