USB Controlled Appliances

ECE 445 Design Document

Nagarjun Kumar
Peter Jin

TA: Dean Biskup
Team 15

1 Introduction
1.1 Problem and Solution Overview

We will be introducing a series of “smart” devices that will be controlled mostly or entirely
by a computer, without reliance on wireless technologies. The rationale behind this is that
wireless loT devices, in many cases, tend to have an inherent security and privacy risk,
because the attack surface of a home network is quite high. For example, any device on the
network could potentially conduct a spoofing attack to spoof the router, which would allow any
website viewed from any device on the network to be intercepted [4]; in ECE 422 class, we
demonstrated how to perform an ARP spoofing attack to hijack connections to websites [10].
Bluetooth is even worse, due to potential attacks during pairing. For example, someone could
put another Bluetooth device close in range with the same name as an intended device, and this
could lead to sensitive data being sent to the wrong device [10]. So instead of relying on
wireless technologies, our solution only ever uses wires for communication using much simpler
protocols like USB and UART.

Three types of appliances will be demonstrated with this idea in mind: an optocoupler
switcher, a thermostat, and a motion detector. These three types of appliances were chosen to
cover a good variety of potential IoT appliances in ways that don’t duplicate each other in terms
of their general functionality.

1.2 Visual Aid

Figure 1a (top left), 1b (bottom left), 1c (top right), 1d (bottom right). Visual representations of
hub and appliances.

Figure 2 Example connection of devices by the end user.

1.3 High Level Requirements

e The most important objective is to create a set of loT-style appliances that can be
controlled directly from a computer -- turn on and off devices using an optocoupler
switcher, detect motion using a motion detector, and turn on and off devices by
temperature using a thermostat. No wireless or TCP/IP technology may be used
anywhere in the control path between the computer and the appliance.

e The optocoupler switcher needs to have at least 8 outputs, to allow multiple devices to
be switched on at one time [9].

e The appliances must work in all its capabilities even without the central hub. The central
hub may facilitate communication between the computer and the appliances, but failure
to do so should not make the appliances unusable on their own.

2 Design

2.1 General Block Diagram

USB 5v + DATA

5 V + custom protocols

Figure 3: General block diagram of project.

2.2 Central Hub

N\3xUSB
4x USB

r

L
To Appliances (3x)

Figure 4: Block diagram of central hub.

The central hub consists of a 7-port USB hub with three of the ports connected directly to
USB-to-UART ICs, with additional supporting ICs like voltage regulators. The four other ports
are exposed externally to allow more central hubs to be daisy chained together, in case three
appliances are not enough. (Devices other than another instance of the central hub may still be
plugged into these USB ports, though they will only have a speed of 12 Mbps due to a limitation
of the USB hub IC.) The main purpose of the central hub is to convert between the USB on the
computer and the UART modules on the appliances. This reduces the complexity of the
appliances such that if the central hub is bypassed, the USB protocol does not need to be

reimplemented by the end user, in case they’re using a very memory or CPU-constrained device

connected directly to the appliance.

Requirement

Verification

1. Central Hub must be able to relay UART
data from the appliances to and from the
computer, with a round-trip latency of less
than 50 ms [7].

Send a command from a laptop running x86
Linux to the central hub that turns an
optocoupler on, and wait for a response.
Using the “time” Linux command, the “real”
time of the action should be less than 50 ms,
and the optocoupler should turn on [9].

2. Central Hub must be functional on Linux
desktops, laptops, and single board
computers.

Connect the Central Hub to each of the
following computers, and verify functionality
of the appliances:
e Alaptop running x86 Linux
e Asingle-board computer (e.g.
Raspberry Pi) running ARM Linux
e Another single-board computer
running ARM Linux

3. For each appliance connected to the
central hub, the appliance must work
regardless of which output port on the hub
the appliance was plugged into.

Plug each appliance into one of the hub’s
output ports, and verify that the device is
detected on the computer on the correct
output port, as well as the functionality of the
appliances. Repeat this on each of the other
two output ports for every appliance, and the
appliance should work in exactly the same
way.

4. The central hub must be able to support
three devices plugged into it at the same
time, and in any combination.

Plug all three appliances into the central hub.
Verify that each appliance works
independently of each other, as well as
simultaneously. Repeat this process for all six
possible permutations of three appliances.

Randomly select 6 of the 64 possible
permutations (nothing, motion detector,
optocoupler switcher, or thermostat
connected to each output). For each of the 6
permutations, verify that each appliance is
detected correctly, and in the correct order.

2.3 Appliance Subsystem (Common)

Common requirements applicable to all three appliances. (This heading is not an appliance in
and of itself.) All appliances will have breakout headers and a removable microcontroller where
appropriate to allow custom logic to be applied without any built-in microcontroller. In addition,

the user could even substitute in their own microcontroller, and the appliance should work in the
exact same way, subject to the logic of that microcontroller.

Requirement

Verification

1. For each appliance that is declared to have
a removable microcontroller, basic
functionality of the appliance must still be
achievable in some way by adding external
logic when the microcontroller is removed.

Design a simple external logic circuit on a
breadboard and connect it to the appliance’s
PCB using headers on the PCB with the
microcontroller removed. The appliance will
be disconnected from the central hub, and for
appliances without an external power source,
an external 5V +/- 0.25V power source
capable of supplying at least 500 mA will be
connected to it. Verify that despite these
conditions, the external logic is able to control
the appliance for both TTL and CMOS
outputs. (Whether the logic implemented by
the external circuit itself is correct is
irrelevant.)

2. For appliances which do not have an
external power source, the appliance must
work with an input voltage between 4.4 and
55V.

The cable connecting the appliance to the
hub will be spliced in a way such that the
appliance’s power will come from an external
power source, rather than from the
computer’s USB. Verify functionality of the
appliance when the power source is set at 4.4
and 5.5 V.

3. Appliances should still work by manually
using a separate USB-to-UART chip (such as
the MCP2221A), without relying on the
central hub. (This mechanism must be
meaningful even for an end product, and
should not be viewed as merely a
convenience for debugging.)

Connect a USB to UART adapter directly
from the computer to the appliance, without
using the central hub [8]. Verify functionality
of each appliance by manually sending
commands to the tty or COM device on the
computer, and verifying the result to be the
same as if the command were sent from the
central hub.

This configuration will be referred to in later
verifications as “standalone UART” or
“STUART” mode.

4. (If a 3.3V microcontroller or output is used
in the appliance) The voltage regulator to
step down from 5 V to 3.3 V has an output
voltage range of 3.1 to 3.4 V with an output
current of 250 mA.

Apply a 13 ohm load on the voltage
regulator’s output to ground. Measure the
voltage of the output using a multimeter; it
should be between 3.1 t0 3.4 V.

2.3.1 Appliance Subsystem (Motion Detector)

Serial/

Block diagram for motion detector

oV

UART

GPIQ

Figure 5: Block diagram of motion detector.

The motion detector is an example of a generic input device. It can be used with the computer
or hub logic to cause any of the other outputs or something on the computer to be automatically
turned on. For example, it can cause a camera on the computer to be turned on, under the
discretion of the computer’s software. For the purposes of the verifications below, “signal
detected” means that the appliance is in STUART mode, and the computer’s serial terminal
detects the character “S” to indicate a signal. This occurs when there is a change in voltage on

the GPIO line.

Requirement

Verification

1. The motion detector must be able to detect
walking humans in the background for
distances up to 3 m away.

Have humans walk (at a speed of 1 m/s,
perpendicular to the motion detector’s
visibility) in front of the motion detector at
distances of 0.5 m, 1 m, and 3 m (measured
using a meter stick). Verification passes if the
signal is detected at 3 m. Assume that the
back is more than 6 m away.

2. When there is no object behind the motion
detector, there must not be a signal for up to
5 minutes.

Keep the area of motion detection still for five
minutes (measured using a stopwatch). If no
signal is detected for this entire time, then this
verification passes.

3. If an object is detected on the motion
detector, it should report to the computer
within 5 seconds.

Put something near the motion detector; use
a stopwatch to determine the time from the
object being placed and a signal being
detected on the computer; verification passes

if the time is < 5 s. Should be performed with
the central hub, rather than in STUART
mode.

2.3.2 Appliance Subsystem (Optocoupler Switcher)

Block diagram for gptocoupler switcher

Serial/ 5\
UART

T
e
8x GPIQ

Figure 6: Block diagram of optocoupler switcher [9].

The optocoupler switcher is a generic means of switching on and off electronic devices by
piggybacking off a remote control (garage door opener, TV control, light control), without any
knowledge of the remote control’s electrical wiring, by using optocouplers to simulate the low
resistance of button presses [9]. It has a series of eight outputs, each with two pins for the
optocoupler’s emitter and collector [9]. Under normal operation, the two pins of each output are
connected across a button of interest on the remote control (by the end user manually soldering
the wires onto the control). When the optocoupler is switched on, the button on that remote
control is “pressed”. Commands exist on the computer to turn on and off each switch
independently, as well as for a set time limit. In addition, there are output voltage terminals of
3.3 and 5 V for battery elimination purposes. (These voltages were chosen, rather than 3 and 6
V, because these voltages are still close enough to the typical battery voltages of a remote
control, and 3.3 and 5 V are more convenient for logic anyway.) Unless otherwise specified,
commands are to be sent directly from the computer in the STUART mode configuration.

Requirement

Verification

1. The computer is able to turn on and off the
optocouplers reliably (i.e. < 10 ohms on, and
> 100 kilohms off).

Send the appropriate commands (to be
determined based on microcontroller code)
(in STUART mode) to cause the optocoupler
to be switched on and off. When switched on,
the resistance across the optocoupler should
be < 10 ohms. When off, the resistance
should be > 100 kilohms.

2. The 3.3V output of the optocoupler
switcher must have an output voltage
between 3.15 and 3.45 V for the maximum
load current of 250 mA at an input voltage of
44 V.

With a forced 4.4V input voltage as
demonstrated in requirement 3 of “Appliance
Subsystem (Common)”, apply a 13 ohm load
onto the 3.3V output. Measure the voltage of
the output with the load using the multimeter
to verify that the output voltage is between
3.15and 3.45 V.

3. The optocoupler switcher appliance must
work with both an active-high and active-low
remote control button model.

Attach the optocoupler to the following
remote control model, where the 5V source
comes from the 5V power output pin on the
optocoupler switcher (5V also used for the
buffer’s power supply), and the optocoupler
shown below is exposed as the collector and
emitter output pins of the switcher:

+58Y

2 Qutput

Figure 7a: Active low configuration.

Verify that in the active-low configuration the
output reads “0” by a logic analyzer or
oscilloscope if and only if the optocoupler is
switched on by sending a command to turn it
on in STUART mode.

11

S 2 Output

CUGNDL

Figure 7b: Active high configuration.

Verify that in the active-high configuration, the
output is “1” when read by a logic analyzer or
oscilloscope if and only if the optocoupler is
switched on by sending a command to turn it
on in STUART mode.

4. When an output is only switched on for a
time limit between 0.1 and 5 seconds, the
accuracy of the time limit is within 10% of the
set time limit.

Set an output to be switched on for 0.1, 0.2,
0.5, 1, 2, and 5 seconds, attached to the
active-high model described above. Use an
oscilloscope to verify that the time that the
output is turned on is within 10% of the set
time.

5. The reaction time between when a signal is
sent from the computer to the optocoupler
should be less than 0.1 seconds.

Send a signal from the computer at the same
time a button connected to an oscilloscope is
pressed (to indicate “start” on an
oscilloscope). Hook up the output of the
active-high model to a second channel on the
oscilloscope. If the rise time between these
signals is within 0.1 seconds, then the
verification passes. This verification shall be
done with the central hub, rather than in
STUART mode.

6. Multiple outputs from the optocoupler
switcher must have their own independent
time limits.

Set one output to have a time limit of 1
second, then use the “sleep” command on
the computer to wait for 0.5 seconds, then set
another output to have a time limit of 2
seconds. As measured by an oscilloscope
using the active-high model, the first output
should turn off at t=1 +/- 0.1 s relative to when
the first output turns on, and the second
output should turn off at 2 +/- 0.2 seconds
relative to when the second output turns on.
(In order for this verification to be useful, the
second output must turn on before the first

12

output turns off.)

7. When an output is only switched on for a
time limit, it should not be possible for a
computer crash to keep the output stuck high.

Send commands from the computer to turn
one of the optocouplers on for a time limit of 5
seconds. Within that time limit, press
alt-sysrg-c on the computer to manually crash
the system (set kernel.sysrq=1 on the
computer beforehand). Despite this, the
output signal from the optocoupler switcher
should not be stuck high past the time limit.

13

2.3.3 Appliance Subsystem (Thermostat)

Block diagram for thermostat
12-24V

from

external
power
Serial/ source

Whatever

3x high current GP1Q

Figure 8: Block diagram of thermostat.

The thermostat is fundamentally a device with three relays for heat, cool, and fan, plus a
temperature sensor. It can optionally be powered by the HVAC system itself (i.e. the external
power source). In a normal mode of operation, the “heat” is turned on when it is too cold, “cool”
is turned on when it is too hot, and “fan” can be turned on and off manually. These output
signals can be controlled as part of the normal thermostat logic on the appliance itself, or the
signals can be manually switched on or off by the computer. The thermostat will also have a
screen to display the current and set temperature, as well as buttons to control it (like a normal
thermostat). Unless otherwise specified, all commands for verification are to be sent using the
STUART mode configuration.

14

Requirement

Verification

1. The computer is able to control the “hot”,
“cold”, and “fan” outputs manually.

Send commands from the computer to turn
on and off each of those three outputs. Verify
that the relays switch on and off as a result of
these commands.

2. All three outputs should automatically turn
off if no “ping” packet was received in 15 to
20 minutes.

Send a command from the computer to turn
on the “hot” signal, and don’t send any other
commands. The “heat” output should turn on
within 1 second, and turn off after 15 to 20
minutes.

3. When “ping” packets are sent, the output
should be able to stay on for a 1-hour period.

Send a command from the computer to turn
on the “hot” signal, and send “ping”
commands every minute. The “heat” output
should turn on and stay on for the entire
1-hour period.

4. The temperature sensor on the thermostat
must be able to read ambient temperatures
between 0 and 40 degrees Celsius with 1
degree accuracy.

Bring the thermostat to rooms of 0, 10, 20,
25, 30, and 40 degrees Celsius. Check that
the temperature sensor reads the
temperature correctly to the computer within
a 1 degree accuracy.

5. When the logic is in the thermostat, the
computer should be able to control the
temperature the thermostat should be set to
from a range of 10 to 35 degrees Celsius.

Send a command from the computer to the
central logic to set the temperature of the
system, and whether or not heating, cooling,
or the fan is requested. Verify that when
heating, the “heat” output is on if and only if
the temperature measured by the selected
temperature sensor is less than the set
temperature; ditto for “cool” output for
temperatures greater than the set
temperature. This verification is to be
performed for set temperatures at 10, 15, 20,
25, 30, and 35 degrees Celsius.

6. Buttons on the thermostat must switch
between heat, cool, and fan modes, as well
as increasing or decreasing the temperature.

Verify that pressing buttons increases or
decreases the set temperature. There must
also be a sequence of buttons to change
between heat, cool, and fan modes.

15

2.4 Software Subsystem

The software subsystem refers to any software that runs on the computer. The main
functionality of this program is to read any data coming from the three appliances as well as

write that data back to each of them.

Requirement

Verification

1. Appliances must work for cable lengths for
up to 10 m from the central hub.

Construct cables that connect the appliance
to the hub for lengths of 1, 3, and 10 m, as
measured by a meter stick. Verify
functionality for each appliance with each
length of cable. The cable will be subject to
conditions such as EMI (put near a wireless
router) and bending (extend the wire
completely, then crush the wire into a ball)
during testing.

2. The LCD display must show the
temperature as reported by the selected
temperature sensor, as well as the status of

L]

“heat”, “cool”, and “fan” lines.

Compare the temperature reading from the
computer and the temperature reading on the
LCD screen, to see that they are the same
within a whole number rounding error.

3. Thermostat readings must be visible on the
LCD display.

Compare readings acquired from the
thermostat with that displayed on the
computer to make sure that they are both
accurate to display precision.

4. The program is able to write information to
the appliances, (switch or temperature or
heat/cool/fan status of thermostat)

Change these appliance settings through the
program and verify that changes are applied
to each of the appliances.

2.5 Tolerance Analysis

The main risk here is the need to transmit UART signals over long lengths of wire. (USB signals
already have a maximum cable length of 5 m, according to [1].) Generally, if running signals
over long distances, the voltage of the signals needs to be increased, and the frequency of the
signal needs to be decreased. We will initially test our prototype with a 9600 baud UART with 5
V signaling, which is still sufficient for simple switches like the optocoupler switcher and the
thermostat [7]. If it turns out that there are still signal losses, we could have an optional external
power supply for each appliance. On the other hand, if the transmission quality is still good, then
the UART baud rate could be increased to as high as possible. Note that this baud rate has to
be specified in advance and be the same for all three appliances, because the UART protocol
does not have a mechanism to negotiate baud rate [7].

16

In order to have a voltage drop which is < 0.5 V through a 10 m cable from the central hub to the
appliance with a current of 0.5 A, the maximum allowed resistance across the wire must be less
than 0.5V /0.5 A, or 1 ohm. This current runs across 20 m (forward and back through the
cable), so the maximum allowed per-length resistance is 1 ohm / 20 m = 50 milliohms per meter.
According to [2], this would mean that the wire gauge for the power lines would need to be 21
AWG or higher. 20 AWG wire sounds sufficient, as it has a resistance of 33.31 milliohms per
meter, which translates to a total voltage drop of 0.03331 ohms per meter *20m* 0.5A =
0.3331 V, which is still within the requirement.

As an alternative, we could potentially make the 10 m cable not have any power lines, thus
requiring the use of an external power supply instead, regardless of the appliance. (Because the
appliances without an external power supply use 5V, a USB type B connector on the appliance
for power should be sufficient because the voltage is the same)

Finally, to get around the baud rate issue, we could convert the UART signal into a differential
signal. The differential signaling should be simple to implement (simply send both the normal
and inverted signal on the wire at the same time, and use a differential amplifier on the receiving
end to cancel out any noise; see [3]).

We believe that a maximum cable length of 10 m is sufficient for versatility -- since there
will be power outlets near remote appliances anyway, power delivery through the

transmission wire is less important. Our tolerance analysis indicates that that length of
wire is manageable even with the voltage drop.

3 Cost and Schedule
3.1 Cost Analysis

Fixed

Description Fixed Cost

$55/hr $44,000
8 hr/day

5 days/week
10 weeks

2 people

17

Variable

Component Individual cost Bulk cost

PCB x4 (hub and 3 $20 $15

appliances) (PCBWay)

ATMEGA328P-PU x3 $8.46 $7.02

(Microcontroller for

appliances) (Digikey)

497-4257-1-ND x2 (3.3v $1.86 $0.82

regulator) (Dlgikey)

C HUB CONTROLLER USB | $6.07 $5.45

48LQFP

RELAY GEN PURPOSE $3.18 $3

SPDT 1A 5VDC x3

Temperature Sensor $1.71 $1.53

Analog, Local -40°C ~

125°C 10mV/°C TO-92-3

IRA-S210ST01 $3.38 $2.58

PYROELECTRIC

INFRARED SENSOR

JFET N-CH 35V 625MW $0.50 $0.38

TO92-3

Category 5e Patch Cord, $9.99 $9.30

10.0 ft, Blue x3

Total $55.15 $45.08
3.2 Schedule

Week Peter Nagarjun

10/4/2021 Design

Complete E2E Circuit
Schematics

Order Parts, Begin PCB
Design

10/11/2021 Circuit

Circuit Design

Circuit Design

10/18/2021 Central Hub PCB

Design PCB for central hub

Fix bugs in central hub PCB

18

10/25/2021 Appliance PCB Design PCB for each Fix bugs in appliance PCB
appliance sub system

11/1/2021 Connections Implement UART protocols Implement UART protocols
between central hub and between central hub and
appliances appliances

11/8/2021 Mock Complete design of prototype | Complete design of prototype

11/15/2021 Final Prepare for final demo and Prepare for final demo and
final report final report

4 Safety and Ethics

One particularly important safety concern here is because we expect a high degree of
modularity from the project, there are cases where end users could potentially e.g. putin an IC
backwards in its socket or hook up the wrong connectors. This could result in component
damage especially if high currents end up in low-current paths. Since low-level modularity is
usually expected to be performed by advanced users only, a simple warning about these
dangers would suffice, as those users generally understand the consequences of incorrect
wiring. In addition, we also have connectors that are meant to be plugged in by non-advanced
users. We would theoretically be responsible to some degree for those kinds of incidents. To
mitigate this, we could either create a custom connector for the interconnects between the hub
and appliances, or we could reuse an existing connector. (USB connectors to the computer are
already standardized.) If we choose to reuse an existing connector, we should be careful not to
damage devices that use that same connector, where the devices use protocols that are
normally associated with that connector (e.g. if we use 6-pin mini-DIN, then we should design
the protocol in the connector such that the devices should not be damaged by plugging in e.g. a
PS/2 mouse or keyboard. The protocol will very likely be incompatible, but the mouse or
keyboard should not be damaged as a result.)

Finally, the switcher could potentially be able to switch high voltages (e.g. 120V AC). Although
failure to do so is not critical to the success of our project, we may still need additional training
with high voltage if we ever decide to extend our project to switch high voltages [6].

There are also ethical issues with this project. For example, our project is touted to preserve the
end user’s privacy. In order for this to be relied upon, the end user should be able to verify this
independently (i.e. the privacy aspects should not be present solely because we, as the creators
of the project, are known to respect people’s privacy) [5]. In order to do so, we must be
transparent about the designs and make any microcontroller code open source, such that the
end user is notified about the actual source code present in the microcontroller [5]. In addition,
the number of “mandatory” parts (i.e. the parts that are required for essential functionality of the

19

appliances to be used in any meaningful way) is minimized, and should not rely on any
microcontroller, thus the requirement for the breakout header for the appliances.

5 Citations

[1] “USB hardware,” Wikipedia, 25-Sep-2021. [Online]. Available:
https://en.wikipedia.org/wiki/USB_hardware#Cabling. [Accessed: 30-Sep-2021].

[2] “American Wire Gauge,” Wikipedia, 28-Sep-2021. [Online]. Available:
https://en.wikipedia.org/wiki/American_wire_gauge. [Accessed: 30-Sep-2021].

[3] “Differential signalling,” Wikipedia, 29-Sep-2021. [Online]. Available:
https://en.wikipedia.org/wiki/Differential_signalling. [Accessed: 30-Sep-2021].

[4] “ARP spoofing,” Wikipedia, 24-Jul-2021. [Online]. Available:
https://en.wikipedia.org/wiki/ARP_spoofing. [Accessed: 30-Sep-2021].

[5] “The code affirms an obligation of computing professionals to use their skills for the benefit
of society.,” Code of Ethics. [Online]. Available: https://www.acm.org/code-of-ethics. [Accessed:

30-Sep-2021].

[6] “IEEE code of Ethics,” IEEE. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 30-Sep-2021].

[7] “RF Wireless World,” UART vs SPI vs 12C | Difference between UART,SPI and I12C. [Online].
Available: https://www.rfwireless-world.com/Terminology/UART-vs-SPI-vs-I2C.html. [Accessed:

30-Sep-2021].

[8] “RF Wireless World,” Advantages of UART | disadvantages of UART. [Online]. Available:
https://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-UART.html.

[Accessed: 30-Sep-2021].

[9] “How an optocoupler works: Eagle: Blog,” Eagle Blog, 02-Feb-2021. [Online]. Available:

https://www.autodesk.com/products/eagle/blog/how-an-optocoupler-works/. [Accessed:
30-Sep-2021].

[10] Grainger Engineering Office of Marketing and Communications, “Course websites,” The

Grainger College of Engineering | UIUC. [Online]. Available:
https://courses.grainger.illinois.edu/ece439/fa2021/. [Accessed: 30-Sep-2021].

20

21

