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Abstract
The “Advanced Interface Box for Solar Panels” is a monitoring system that has been designed for the 60
research solar panels on the Electrical and Computer Engineering Building (ECEB) roof. The primary
goal of this design is to provide researchers and ECEB personnel remote access to real-time solar panel
data, as well as options to configure panel monitoring sections, to allow for research studies and safe
monitoring. This design also keeps in mind the need to ensure safety by checking thresholds indicating
overvoltage, overcurrent, or overheating in order to prevent disastrous failures or collateral damage to the
building and/or solar panels. This solution contains a remote user interface (“Research Hub”) to allow for
ECEB personnel to access the solar panel data and also edit system configuration and monitoring settings
of solar panels, all of which are implemented wirelessly to allow for scalability and practicality. The
device was successfully designed, tested, and implemented, but the complete integration was not
successful in a stand-alone setting.
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1 Introduction
This report details the design, implementation and verification behind the “Advanced Interface Box for
Solar Panels” project. This interface box is meant to observe solar panel data from the roof of the ECEB
and wirelessly update the same on an external server and portal (“Research Hub”), while also being able
to receive configuration settings for monitored panels. In the end, the device was successfully designed,
tested, and implemented, but the complete integration was not fully successful in a stand-alone setting.

1.1 Problem Statement

There are 60 solar panels on top of the ECEB building, currently used for research, which are not
producing any power as of now and can potentially be integrated into the power grid. Additionally, they
are not adequately monitored at the moment and this poses a large hazard, especially considering there are
no protection interfaces between the panels and their connections to the distribution box.

In the Fall 2019 semester, a team of students was able to create an interface which was able to display a
single panel's voltage and current, but the solution could not be scaled up to interface with multiple panels
as is required [1]. Each solar panel was directly connected to an ethernet cable that would only allow for
the display of that particular solar panel onto a remote display. Not only was this a physical impracticality
due to the ethernet cables, there was also no way to collectively display the data of multiple solar panel’s
parameters onto a singular remote display. The solar panels also have designated box mounts (Attabox)
which also gives us a constrained size (8 x 6 x 4 inches) in which our solution must fit in..

1.2 Solution Overview

Our solution is to design a smart interface box for these panels to allow for large-scale system behavior
and output monitoring, as well as to support panel up-keep, to prevent any potential disasters like fires
from occuring. The goal of our project is to monitor and maintain the research solar panels. We also plan
to interface with multiple solar panels to produce a single wireless gateway of information that feeds into
a visually attractive remote access portal for observation and access to research panel data. In addition, it
will also provide a means to control the solar panel’s configuration.

The system will have a 12-volt isolated power supply in order to provide power to the microcontroller and
other respective components. The power generated by each monitored solar panel will run through our
smart interface box, giving us the ability to detect overvoltage and overcurrent conditions and disconnect
the panels if necessary to prevent hazardous situations. Other features of the box will include
reconfigurable tapping to allow users to determine which solar cells are being observed. The various
configurations are determined through a relay subsystem where we are able to output a set number of
solar cells (32-cell output, 64-cell output, and 128-cell output) for researchers conducting experiments on
solar panels. For example, choosing a 128-cell output will produce more voltage than the 32-cell output
configuration [2]. This is due to the fact that the surface area of the solar panels used to capture the
sunlight is larger therefore, producing more power. This configuration of solar panels is controlled
through a wireless interface, allowing users to configure and monitor the solar panel remotely through an
external server/portal.
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1.3 Visual Aid

Figure 1 below is a visualization of how our solution would fit into the existing layout for solar panels:

Figure 1: Diagram of the connections between different components of our solution

1.4 High-Level Requirements

1. Record 3 key solar panel parameters at the interface box level: (Variations in reading these values
is due to the nonlinear nature of the microcontroller’s ADC pins)

a. Voltage – Accurately monitor the voltage of the relay output within an error range of ±
300 mV [3]

b. Current – Accurately monitor the current of the relay output within an error range of
1.5% [4]

c. Temperature – In ranges of -10°C to +85°C, expect ± 0.5°C accuracy [5]

2. Wireless communication capability with interface box through a remote external access portal
that shows researchers intuitive visualizations of obtained solar panel data for observation as well
as configuring which section of the solar panel is being monitored.

3. Scalability – capability of interface box retrieving data and communicating with more than one
solar panel. Starting with one solar panel and interface box, we want to be able to show scalability
to a set of two solar panels and their corresponding interface box.

The above high-level requirements directly fall in line with our project’s overall purpose. Measuring the
key solar panel parameters is critical to support research endeavors with ECEB’s solar panels, as well as
monitor the panels for safety reasons. The wireless communication requirements ensure that these
observed values can be shared and observed while also providing configuration options remotely. Finally,
scalability is a key requirement as our final solution should be able to be applied for all 60 of the solar
panels available, something that was not fully met by the previous attempt at this project.
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1.5 Subsystem Overview

Figure 2: Labeled block diagram for an entire Advanced Interface Box system

Our top-level block diagram provides a high-level overview of our four monitoring systems. The power
subsystem’s primary function is to convert a 12-volt external supply and provide 3.3-volt and 5-volt
supply lines to power up various components.
Our monitoring subsystem is responsible for relaying information about the voltage and current
measurements to the ESP32 microcontroller. Within the monitoring subsystem, the ESP32 also dictates
which of the relays are closed to determine which configuration of solar cells the user would like to
measure and output to the load.
The microcontroller subsystem consists of our ESP32 microcontroller as well as our OLED display. The
voltage, current, and temperature readings of the solar panels will be wirelessly  communicated to our
external “Research Hub” access portal through our microcontroller. These same readings will also be
shown on the OLED display mounted inside the Attabox for convenience.
The Research Hub subsystem encompasses the remote access server and online portal to which data will
be sent from monitored solar panels, and also from which configuration settings can be input by the user.
The Research Hub subsystem is implemented wirelessly, has security access protocols in place, and is
designed for scalability.
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2 Design
This section of the report details the planning and design of our project including the four main
subsystems, all additional components, as well as the adjustments we made in the final implementation.

2.1 Subsystem Descriptions

We begin this section by describing the details behind our design process for our four main subsystems.

2.1.1 Power Subsystem

Our power subsystem is driven by an external 12-volt supply that we are able to step-down to power the
individual components and chips that create our smart interface box. This 12-volt supply voltage is
stepped down through two linear regulators to provide 3.3 V and 5 V supplies [6]. The thermocouples and
current sensor require a 3.3 V supply, whereas the OLED, ESP32 microcontroller and ADC converter are
powered with a 5 V supply. Lastly, the darlington array takes in a 12 V input straight from the source [7].
In addition, LEDs are also available on the PCB to indicate whether the 3.3 V and 5 V supplies are
available as shown in Figure 1 in Appendix B.

2.1.2 Monitoring Subsystem

Relays are utilized to configure the number of solar cells that are being monitored by the interface box.
The different configurations of solar cells include 32, 64, and 128-solar cells (refer Figure 8 in Appendix
B). Our relay configuration is composed of 2 main components: the darlington array and three ultra-small
high-voltage DC FTR-J2 series relays [3]. Control signals are outputted from our microcontroller into our
darlington array, which acts as a relay driver between the ESP32 and our relays as shown in Figure 2 in
Appendix B. The outputs of our darlington connect to the electromagnetic side of our relay, which allows
for physical switching to occur to our desired configuration.

Once the desired configuration is determined by the user, the solar output feeds directly into our voltage
divider to step-down the voltage between 0 V and 3.3 V, the acceptable range for our microcontroller’s
ADC pins. In our initial design shown in Figure 4 in Appendix B, the output of the voltage divider is
connected to a MCP3428 16-bit ADC in order to provide galvanic isolation between the voltage of the
microcontroller and the voltage output of the solar panels [8]. This is a safety measure implemented so the
user is not exposed to high voltage in the event that they come in contact with the microcontroller. The
current measurements are obtained through an ACS723 current sensor. This sensor detects the amount of
current that flows through it and outputs a corresponding voltage to our microcontroller. Our current
sensor is also protected with galvanic isolation [9].

On the firmware side, the voltage measurement and the current sensor are routed to the ESP32 through its
ADC pins as shown in Figure 3 in Appendix B. These pins read a “raw value” from which a raw voltage
is calculated using power supply and reference voltage. For the voltage measurement, we simply need to
reverse engineer the input voltage via a voltage division, while calibrating the initially measured and
reverse engineered voltage values (shown in Figure 1 in Appendix C). For the current sensor, we take the
raw voltage and then use the sensor sensitivity to calculate a raw current, which is then also calibrated
(shown in Figure 2 in Appendix C).
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2.1.3 Microcontroller Subsystem

The ESP32 microcontroller we are using is responsible for communicating with our monitoring system to
gather measurements for our smart interface box. Our initial design as shown in Figure 5 in Appendix B,
had the ESP32 taking in voltage readings via the ADC through the I2C bus, current readings directly into
an on-board ADC pin, and temperature readings as a digital signal direct to the ESP32.

The OLED is what displays the latest set of measurements gathered from the panel. It is programmed by
the ESP32 via its I2C bus to display real time solar panel parameters (refer Figure 6 in Appendix B) [10].
The decision to implement an OLED visual display is solely for convenience to observe the solar
parameters on site at each individual smart interface box.

2.1.4 Research Hub Subsystem

An external web-based server system – Research Hub – is set up with two-way wireless communication
with the interface box for easy management of the panels. Only authorized ECEB personnel will have
access to this portal and it is intended for internal use, so the interface will be secured as such. The focus
is on being able to receive and monitor key solar panel data points, as well as porting the in-box switching
capabilities to a remote setting.

The Django framework has been used to manage the front-end webpage and the back-end database
system for managing data from the interface box. The front-end will be scripted in HTML for the visual
structure, while using Python for managing Django applications for different website functionalities. It is
through this Django project that the security/user authentication and navigable routing within the webpage
will also be handled. The wireless capabilities of the Django project have been implemented using the
Django-REST framework which facilitates the two-way communication requirement from the portal’s
end. At the microcontroller (ESP32) level, it has been programmed to act as both a client and an
asynchronous server through the Arduino IDE in order to facilitate the same two-way communication
channel. All of this communication will be done through back-and-forth HTTP protocol (POST) requests.
Appendix D contains flowcharts depicting these parallel functionalities of the software subsystem.

The primary goal of the external portal is data observation. This ensures that the data collected and
reported for monitoring purposes will be stored and presented on the access portal. A web-based access of
the data could also be adapted and provided for public display as well. Data visualization has been
achieved with the Python-based plotly library along with HTML to build it up on a webpage. This is built
on top of the aforementioned Django project, with a dedicated model for each monitored solar panel. This
data is updated in real time from the microcontroller every one minute, allowing for a constant stream of
data. The external portal itself is built with three key functionalities in mind (implemented through the
Django project/applications) – managing multiple solar panels while providing each panel dedicated
pages, handling user authentication, and plotting obtained data for observation and research. At the
microcontroller level we have set fixed thresholds of 40 V, 2 A, and 40ºC past which if measured the
microcontroller forces physical connection to the solar panel (relay configuration) to be closed.

The second goal of this external portal is wireless panel configuration. The objective is to port the
physical switch capability and the microcontroller-based panel section adjustments so as to allow for
remote access. Since these are controlled through the switching subsystem and relays, we process on the
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front-end the three specific configurations to be chosen from and sent through the microcontroller to the
relay system. This will use the same structure as mentioned above, utilizing the Django-REST framework
on the back-end for communication to the microcontroller through HTTP requests, while using Django
forms and views to process user input through GUI.

2.1.5 External Components

We have four additional components that do not fall exactly into any one subsystem but are still critical to
our project. Of these components, the thermocouples are verified as part of the monitoring subsystem.

2.1.5.1 Solar Panels

The solar panels we are using are SPR-425E-WHT-D panels which have a peak power of 425 W ± 5%.
The open-circuit voltage and the short-circuit current are 85.6 V and 6.18 A respectively, and if maximum
power point tracking were to be implemented into our project in the future, the voltage at the maximum
power extraction point (Vmp) would be 72.9 V and the current at the maximum power extraction point
(Imp) is 5.83 A. All these following ratings as specified in the datasheet are under standard test conditions
of 1000 W/m2, AM 1.5, and 25 ºC [11].

Figure 3: Current-voltage and power-voltage characteristics of the solar panel under standard test conditions

2.1.5.2 12-Volt Power Supply

An on-site 12-volt power supply line runs through all 60 solar panels which powers up the components of
our smart interface box. This supply line includes a connection to ground.

2.1.5.3 Thermocouples

A pair of thermocouples will be attached to each solar panel, one at the center of the panel and another at
the edge to capture different temperature readings. The thermocouples utilized are the waterproof
DS18B20 digital temperature sensors. The DS18B20 has a precise 1-wire digital temperature sensor that
connects to the digital pins of our ESP32 microcontroller and gives up to 12-bits of precision with an
onboard digital-to-analog converter as shown in Figure 7 in Appendix B. Each thermocouple has a unique
64-bit ID on the chip allowing us to distinguish between different temperature readings on the software
side even when reading multiple sensors through the same ESP32 pin (as has been implemented) [5].
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2.1.5.4 Passive External Load

The output load of our solar panel is configured by the output of our relays. By driving control signals
from our microcontroller through our darlington array, we decide which cell configuration will feed into
our external load. Our load will consist of entirely passive components and mostly resistive just to
dissipate the power. Once the design can prove that it works as expected, then additional features such as
energy storage, satellite imaging, and the possible integration of power into the grid are all possible
upgrades.

2.2 Supporting Material

Since our final implementation needs to be mountable on the ECEB roof’s solar panels, we have also
planned out the physical details of our enclosure and attaching our box to specific panels.

2.2.1 Mechanical Design and Mounting Diagrams

Figure 4 below provides a visual representation of the box enclosure that we will use on each solar panel:

Figure 4: 3-D visual aid for the box enclosure

2.2.2 Mechanical Design and Mounting Explanation

The mechanical design of our project consists of a weatherproof enclosure. This was one of our design
constraints because these enclosures were purchased for all 60 panels before our team began to work on
this project. Our enclosure constraints are 8 x 6 x 4 inches as referenced from our enclosures datasheet
[12]. This box is to be mounted on the backs of the solar panels on the roof of ECEB as shown in Figure
14. We know this is feasible as this design and mounting process have been implemented on eight of the
60 solar panels that are currently being housed on the roof.
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Figure 5: Mounted Attaboxes on the solar panels on the roof of the ECEB

2.3 Design Alternatives/Adjustments

Throughout the modular testing of our design, there were adjustments to be made in order for our PCB to
function. Starting with our power subsystem, we had to refine our design to make it suitable for fixed
linear regulators instead of adjustable linear regulators due to the components being out of stock. We
made this accommodation by shorting across the resistors that were meant to adjust the output of the
intended linear regulators.

Moving onto our microcontroller subsystem, one of our initial changes to the design was modifying our
enable pin so that the pin was left floating and not tied down to ground as in the initial design. We then
had to move 4 out of 6 darlington control signals due to the fact that they were connected to input-only
pins on the ESP32. When conducting modular testing on our thermocouples, we recognized that we
would only need one GPIO pin to read measurements from both of our thermocouples on the
microcontroller instead of the two pins that were originally planned. Another adjustment that had to be
made to our microcontroller subsystem is the addition of pull up resistors to the SCL and SDA lines of
our OLED – using these resistors allows us to properly communicate with the display.

During the testing of the monitoring subsystem, the communication between the ADC converter did not
function as expected. The ADC was implemented in our design to provide isolation in our circuit
separating the high voltage side of the solar panels from the low voltage side of the microcontroller. When
sending out the opening address byte to the ADC from our microcontroller, as seen in Figure 6 below, the
ADC did not return an acknowledgement bit, therefore it rendered our attempt at communication
ineffective. Because of this, the ADC was omitted from the final design board. In order to measure the
voltage without the utilization of the ADC, the voltage divider output was wired to manually connect to
the input of the ESP32 microcontroller. Separate ground connections then had to be tied together to
receive correct measurements for our voltage and current.
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Figure 6: SDA and SCL waveforms as expected when utilizing the MCP3428 ADC converter

For our relay configuration, while our control signal pins on our microcontroller needed to be adjusted,
our relays and darlington array inputs and outputs did not change during the testing of our PCB. However
to achieve access to all configurations outputting from a solar panel, there needed to be an adjustment
made to our relay arrangement. In our original design, we had control signal 2 as an input into pin 5B of
our darlington array. However it was evident that the outputs of our darlington chip had no connection
between 5C and our relays. Therefore, we changed our configuration in order for control signal 2 to route
to pin 7B, which can then be correctly connected to our relays and achieve switching in Panel_C.

Finally for our external components, a main adjustment in our design was the addition of pull-up resistors
to our thermocouples. Just as in our OLED, these resistors are what allowed our thermocouples to be
registered by our microcontroller. We would also advise as an improvement to use a screw terminal
instead of a pin screw for the isolated 12 V supply in order to accomodate for the 12 V supply line that
can be already found on the roof of the ECEB.
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3 Design Verification
This section of the report details our functional tests and verifications of requirements for each subsystem.

3.1 Power Subsystem

The power subsystem was a critical component of our design because it powered the entire PCB. It
required some initial debugging, but eventually we were able to output 3.3-volt and 5-volt lines accurately
as specified in our requirements (refer Table 1 in Appendix A). The 12-volt output was also within our
tolerance range accounting for the resistivity and losses between copper traces. Figures 7 and 8 below
show the successful results on probing the outputs of this subsystem:

1. 12-volt power rail provides a 12-volt DC input within the range of ± 1% [13]

Figure 7: Providing 12-volt input supply to our PCB and measuring a 11.99-volt output voltage on the multimeter

2. Converts a 12-volt input into a 5-volt DC output within the range of 4.90 V ≤ Vout ≤ 5.10 V

3. Converts a 12-volt input into a 3.3-volt DC output within the range of 3.235 V ≤ Vout ≤ 3.365 V

Figure 8: Providing 12-volt input supply to our PCB and measuring a 4.964-volt and a 3.302-volt output voltage on
the multimeter from the respective regulators

3.2 Monitoring Subsystem

The first requirement of the monitoring subsystem is management of configuration between monitoring
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32, 64, or 128- solar cells by the interface box. The relay subsystem must be able to configure and choose
between the different solar cell configurations: 32-cells (CD), 64-cells (BC), and 128-cells (AD). We were
able to successfully switch between all but one configuration due to the partial functionality of the
darlington array which sustained some damages due to it being initially improperly soldered on our PCB.
Once we realized the mistake and changed our approach, each darlington pair was driving their respective
relays, except for the damaged one (Panel_C) which also affected our ability to measure voltage and
current together because of the inability for that singular solar panel input to be connected to the load.
Figure 9 below shows our successful continuity test to prove our working relay outputs were as expected:

Figure 9: Utilizing a multimeter for a continuity test to ensure that the right panels are connected to the load at
specific configurations

The monitoring subsystem is also responsible for displaying the key measurements of our solar panels,
i.e., voltage, current, and temperature. Starting with voltage, the voltage divider could step down voltages
as high as 85.6 V down to values under 3 volts, which is the maximum voltage input for the ADC pins on
our microcontroller. At the beginning of our PCB testing, we attempted to test our ADC on an isolated
SOIC breakout board using the connection seen in Figure 10 below. As aforementioned (Section 2.3), we
were not able to receive an acknowledgement back from the ADC, meaning that we were not able to
receive an output from the converter, which eventually led to us bypassing the chip.

Figure 10: ADC converter typical connection per datasheet (Rp = 10kΩ)
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But, our voltage divider itself met the requirement that it must be able to step down input voltages within
the ranges of 0 V – 85.6 V and output corresponding voltages within the range of 0 V – 3.3 V [14].
Figures 11 and 12 below show our PCB testing of the same, with the OLED displaying “Meas. Vol”
(calibrated output of the voltage divider), “Real Vol.” (voltage that is scaled up but not calibrated), and
“Adj, Voltage” (calibrated voltage at the load):

Figure 11: Probing a 10-volt supply to the inputs of our voltage divider to measure the voltage

Figure 12: Probing a 25-volt supply to the inputs of our voltage divider to measure the voltage

Moving onto the current sensor, it initially provided amperage with an error of around ± 300 mA but after
calibrating that, we were able to have an error within our tolerance range of 1.5%, hence fully meeting our
measurement and accuracy requirements. Figure 13 below shows the serial monitor output of the ESP32
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when taking current measurements, with print outs of “Raw Value” (analog output), “mV” (corresponding
calculated voltage), and “Amps Adj.” (calibrated current at the load):

Figure 13: Outputs at the microcontroller when probing a 2-Amp supply (left) and a 4-amp supply (right) to the
inputs of our current sensor and measuring them

Finally, the thermocouples were also able to measure a digital temperature and responded accordingly
when introduced to a manual heat signature. We were able to verify that the thermocouples fulfilled their
requirements of measuring values between the range -10°C and 85°C within an accuracy of ± 0.5°C [5].
Figure 14 below shows the serial monitor output of the ESP32 when taking temperature measurements,
with print outs of the actual measurements in degrees Celsius:

Figure 14: Outputs at the microcontroller when receiving thermocouple(s) measurements of ambient room
temperature and the response to introduction of a heat signature; single thermocouple connection on the left and two

thermocouples connected simultaneously on the right

3.3 Microcontroller Subsystem
The first of the microcontroller’s two requirements is emitting high signals to our darlington array, which
acts as a relay driver. Specifically, depending on the configuration we are operating in, the ESP32
microcontroller’s corresponding IO pins must be able to provide a DC output within the range of 2.7 V ≤
Vout ≤ 3.3 V to each Darlington pair [15]. Figure 15 below shows our successful testing of this capability
by wiring the darlington array chip and the relays to LED outputs for verification:
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Figure 15: Proof of ability to switch between different solar cell configurations when the ESP32 outputs high control
signals to 2 darlington pairs

The second microcontroller subsystem requirement is simultaneously displaying the solar parameters that
are received from the thermocouples, current sensor, and voltage divider on the on-board OLED. As
mentioned, full functionality of the relays was unavailable. As the project revolves around measuring the
voltage and current of the distribution box input, the measurements depend on which solar inputs were
connected to the load, and without full switching functionality all measurements couldn’t be taken
simultaneously. To mediate this issue during testing, the voltage and current inputs were manually probed
at the load so the measurements of these values could be observed. Due to the shared inputs of the voltage
divider and the current sensor, this measurement test was broken down in two instances because of the
limited number of outputs from the Keysight DC power supply in the laboratory [16]. Figures 16 and 17
below show the successful display of the OLED on the PCB consistently displaying temperature
measurements while also displaying current and voltage measurement (respectively) depending on where
the DC supply was attached:

Figure 16: Current and temperature measurements displayed on the on-board OLED; the probes on the left are
inputting into our current sensor
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Figure 17: Voltage and temperature measurements displayed on the on-board OLED; the probes on the left are
inputting into our voltage divider

3.4 Research Hub Subsystem
Looking at Table 4 in Appendix A, we can group the six key requirements for the Research Hub
subsystem into 3 pairs, with the first being the requirements that ensure successful interactive user design.
This encompasses both the front-end website being successfully routed between pages and displaying
solar panel data based on security and observation use cases, as well as having working user
authentication on the remote portal that restricts Research Hub access to required ECEB personnel only.
To begin, Figures 18, 19 and 20 below show the functioning login mechanism for the website that the user
faces on accessing the portal:

Figure 18: Landing welcome page of the portal
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Figure 19: Login form and screen

Figure 20: User dashboard with acknowledgement on successful login

Figure 21: Redirected Login page when attempting to access URLs without authentication (compare to Figure 19)
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Furthermore, as seen in figure 21 above, our security measures extend past just the login as it also
successfully restricts unauthorized access to panel data and more. Moving onto the navigation of the
portal itself, Figures 22, 23 and 24 below show the index of monitored panels that serves as the “home”
for observation, along with the dedicated pages for each monitored solar panel:

Figure 22: Panel observation home showing index of monitored panels

Figure 23: Panel-specific page for the first of our 2 monitored panels
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Figure 24: Panel-specific page for the second of our 2 monitored panels

Moving onto our next pair of requirements, we focus on the wireless communication capabilities of both
the Django framework as well as the ESP32 microcontroller, which is central to our project as a whole.
Broadly, the 2 requirements for this are that both the Django project and the ESP32 should be able to send
and receive HTTP POST requests successfully. For our functional testing, we broke this up into modular
testing of both frameworks’ ability to send and receive POST requests independently, before integrating
the forward and backward flows of software and testing the same. Figure 25 and 26 below together show
the functioning ESP32 capability to send post request:

Figure 25: ESP32 and its serial monitor output showing successful sending of POST requests

Figure 26: The ThingSpeak API visually showing reception of ESP32 POST requests through the plot
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We were then able to successfully test the independent capability to receive POST requests for both the
Django project and the ESP32 microcontroller. Figures 27 and 28 below respectively show the successful
posting and reception of these requests from the Postman API (used for testing) to the Django back-end
server and the ESP32 microcontroller:

Figure 27: Postman API showing the “200 OK” success response from the Django back-end after sending a POST
request

Figure 28: Serial monitor of the ESP32 displaying the received POST request from the Postman API successfully

With modular testing successful, we then integrated the functionalities to form our forward (observation
data) and backward (configuration input) flows of software. The forward flow meant the ESP32 would
post measurement updates to the Django back-end, which needed to successfully receive and store the
same, while the backward flow meant the Django server would post a raw configuration setting that needs
to be successfully received and stored at the ESP32 level. Figure 29 below shows our successful
integration testing for the forward flow, while Figure 30 shows the successful integration testing for the
backward flow:
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Figure 29: ESP32 serial monitor showing successful periodic POST requests being sent (for measurement updates),
while the Powershell terminal shows the successful reception and handling of these requests at the Django back-end

Figure 30: ESP32 serial monitor showing successful reception and storing of new configuration settings through
POST requests from the Django back-end (cycled through all options for testing)

Coming to our last pair of requirements, these relate to portal updates, including those based on user
input. The first of these is of course that our panel-specific pages need to update in real time with new
data and reflect these changes on the panel-specific plots for the 3 solar panel parameters. Figures 31, 32
and 33 below show the voltage, current and temperature plots (and their updates) respectively for the
different panels on the access portal:
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Figure 31: Data visualization of the last 20 voltage measurement updates on a panel-specific page

Figure 32: Data visualization of the last 20 current measurement updates on a panel-specific page

Figure 33: Data visualization of the last 20 temperature measurement updates on a panel-specific page
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Finally, the second requirement in the last pair is that the user should be able to input a new configuration
(relating to 32, 64 or 128 solar cells being monitored) and our Django framework should be able to handle
and store this input for then posting to the ESP32. Figures 34 and 35 below respectively show the GUI for
user-input configurations changes and the Django-level acknowledgment that this input was successfully
handled in the back-end:

Figure 34: GUI prompting user to enter new configuration settings at the bottom of a panel-specific page

Figure 35: Confirmation displayed (forced for testing) which shows the user input was received, handled, and
transitioned to the correct ‘view’ to trigger the subsequent POST request to the ESP32
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4 Cost and Schedule
As seen in the itemized Table 1 in Appendix E, we needed a total of $219.93 to obtain all the necessary
parts for our project, i.e., to obtain the parts needed to construct two separate solar panel interface boxes.

Furthermore, this is a four credit hour class, which implies a minimum of eight hours of work a week
toward  our project and its goals. In alignment with our schedule planned for the semester, we had 11
weeks or 88 hours of work individually. Now, as per industry standard, UIUC Electrical Engineering
undergraduates on average are paid $80,000 per annum, while UIUC Computer Engineering
undergraduates are paid $100,000 per annum [17]. Allowing for some variance, we budget that an
employee team member would be paid about $40 per hour as employees on this project.

So, as per the assigned class budgeting formula, our project cost would be: ($219.93) + [($40/hour) x 2.5
x 88 hours] = $9019.93 ≅ $9100

A final “schedule of work” explaining the week-to-week activities completed and goals achieved over the
course of this semester as we worked on our project can be found in Appendix F.
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5 Conclusion
Following the review of our design plans, project building, and functionality verification, this final section
of the report will review what we were able to achieve, the issues we considered during the project, and
what remains to be improved in the future.

5.1 Accomplishments

Overall, we believe the project was a success! We were able to get all of our subsystems functioning
independently. We were able to measure everything we targeted, and read and monitor the key solar panel
parameters. We could also fully integrate the functioning power, monitoring and microcontroller
subsystems on the PCB, along with displaying our measurements onto the on-board OLED. The Research
Hub and software functionality also worked as expected and the server and webpage run in a clean and
organized manner. Additionally, we were able to maintain good documentation of all of our work through
GitHub – which was a specification emphasized by Professor Banerjee from the previous attempt at this
project – so we are confident that our work can be continued as well.

5.2 Uncertainties

Due to some of the challenges faced we did end up with some uncertainties in our final solution. The first
of these is the question of isolation due to our removal of the ADC in the final voltage measurement
layout. While our voltage measurement still works, its direct connection to the ESP32 poses a risk to the
microcontroller in case of power surges. But, since we have already set up the hardware and software
layouts for this, the ADC can easily be added to our project in the future once it can be shown to
successfully communicate with the ESP32 in a stand-alone manner.

Additionally, while logically functional (as proven by testing), we could not provide an ideal final
implementation of our darlington array chip and the relay switching circuit at the hardware level due to
the fact that mistaken wiring and soldering used up a lot of our time and fried through components. But,
once again, since we have been able to complete the software side of this and have already got a plan that
would work on hardware implementation, we are sure this is something that can be easily fixed in the
future.

Finally, although working when tethered with a micro-USB cable, we were not able to get our ESP32
functioning with a WiFi network when powered independently, hence preventing the total integration of
our project. Some reasons for this could be cheaply-made/faulty WiFi modules on our ESP32 that don’t
have the capacity to handle heavy wireless capabilities when independently powered, or possible mistakes
on our PCB wiring that may be setting important board pins to wrong values. A better examination of this
problem, and trying a similar approach with different boards, would help solve this issue as well.

5.3 Ethical Considerations

● Project Issues:

○ Solar energy should not contribute to net greenhouse gas emissions and exacerbate global
climate change, and our peripheral device additions should not affect this either
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● General Solar Panel Issues:

○ Costs and benefits of solar energy should be distributed in an equitable way by regulatory
agencies

○ Solar Energy should be environmentally sustainable – the recycling of solar panels at the
moment is a huge impediment to their overall sustainability [18]

○ The manufacture of solar panels has also seen negative outcry due to problems like
forced labor camps for polysilicon [19]

5.4 Safety and Regulatory Standards

Given below are standards and procedures we implemented when designing and building our project. We
adhered to these guidelines carefully in order to keep ourselves and others safe, while maintaining the
integrity of our work:

1. IEEE Ethics Code #1: Hold paramount the safety, health, and welfare of the public, to strive to
comply with ethical design and sustainable development practices, and to disclose promptly
factors that might endanger the public or the environment’ [20]

2. IEEE Ethics Code #7: To seek, accept, and offer honest criticism of technical work, to
acknowledge and correct errors, and to credit properly the contributions of others’ [20]

3. IEEE 1547-2018: IEEE Standard for Interconnection and Interoperability of Distributed Energy
Resources with Associated Electric Power Systems Interfaces [21]

4. NREL/TP-550-38603 October 2005: Procedure for Measuring and Reporting the Performance of
Photovoltaic Systems in Buildings [22]

5.5 Future Work

A possible future improvement would be to update our PCB with correct internal connections, in which
we would properly map the control signals to our darlington array and eliminate the need of soldering
wires across different test points of the board. Another useful update would be to achieve isolation
utilizing an ADC that could be recognized and acknowledged with our ESP32 microcontroller. From a
software point of view, establishing a reliable remote ESP32 WiFi connection so that wireless
communication is functional even on an independent power supply would be incredibly beneficial. On a
similar note, visually enhancing the Research Hub interface to make it more appealing would be a simple
yet valuable improvement.
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Appendix A: Requirements and Verifications Tables
Given below are the four sets of requirements and verifications for the four key subsystems of the project,
which is the basis of Section 3 (Design Verification):

Table 1: R&V Table for Power Subsystem

Requirements Verifications

The 12-volt power rail provides a 12-volt DC
input within the range of ± 1% [13]

1. Utilize a DC-power supply and input 12-volts
into our screw terminal via jumper wires

Converts a 12-volt input into a 3.3-volt DC
output within the range of 3.235V ≤ Vout ≤
3.365V [6]

1. Probe the output of the linear regulator
LM1117-3.3 with a multimeter and see if a
stable 3.3-volt output is available

Converts a 12-volt input into a 5-volt DC
output within the range of 4.90V ≤ Vout ≤
5.10V [6]

1. Probe the output of the linear regulator
LM1117-5.0 with a multimeter and see if a
stable 5.0-volt output is available

Table 2: R&V Table for Monitoring Subsystem

Requirements Verifications

The relay subsystem must be able to configure
and choose between the different solar cell
configurations: 32-cells (CD), 64-cells (BC),
and 128-cells (AD). The relay output must be
the same as the solar panel output minus the
contact voltage and current drop [3]

- Initial Voltage Contact Drop: ± 0.1V
- Initial Current Contact Drop: ± 100mA

1. Connect a 15-volt DC power supply between
CD screw terminals

2. Between the Current_Output and
NEG_Output screw terminals, measure the
voltage with a multimeter and see whether
we observe the 15-volt input when
configured to CD

3. Repeat A1 and A2 with screw terminals BC
and AD

The voltage divider must be able to step down
input voltages within the ranges of 0V - 85.6V
and corresponding output voltages within the
range of 0V - 3.3V [15]

1. Apply a DC power supply to the
Current_Output and NEG_Output screw
terminal*

2. Utilize a multimeter to probe VOLT_Output
to observe whether there is a voltage within a
0V - 3.3V range [8]

3. Vary the range of the DC power supply to
ensure it works for the 0V - 85.6V range

The current sensor must accurately read the
current of the relay output within an error
range of 1.5% [4]

1. Connect a DC power supply between CD
screw terminals and make the input current
3A
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2. Measure the current between Current_Output
and NEG_Output

3. Measure the output of the ACS714 current
sensor and observe whether the output is
within 1.5% range of the current measured in
step 2

Thermocouples should measure values
between the range -10°C and 85°C within an
accuracy of ± 0.5°C [5]

1. Utilize a thermal gun to measure the ambient
room temperature

2. Observe whether the thermocouples are
within our tolerance range of that room
temperature

3. Add a heat signature and see if the
thermocouple response and increases in
temperature

The ADC Converter should output a 16 bit
digital code to our ESP32 that corresponds to
the analog input into the IC once decoded [8].

1. Connect to a DC voltage supply of 5V to an
input pin and ground its corresponding pin.

2. Capture 16 bit digital code sent by ADC to
ESP32 using serial monitor.

3. Decode what was written to the ESP32 by
multiplying the output code with the LSB
and dividing by the PGA setting.

4. Verify that it is the respective voltage that
was inputted into the ADC.

* Note for Table 3: Keithley DC Power Supplies provided in the lab have a max voltage range of 25V
[16]. For safety, the voltage divider is simple enough to verify the output voltage range in simulation but
for safety, we will not input a max 85.6-volt supply for safety reasons and because there is no voltage
supply available for 85.6-volts

Table 3: R&V Table for Microcontroller Subsystem

Requirements Verifications

Depending on which configuration we are
operating the solar panels on, the ESP32
microcontroller’s corresponding IO pins
must be able to provide a DC output within
the range of 2.7V ≤ Vout ≤ 3.3V to each
Darlington pair [15]

The following IO pins correspond to
different configurations:

1. Choose CD configuration through the user
interface

2. Use a multimeter to measure the output of the
ADC2 pins corresponding to PANEL_C with
Current_Output and PANEL_D with
NEG_Output and observe whether it is 3.3V. The
rest of the ADC2 pins should be 0V

3. Change the configurations to BC and AD and
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repeat A1 and A2 with the according changes
(i.e.: BC configuration measures output pins
corresponding to PANEL_B with
Current_Output and PANEL_C with
NEG_Output)

The ESP32 can communicate the current
solar panel parameters to the OLED
display 17]

1. Connect a Yokogawa power meter across the
Current_Output and the NEG_Output probes and
measure their DC voltage

2. Connect the Yokogawa power meter probes
across POS_Output and Current_Output to
measure the current

3. Use a temperature gun to measure the solar panel
temperature at the locations where the
thermocouples are attached (if digital
temperature can be retrieved and displayed from
the web interface, then the option to compare the
OLED temperature readings and the temperature
displayed on the web interface is viable)

4. Observe the OLED display and see whether the
voltage is displayed ± 300mV [9], current within
a 1.5% error range inline with the readings we
retrieve from the power meter.

5. Observe the OLED display and see whether the
temperature is within the range of ± 0.5%
accuracy we retrieve from the thermal imaging
camera [11]

* The Yokogawa power meter has the option of
displaying the DC voltage and DC current

Table 4: R&V Table for Research Hub Subsystem

Requirements Verifications

Front-end website should successfully route
between pages and display solar panel data
based on security and observation use cases

1. Landing page on accessing website with base
URL (http://localhost:8000/) should be the
login page

2. Successful login should be the only way to
access panel data - direct URL modifications
should reroute to login page

3. Solar panel data is accessed through an index
(should be easy to add additional panels for
scalability)

4. Website routing should go from login page to
authentication to solar panel index which also
has options for logout and team/project info

Working user authentication on the remote
portal that restricts Research Hub access to

1. Add a user other than the Django superuser
to the “users” Django application (through
Django administration)
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required ECEB personnel only

(Note: new users will only be added through
administrative editing to allow for further
security)

2. Access the website and try to login through
the welcome/initial landing page when live

3. Website should welcome the user explicitly
by username and route them to solar panel
data if successful

The back-end of the Django framework should
have HTTP communication ability (2-way
POST requests)

1. Base test:
a. Send a POST request to the Postman

API (hardcoded) from the Django
back-end and it should be received
and readable on the API

b. Send a POST request from the
Postman API to the Django back-end
IP and it should be received and
readable on the web server

2. Integration test:
a. Send a POST request to the ESP-32

server IP (hardcoded) from the
Django back-end and it should be
received and readable at the board
level

b. Send a POST request from the
ESP-32 server (hardcoded) to the
Django back-end IP and it should be
received and readable on the web
server

The ESP-32 Microcontroller should have
HTTP communication ability (2-way POST
requests)

1. Base test:
a. Send a POST request to the Postman

API (hardcoded) from the ESP-32
server and it should be received and
readable

b. Send a POST request from the
Postman API to the ESP-32 server IP
and it should be received and
readable at the board level

2. Integration test:
a. Send a POST request from the

ESP-32 server (hardcoded) to the
Django back-end IP and it should be
received and readable on the web
server

b. Send a POST request to the ESP-32
server IP (hardcoded) from the
Django back-end and it should be
received and readable at the board
level

1. Upload stream of arbitrary data points to the
Django back-end for a specific panel by its
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Real-time observed data that is received should
be processed correctly to allow for
plot/visualization updates for the specific panel

model instance (can be randomly generated)
2. Dedicated panel webpage should show

update in data visualization/plotted charts in
a time series manner

3. Integration: follow same approach but by
triggering the data update through a Postman
API POST request to the Django framework
with information

User-input configuration settings should be
panel-specific and submission should trigger
back-end communication

1. User-input through GUI on panel-specific
webpage for configuration settings should
update Django back-end database for the
specific panel

a. It should also update visual cues on
the webpage for that specific panel

2. Any back-end database change for a panel
should trigger an outgoing POST request to
the corresponding microcontroller
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Appendix B: Circuit Schematics

Figure 1: Linear Regulator utilized to step-down the 12-Volt to separate 3.3-Volt and 5-Volt lines

Figure 2: Relay system to configure which solar cells are being monitored
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Figure 3: Voltage Divider stepping-down the voltage for voltage monitoring, and an ACS714 current sensor for
current monitoring

Figure 4: ADC Converter utilized to provide galvanic isolation between the solar panels and the microcontroller
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Figure 5: Pin configuration of the ESP32 Microcontroller that communicates user inputs and dictates solar
panel measurements

Figure 6: OLED Display to see voltage, current, and temperature readings of the solar panels
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Figure 7: Thermocouples utilized to sense solar panel temperature

Figure 8: 12-Volt supply, External connections to solar panels; Output of our PCB
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Appendix C: Calibration Results

Figure 1: Plot showing the calibration of reverse-engineered voltage values from voltage divider circuit along with
achieved equation

Figure 2: Plot showing the calibration of the ACS712 Current Sensor values along with the achieved equation
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Appendix D: Software Flowcharts

Figure 1: Forward flow of software – from observations at microcontroller to periodic updates on the portal

Figure 2: Backward flow of software - from user input configuration change to physical update at the interface box
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Appendix E: Parts Costs
Table 1: Parts to be bought for use (0 build hours)
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Appendix F: Schedule of Work
Table 1: Schedule of Work (per teammate)

Week Sydney Maram Nikhil

09/27/21
Perform additional research

regarding the hardware
aspect whilst working on our

PCB and review unique
safety concerns

Sent first draft of PCB
schematic, Talked with Prof.

Banerjee and Kevin about
relay configuration

Completed researching and
planning wireless

communication framework
between external server and

microcontroller

10/04/21
First schematic draft

completed and completion of
the final version of our

design document, Performed
additional research regarding

ADC isolation

Continued to discuss our
relay configuration with 445

TAs, Performed various
voltage and current

monitoring updates and
research

Completed researching and
planning communication

paths for remote
configuration

(panel->relay->microcontrol
ler->server)

10/11/21
Met with professors to

discuss further
improvements on our

schematic design and visited
the rooftop to observe the
panels and connections

Worked further on our
schematic, Discussed our
design further with Prof.

Banerjee, his team, and our
TA

Planned integration paths of
work done so far, testing

approaches, and integration
of hardware and software

with regards to ordered parts

10/18/21
Performed simulations for
our power subsystem to
ensure that the proper

voltage will power the rest
of the components onto our

PCB

Researched further in
isolation in order to
implement an ADC

converter, Continued sending
updated schematics to TA in
order to begin working on

PCB.

Compiled work for entire
Django project for solution
(front-end and back-end);

Almost completed front-end
work including wireless

capabilities

10/25/21

Working on implementing
the relay subsystem onto our

board utilizing the relays
that have been provided to
us from our meeting with
Kevin, Also utilize as an

ESP32 microcontroller as a
control instead of a switch

Sent PCB design files to TA,
Continued to update PCB

based on feedback from TA,
Conducted research on

Darlington array to exchange
out for our relay drivers

Completed preliminary
front-end Django work,
Completed coding out
skeleton for Django
back-end (server),

Completed skeleton for
ESP32 software
programming

11/01/21
Implemented TA suggestion

of replacing many
components from our relay
subsystem with a darlington

array as a relay driver to
directly switch the

configurations

New PCB configuration sent,
Updated darlington array,
current output, and switch

for our linear regulator,
Continued to send PCB

updated to TA for approval

Completed researching and
planning Django real-time

updates for front-end, Began
implementation of ESP32

stand-alone wireless
capabilities (ran into some

issues)

11/08/21
Researching the hardware

communication aspect of our
project with the ESP32

Sent the final version of the
board to TA and received

Successfully completed
ESP32 stand-alone wireless
capabilities and integrated it
with Django server wireless
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microcontroller. approval, Ordered PCB capabilities, Updated Django
front-end to meet

independent requirements

11/15/21

Part testing prior to the PCB
arrival, We tested whatever
we could on breadboards

and breakout boards so that
we could ensure that some
parts worked in advance

ADC arrived and began to
test parts prior to PCB

arrival, Conducted OLED
and thermocouple isolated

testing, Implemented pull up
resistors, Began working on
communicating with ADC

Researched and planned out
code updates as per mock
demo feedback (Django
model updates, reverse

HTTP pathway and GUI)

11/22/21

Soldered and debugged most
of our subsystems, Worked

on isolating components
before soldering and

implementing into our
project.

ADC component testing
continued, Soldered and

troubleshooted components
on PCB, Integrated our

thermocouple readings onto
OLED, Successfully tested

darlington array on
breadboard, Talked to the

ECE machine shop to re-drill
holes in the PCB

Began hardware
programming for ESP32 and
PCB and completed majority
of it, Completed individual
integration testing of parts
and began PCB assembly

11/29/21

Went up to the rooftop to
access the solar panels and

observe solar panel
parameters onto our PCB,

Further calibration had to be
done with the readings,

Completed Project Demo

Current sensor and ADC
testing. Soldered pull up

resistors on PCB,
Troubleshooting on PCB
with various components,

Calibrations for monitoring
systems, Completed Project

Demo

Completed all adjustments to
ESP32 programming and for

hardware integration,
Implemented planned
Django changes and

integrated it, Completed
Project Demo

12/06/21
Finalized presentation and
presented; Prepared and

submitted final paper

Finalized presentation and
presented; Prepared and

submitted final paper

Finalized presentation and
presented; Prepared and

submitted final paper
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