

ECE 445: Senior Design Covid-Safe Fitting Room

Team 22 December 7, 2021

Meet the Team

Bill Heniades Senior in Electrical Engineering

Ege Guler Senior in Electrical Engineering

Arin Manav Senior in Electrical Engineering

Fitting Room Confusion: Why Some Are Still Closed As Stores And Restaurants Begin To Reopen

By Marie Saavedra April 30, 2021 at 10:35 pm Filed Under: COVID-19, Dressing Rooms

Consumer's View

Retailer's View

- Decreases customer satisfaction
- Overall unpleasant shopping experience
- Have to buy multiple sizes

- Higher return rates
- Losing sales to online shopping
- Staff members need to continuously clean

Objective

Build a Self-Sanitizing Room

- Sanitization System:
 - UV Light
 - HEPA Filter
 - Sanitizer Solution
- Detection System
 - Ultrasonic Sensors
 - PIR Sensor
- Additional Features
 - Panic Button
 - Maintenance Button

Block Diagram

High-Level Requirements

- 95% of the air in the fitting room +/- 5% must be filtered during the disinfection process
- The fitting room must go through the entire disinfection process within 3 minutes +/- 10 seconds of detecting the occupant leaving with the disinfectant covering 95% +/- 5% of the bench, hangar, and doorknob surfaces
- The detection system of an occupant in the fitting room must be accurate 95% of the time +/- 5%

Original Design and R&Vs

Power Subsystem

DC/DC Converters:

- Power circuits for control and sensor subsystems must be able to supply 5V +/- 0.2V and 40mA
- Power circuits for mechanical and light subsystems should provide 12V/3.3V, 200/150mA, and 5V/80mA respectively

AC/DC Converter:

 12V/1A wall adapter should provide 12V/500mA to the board from a 120V wall plug

Sensor Subsystem

Buttons:

- Panic button should always reset the microcontroller to the OCCUPIED state
- Maintenance button should always set the microcontroller to a HOLD state until pressed again

PIR Sensor:

- PIR Sensor have 95% +/- 5% accuracy
- Check the output duration of the sensor with the oscilloscope

Ultrasonic Sensor:

- 95% +/- 5% accuracy with an average speed of 1m/s to 4m/s
- Using wave generator for trigger signal, measure the output with the oscilloscope

Sensing Subsystem

Original Design and R&Vs

Mechanical Subsystem

Water Pump:

- The doorknob, hangar, and bench must receive sanitizer spray for 10 seconds +/- 5 seconds, 5 seconds +/- 2 seconds, and 5 seconds +/- 2 seconds respectively
- Check if the sprayers turn on in the SANITIZE state and turn off in the OPEN and OCCUPIED state

- HEPA filter should circulate 95% +/- 5% of the air in the fitting room
- Check if the HEPA filter turns on in the SANITIZE state and turns off in the OPEN and OCCUPIED state

Original Design and R&Vs

Light and Control Subsystems

UV Lights:

UV light should always turn on within 10 seconds after the sanitization process starts

Indicator Lights:

Lights must indicate the occupancy and state of the room within 10 seconds of changing states

UV Light Indicator Light Light Subsystem

5\

Microcontroller:

Swite

Microcontroller should send correct output signals in each of the OPEN, SANITIZE, and OCCUPIED states with 99% accuracy

Final PCB Design and Schematic

Sensing Subsystem

Ultrasonic Sensor:

- Triggered with 40kHz, 10us pulse
- Duration of the ECHO signal matches the measured distance
- Powered with 5V/8mA

PIR Sensor:

- Gives HIGH output of 3.3V
- Picks up movement in ~5ft radius
- Duration adjusted to ~13s with the potentiometer

Buttons:

- Floating node connected to the MCU pin
- Shorts the node when the button is pressed, triggering a LOW input

Mechanical and Light Subsystems

Fans:

- Works with 12V
- Pulls 107mA

<u>Water Pumps:</u>

- Works within voltage range 2.5-5V
- Powered by 3.3V/50mA per pump

Works with 5V

drew 80mA

All LEDs together

supply

LEDs:

UV LEDs:

Tested done with multimeter without viewing the UV LED itself due to safety hazards

Power Subsystem

Power Component	3.3V Voltage Regulator	5V Voltage Regulator	Buck Converter	12V AC/DC Adapter
Supplies	Water Pumps	Ultrasonic Sensors, PIR Sensor, Microcontroller	LED Lights, 3.3V Voltage Regulator	Filter Fans, Buck Converter, 5V Voltage Regulator
Measured Voltage	3.302V	5.017V	4.617V	12.102V

Project Build and Testing

Coding Algorithm

#define TRIG_1 A0
#define TRIG_2 A1
#define ECHO_1 PIN_PC0
#define ECHO_2 PIN_PC1
#define FAN_S PIN_PC2
#define NOZZLE1_S PIN_PD6
#define NOZZLE3_S PIN_PD4
#define Y_LED_S PIN_PC4
#define G_LED_S PIN_PC6
#define G_LED_S PIN_PC6
#define BUTTON PIN_PD0
#define M_Button PIN_PD1
#define PIR_S PIN_PD7

void setup() { pinMode (TRIG 1, OUTPUT); pinMode(TRIG 2, OUTPUT); pinMode (ECHO 1, INPUT); pinMode (ECHO 2, INPUT); pinMode (FAN S, OUTPUT); pinMode (NOZZLE1 S, OUTPUT); pinMode (NOZZLE2 S, OUTPUT); pinMode (NOZZLE3 S, OUTPUT); pinMode(Y LED S, OUTPUT); pinMode(UV S, OUTPUT); pinMode (G LED S, OUTPUT); pinMode(R LED S, OUTPUT); pinMode (BUTTON, INPUT); pinMode(M Button, INPUT); pinMode(PIR S, INPUT); // enable internal pullup digitalWrite(BUTTON, HIGH); digitalWrite(M Button, HIGH); digitalWrite(FAN S, LOW); digitalWrite (NOZZLE1 S, LOW); digitalWrite(NOZZLE2 S, LOW); digitalWrite(NOZZLE3 S, LOW); digitalWrite(Y LED S, LOW); digitalWrite(G LED S, LOW); digitalWrite(R LED S, LOW); digitalWrite(UV S, LOW);

Demo Video

Ethical and Safety Concerns

Ι

- IEEE Code of Ethics
 - Made sure all work was done equally and fairly with all references cited
- Ensure Customer Privacy
 - Utilized a PIR sensor instead of a camera
- Exercise Caution in the Lab
- Water Pumps in the Lab
 - Used water instead of sanitizer when testing the pumps
- UV Light Safety Hazards
 - Long exposure to UV light can cause eye damage

Ι

Challenges:

- Preventing false triggers
- Not being able to use footage or visual cues for detection for privacy

Successes:

- Power subsystem delivers power at required voltages
- Switching circuit works correctly
- Microcontroller and the control system function in the right order
- Sanitizer pump, HEPA filters, and UV lights turn on for the desired duration
- Overall all subsystems work as desired under ideal circumstances

- Water pump not being powerful enough to push fluid through sharp corners in the tube
 - Low nozzle quality to stop flow instantly
- Some MOSFET connections in the second PCB design was missing resistors
 - Adding the resistors decreased the power going to the pumps
 - Did not work until we found the right resistor value
- Fan blade broke while testing the filter
- Microcontroller burned due to voltage regulator overheating

Looking Forward:

- Viral infections will continue to exist after COVID-19 pandemic
- Fitting rooms still need to be cleaned

Improvements:

- More powerful water pump and higher quality nozzles
- More sensors to decrease the amount of false detections
- Cheap and efficient way to monitor air quality can add value to the design

Questions?

Thank You!

ELECTRICAL AND COMPUTER ENGINEERING

GRAINGER ENGINEERING 21

References

- [1]B. Lee, "Minimum Sizes of Respiratory Particles Carrying SARS-CoV-2 and the Possibility of Aerosol Generation", *National Center for Biotechnology Information*, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579175/. [Accessed: 16- Sep- 2021].
- [2]B. Turner, "The Continuing Battle of Fitting Room Theft in a World of Increasing Privacy Concerns", Loss Prevention Media, 2021. [Online]. Available: https://losspreventionmedia.com/the-continuing-battle-of-fitting-room-theft-in-a-world-of-increasing-privacy-concerns/. [Accessed: 28- Sep- 2021].
- [3]C. Barber, "Protecting against COVID's Aerosol Threat", *Scientific American*, 2021. [Online]. Available: https://www.scientificamerican.com/article/protecting-against-covids-aerosol-threat/. [Accessed: 16- Sep- 2021].
- [4]E. Cronkleton and D. Bubnis, "Average Walking Speed: Pace, and Comparisons by Age and Sex", Healthline, 2021. [Online]. Available: https://www.healthline.com/health/exercise-fitness/average-walking-speed#average-speed-by-age. [Accessed: 28- Sep- 2021].
- [5]M. Saavedra, "Fitting Room Confusion: Why Some Are Still Closed As Stores And Restaurants Begin To Reopen", Chicago.cbslocal.com, 2021. [Online]. Available: https://chicago.cbslocal.com/2021/04/30/fitting-rooms-covid-19-reopen-pandemic/. [Accessed: 28- Sep- 2021].
- [6]NCIRD, "Community, Work, and School", *Centers for Disease Control and Prevention*, 2021. [Online]. Available: https://www.cdc.gov/coronavirus/2019-ncov/community/ventilation.html. [Accessed: 16- Sep- 2021].
- [7]"Changing Cubicle Measurement and Size Guide", Washroomcubicles.co.uk, 2021. [Online]. Available: https://www.washroomcubicles.co.uk/changing-cubicle-sizes/. [Accessed: 28- Sep- 2021].

References

- [8]"Fine Particles (PM 2.5) Questions and Answers", *Health.ny.gov*, 2021. [Online]. Available: https://www.health.ny.gov/environmental/indoors/air/pmq_a.htm#:~:text=National%20Ambient%20Air%20Standards%20are, is%2012%20%C2%B5g%2Fm3. [Accessed: 16- Sep- 2021].
- [9]"IEEE Code of Ethics", leee.org, 2021. [Online]. Available: https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 16- Sep- 2021].
- [10]"Nessbase HEPA Air Filter Purifier", Amazon.com, 2021. [Online]. Available: https://www.amazon.com/Nessbase-Purifier-Cleaner-Pretreatment-Eliminate/dp/B09BQMPDS5. [Accessed: 16- Sep- 2021].
- [11]"Target's coronavirus response and community support", Target Corporate, 2021. [Online]. Available: https://corporate.target.com/about/purpose-history/our-commitments/target-coronavirus-hub. [Accessed: 28- Sep- 2021].
- [12]"UV Lights and Lamps: Ultraviolet-C Radiation, Disinfection, and Corona", U.S. Food and Drug Administration, 2021. [Online]. Available: https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/uv-lights-and-lamps-ultraviolet-c-radiation-di

https://www.tda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/uv-lights-and-lamps-ultraviolet-c-radiation-di sinfection-and-coronavirus. [Accessed: 16- Sep- 2021].

[13]"Amazon.com : Diymall 5 pack HC-SR501 pir motion IR sensor ..." [Online]. Available: https://www.amazon.com/DIYmall-HC-SR501-Motion-Infrared-Arduino/ dp/B012ZZ4LPM. [Accessed: 30-Sep-2021].