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Abstract

This paper discusses the research, development, and evaluation of a design for motorized throttle quadrant peripheral

aimed at consumer-grade home flight simulation. The final product provides functionalities that recreate the thrust-

following levers found on multiple commercial airliner models (e.g., Boeing B series). The aim of the product is to

provide realistic and consumer-friendly flight simulation experiences at prices similar to non-motorized equivalents

existent on the market. Large portion of this paper is devoted to the development process behind the software add-

on, the motor driver firmware, and the carrier circuit board. Additionally, this paper presents a new communication

protocol designed specifically for communication between flight simulator and peripheral hardware. At last, possible

improvements to the design and future enhancements are discussed.
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Glossary

Auto Throttle (A/T) is a part of the flight automation system that takes full control of the thrust demand

of the aircraft once engaged. The pilot only need to specify a desired performance figure and the A/T

system will automatically adjust engine outputs to achieve said performance.

Control Column is the device for controlling aircraft’s pitch and roll placed in front of the pilots on most

aircraft models.

Flight Simulator is a hardware device, a software program, or a combination of both that artificially re-

creates aircraft flight and the environment in which it flies, for pilot training, design, or other purposes.

FMC/CDU is short for Flight Management Computer/Central Display Unit. It is the input device for

flight information including route, aircraft performance figures, and performance limits. Must be

correctly configured for flight automation to function.

Main Control Panel (MCP) is the control panel allowing the pilots to select operating modes of the

flight automation system and command automated attitude changes.

Master Caution is the secondary warning for critical non-emergency events such as A/T disengage.

Multi-Function Display is the inboard displays capable of displaying multiple system status including

system recall and engine status.

Primary Flight Display (PFD) is the primary flight instrument in a digitized cockpit, displaying crucial

information including flight automation status and aircraft attitude.

Recall is the log-keeping functionality of the FMC capable of summarizing events occurring with the aircraft

for improved crew awareness.

Speedbrake is mechanised devices on the top-surface of the wings that induces extra drag when deployed

for deceleration. Deployment of the speedbrake is controlled either manually with a lever on the throttle

quadrant or automatically when the aircraft lands.

Throttle Quadrant refers to the unit housing all essential thrust control inputs (buttons and levers).

Often placed in between two pilots in the center pedestal for ease of access.
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Thrust Lever is a lever-like input device with a defined travel range. The position of the thrust lever is

mapped to engine thrust demands.

TO/GA (Take Off/Go Around) is the maximum rated thrust the engines can generate.
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1 Introduction

1.1 Objective

Modern airliners are equipped with multiple flight automation systems to alleviate the workload of pilots

during long flights. One of these automations commonly fitted is the Auto Throttle (A/T) system. A/T is

able to fully control the engine thrust demand of the airplane in order to achieve constant airspeed cruise and

provide crucial safety functionalities. To improve the situational awareness of the pilots, Boeing, alongside

many major airplane manufacturers, fitted their airplanes with motorized throttle quadrants. When A/T

sends thrust settings to the airplane’s engines, the thrust levers will move accordingly to the positions that

reflect the real-time engine thrust outputs. Such system allows the pilots to regain control of the throttle

at any moment with full awareness of the current thrust settings. This is a crucial control characteristic of

these airplanes. Without this consistency between thrust lever positions and actual engine thrust outputs,

when A/T is disengaged, the airplane’s engines will immediately try to adjust to the current thrust lever

positions, which may cause a sudden and unexpected power increase or decrease of the engines.

Current main-stream consumer-level flight simulator peripherals use spring tension to simulate the weight

felt by the pilot when operating the control column. However, no effort is made to simulate the synchronous

movement of the throttle quadrant with A/T commands. Home-based simulation systems often have the

pilots to manually adjust the thrust levers to match the actual thrust setting inside the simulator software

program, hence deteriorating the experience. Being able to recreate the motorized throttle will bring the

realism of the flight simulation experience to a whole new level.

With this project we aim to design and create a motorized throttle quadrant for casual flight enthusiasts.

The throttle quadrant can interface with mainstream simulation software (Microsoft FSX [1] or Lockheed

Martin Prepar3D [2]) via universal protocol (e.g., USB 3.0) and synchronize thrust levers’ positions with

A/T commands. Figure 1 is an illustration of such process in action which vaguely represents the final

product’s main functionality.

Figure 1: Illustration of device operation. Multi-function display (MFD) of the aircraft (left). Real looking of
the throttle quadrant (middle). Flight simulator throttle quadrant (right). The MFD, real throttle quadrant,
and simulator throttle quadrant on the same row represent the same the engine thrust setting.
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Figure 2: Comparison of a casual in-home flight simulator (left) and the real cockpit view in Prepar3Dv4
(right). Corresponding components are labelled by the same color (for example, red boxes mark the control
columns in both pictures.

1.2 Background

Despite commercial full-scale flight deck simulators for professional pilot training purpose, a common choice

for casual flight enthusiasts is Logitech Flight Yoke and Throttle Quadrant [3, 4], often purchased together

with a Rudder Pedal System, as shown in Figure 2. While Logitech’s solution is affordable and popular, it

does not have a motorized throttle quadrant, thus deteriorating the realism of flight simulation.

In the domain of driving simulators, wheel and pedal systems such as Logitech G920 [5] already support

force feedback, and existing solutions are affordable to casual players. These simulators use a motorized

wheel to simulate the actual behavior of a car’s wheel. Our project aims to build motorized throttle levers

for flight simulators.

Flight Illusion has motorized flight yokes on sale [6], but their solutions cost more than $1200 and are too

expensive for casual players. No ready-to-use motorized throttle quadrant under $1000 is available on the

market as far as we have discovered.

1.3 High-Level Requirements

To better evaluate the outcome of the project, three major requirements must be met:

• The throttle quadrant must be recognized by the OS (i.e., be listed in Device Manager in Windows 10)

and flight simulator software can detect user inputs from the throttle quadrant. We will be targeting

Windows 10 and Prepar3Dv4. Supporting more OSes and simulators is possible but out of the scope

of this work.

• If A/T is engaged and commands a thrust change, the throttle quadrant must reflect the movement

(speed and direction of position change) of the thrust levers shown in the simulator’s virtual cockpit

with a latency less than 100ms, which is an unnoticeable delay comparable to that of a wireless game

console controller [7]. The thrust levers must stop within 2% of the commanded position. We assume

that the simulator software is reliable for sending appropriate A/T commands so that the speed of the

levers under A/T can be realized by the motors.

• When the A/T Disengage button is pressed, the throttle quadrant must disengage motor torque output

in less than 50ms and allow for the pilot to regain control of the thrust levers. The motor must not

output any torque to hinder the movement of the levers until the A/T is engaged again by the pilot.
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2 Design

Figure 3 is an overall view of our design, which is divided into two parts that works in tandem to achieve

the requirements listed in Section 1.3. The software part includes an add-on for selected flight simulation

software (Section 2.1). The add-on gathers airplane status information from APIs provided by the flight

simulation software and allows bidirectional communication between the flight simulator and the throttle

quadrant device. We develop the ASDF protocol as the host/device communication protocol (Section 2.2).

The hardware part includes a custom control board carrying a microcontroller and several stepper-motor

driver chips (Section 2.3). The microcontroller has firmware mapping functions that translate between

thrust lever position and throttle input. Linear potentiometers are used for detecting lever positions. The

mechanical appearance of our product is also presented. (Section 2.6).

Host (PC) Software

A/P

SimConnect
API Add-on

Prepar 3Dv4

ASDF Protocol over
USB Serial Connection

Hardware and Mechanical Parts

Microcontroller
(ATMega 32u4)

Motor Driver
5V/12V H-Bridge

(TB6612FNG)

Stepper Motor 
and Encoder

Thrust Levers
& Buttons

Power Supply

12V DC from Wall
Adapter

5V DC from USB

Data Flow

12V DC

5V DC

Button Press/Release

Lever
Position
Control

Pilot Interactions

Custom PCB

Lever
Position

Feedback

Mechanical
Connection

User (Pilot)

Figure 3: Block Diagram of the Design.
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SCThread TQThread

Shared Data Structure

Prepar3Dv4 Flight
Simulator

SimConnect API

Hardware
Microcontroller

ASDF/Serial/USB

Memory shared between two threads
within the same process

Figure 4: High-level Architecture of the Flight Simulator Add-On.

2.1 Host Add-On

The software subsystem running on the host computer consists of an add-on that is responsible for interacting

with the flight simulator program and for commanding the throttle quadrant device. Specifically, the add-on

needs to read user inputs from the device and transmit user inputs to the flight simulator if A/T is not

engaged, or get simulation data from the simulator program and command the device accordingly if A/T is

engaged.

The add-on is developed with Prepar3Dv4 SDK [8]. In particular, the SDK specifies the SimConnect API,

which exposes a network-based communication interface for third-party developers to access flight data and

simulation events from outside of the simulator program. Taking this convenience, we only need to develop

our own program using SimConnect API and link to the pre-compiled library provided by the SDK. As a

standalone program, the add-on can be easily installed by the user and configured to auto-start with the

flight simulator.

The communication between the add-on and the hardware device is realized with the ASDF protocol, as

discussed in Section 2.2. In particular, the ASDF protocol operates over a serial connection with USB channel

as the physical media. The add-on uses the conventional Win32 Serial API to maintain serial connection to

the device and implements the ASDF protocol based on the serial communication [9].

Since the add-on needs to address two challenges — interacting with the flight simulator and command-

ing the device — a natural design arises. In particular, the add-on is split into two separate threads, as

shown in Figure 4. Multithreading avoids interference between the two functionalities and gives a more

decoupled design for ease of debugging. The shared data structure between the two threads follows a single-

producer single-consumer synchronization model to guarantee data consistency, and which thread gets the

write permission is determined by the A/T Engage status.

2.1.1 The Throttle Quadrant Thread (TQThread)

For simplicity and for low latency, we use a dedicated TQThread that runs an infinite loop to poll throttle

quadrant data from the hardware controller of the throttle quadrant device. In addition, it also initializes

the device when the simulation begins and handles any error reported by the device.

The control flow of TQThread is shown in Figure 5. If A/T is not engaged, the user input data will be

stored in a pre-allocated structure in memory and shared with SCThread, which is responsible for sending

user inputs to Prepar3Dv4 using the SimConnect API. Conversely, if A/T is engaged, SCThread will write

throttle lever positions into the shared structure and TQThread will send these data to the device via the

ASDF protocol. In addition, TQThread always forwards button inputs to the flight simulator.
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Initialization

A/T engaged?

Poll lever
positions from

hadware

False

Send lever
positions to
hardware

True

Poll button
status from
hardware

Update shared
data structure

Figure 5: Control Flow Diagram of TQThread (error handling not shown).

2.1.2 The SimConnect Thread (SCThread)

The SCThread is composed according to the SimConnect API and the Prepar3Dv4 SDK [8]. The API

specifies an event-based communication with the flight simulator. When there is a change in Prepar3Dv4

that is of our interest — for example, when the A/T changes the throttle level — Prepar3Dv4 triggers a

simulator event. This event is forwarded to SCThread via the SimConnect API.

For each simulator event, we create an event handler function. In particular, we are only interested in

events that signify the change in throttle level. The event handler sets the corresponding fields in the shared

data structure, and the TQThread can then forward the throttle level change to the hardware controller by

sending corresponding ASDF packets. In practice, we are only interested in simulator events that signify

A/T engage/disengage, throttle level change, or speed brake level change, and SCThread is configured during

initialization such that only events of interest will be sent to the add-on.

When the SCThread receives an event from the simulator, it proceeds by calling

SimConnect RequestDataOnSimObject()

to get the data (A/T status, throttle level, etc.) from the simulator, and then sets the corresponding field

in the shared data structure so that TQThread can send ASDF commands to control the hardware throttle

quadrant accordingly. Conversely, SCThread calls

SimConnect SetDataOnSimObject()

to set status (A/T status, throttle level, etc.) for the airplane under simulation. Since this API call will

pause the simulation until it returns to the SCThread, we cannot directly use an infinite loop and let the

simulator “poll” data from the add-on, or the “polling” will cause significant simulation lag and degrade

flight experience. Instead, in the infinite loop, we add a condition check to guarantee that we only call the

set data API when the data are actually changed. The control flow of SCThread is shown in Figure 6.
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Initialization

Simulator Event?

RequestDataOnSimObject()

True

TQThread input data changed?

False

Update shared data structure

SetDataOnSimObject()

True

False

Figure 6: Control Flow Diagram of SCThread.

2.2 ASDF: A Host/Device Communication Protocol for Flight Simulation

The host program and the device microcontroller will communicate over a USB Serial connection, which

provides a streaming interface for bidirectional reads and writes. We use existing USB Serial libraries for

the Windows OS and the ATMega chip to implement our communication protocol.

We present the packet-based communication protocol, the Aviation Simulator Data Format (ASDF) Protocol,

for the host to poll data from the thrust quadrant and send commands to set thrust position. The packet

sent by the host consists of a command opcode and optionally several bytes of data. The opcode is 1 byte

with the most significant bit set to 1. Each data byte will have the most significant bit set to 0 to be

distinguished from opcode bytes. This scheme limits the number of opcodes and the maximum value of one

data byte to 27 − 1 = 127, which is more than enough for our purposes. The details of each command are

specified in Table 2.

The response packet sent by the thrust quadrant microcontroller contains one or more bytes depending on

the command received from the host. The response formats are listed in Table 3.

2.3 Electrical & Electronic Parts

The hardware subsystem consists of a microcontroller, three stepper motor driver chips, three stepper motors,

the user interfaces (levers and buttons), and three potentiometers. The E&E subsystem makes up most of

the functionalities of the throttle quadrant. The levers move at a constant rate smoothly whenever A/T

commands a thrust adjustment. The levers will stop exactly and firmly at the designated position without

slipping or drifting when they arrive at the designated position. The motors actively apply resisting torque

to external disturbances when they are set in position until the A/T disengage signal is issued.

2.3.1 Microcontroller

The ATMega 32u4 microcontroller is the processing center on the device side. This particular model of

microcontroller is selected due to its convenient integrated USB controller and support for the Arduino IDE

environment. By flashing the onboard ROM with Arduino’s open-sourced bootloader, we are able to convert

the 32u4 into an Arduino Leonardo equivalent and have access to multiple design tools exclusive to the

platform.

Connected to the host PC via USB 3.0 and powered by USB, the microcontroller interfaces with the host
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add-on to receive commands, data, and to report device status. One functionality of the microncontroller

is to encode and decode necessary information in compliance with the ASDF protocol, as discussed in

Section 2.2. The microcontroller firmware is also responsible for collecting analog values from lever position

potentiometers, read button status, and issuing PWM control signals to the motor drivers. More information

on the firmware running on the microcontroller can be found in Section 2.4.

2.3.2 Motor Driver

The 3 TB6612FNG dual H-bridge motor drivers used provide the necessary circuits to run the bipolar stepper

motors in both forward and reverse direction. The motor driver takes three inputs: Ain, Bin, and PWM.

Notice that the TB6612FNG consists of two H-bridges per chip, but our design requires both of them to

control the same motor. Ain and Bin regulates the operational modes of the motor driver and can be used

for special functionalities such as fast stop or halt. The PWM signal comes from the microcontroller’s digital

output pins.

2.3.3 Stepper Motors

Three NEMA 17 stepper motors are used to physically move the levers. Each stepper motor will be respon-

sible for only one lever. The stepper motors are powered externally by a power adapter and controlled by

the stepper motor driver. Each stepper motor is directly connected to a single-turn linear potentiometer to

determine the location of the lever. The stepper motors’ wings remain energized by the HALT function to

resist external disturbances such as vibration.

2.3.4 Power Supply

The power supply is the only OEM block component in the E&E subsystem. Purchased from external

sources, the power supply provides a steady 12 V potential to the motors’ powerline, and possesses the

capability of delivering a current of >5 A to power the motors at maximum torque.

2.4 Microcontroller Firmware

The firmware on the ATmega 32u4 MCU serves as an interface between the host device and the throttle

quadrant. The microcontroller firmware receives ASDF commands from the serial connection and performs

the requested operation. Analog readouts from the potentiometers and buttons are mapped to their cor-

responding ranges and then packaged into 8-bit data packets to be sent back to the host via ASDF. The

microcontroller is also responsible for monitoring the status of the hardware system and reports device error

or spontaneously reset should catastrophic errors occur.

position = (x− inmin)× outmax − outmin

inmax − inmin
+ outmin (1)

A mapping function is built into the firmware to convert the variable analog input range to the various data

types required by the simulator and to stepper motor movement instructions for the H-bridge controllers.

The 32u4 MCU is capable of 10-bit analog input using the analogRead() function provided by the Arduino

standard library. The 10-bit data must be mapped on a 1:1 basis to narrower ranges required for the

simulator to understand. For example, the lever inputs accepted by Prepar3Dv4 only ranges from 0 to 127.

The stepper motor control function only accepts integers between 0 and 50. More discussion on the choice

of the mapping function can be found in: Equation (1).

The microcontroller also facilitates the motor control functions. The motor control function takes integer

inputs between 0 and 50 that indicates the number of steps the motor must rotate to position the levers in
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Figure 7: Motor Control Code Example.

the correct spot. During the motorization process where the motors are running, the potentiometer inputs

from the levers are constantly checked against the desired position. This feedback loop ensures that the

levers are positioned as accurately as possible. The feedback loop also self-adjusts to occasional slipping of

the motors. Since the step() function in the standard Arduino library is a blocking function that prevents the

execution of any other instructions before its completion, we cannot run the stepper motors in a continuous

fashion. In order to move multiple motors together and ensure all button presses during the motorization

process are still immediately recognized, the motors move alternatively one step at a time. The function is

looped until both the step count and the potentiometer feedback indicates that the lever is in the correct

position. Since the 32u4 is operating at 16 MHz, there should be no identifiable pauses or asynchronizations

between levers.

2.5 Circuits & PCB

The PCB is the main carrier of E&E components inside the throttle quadrant. It consists of soldering points

for the ICs and integrated power/signal lines. The circuit also hosts a collection of filtering and supportive

peripheral circuits required for the ATMega 32u4 to function correctly and stably

The circuit is designed in compliance with ATMega’s recommendations and checked against Arduino’s open-

sourced Leonardo design. We have added additional power rail filtering capacitors to further stabilize the

system. This is crucial to the stability of the E&E system as the stepper motors can generate considerable

amounts of noises when turned on. A polarized capacitor is used to further rectify fluctuations in the Vcc

rail. Several LEDs are also added to indicate the physical working state of the serial port and 5 V Vcc.

All ATMega I/O pins and motor driver I/O pins are routed to fly-wire headers to increase firmware design

flexibility as well as to make the circuit easier to be diagnosed should an error occur. A soldering joint

in used on the HWB pin to allow for hardware bootloader override. This can be used in commercialized

versions to prevent the firmware from being tampered with by the user. Figure 14 is the schematic of our

final circuit design. A copy of the .sch file can also be found on the project homepage.

The PCB used in the final product is created from the circuit schematic shown above. When laying out the

components, special care is taken to the sensitive filtering capacitors and noisier components. The filtering

capacitors for the voltage lines are placed next to the respective power inlets to minimize the coupling

capacitance brought by the PCB traces. The filtering capacitors for signal lines and the crystal oscillators

are placed close to the microcontroller to maximize signal integrity. Fly-wire pin connectors are placed on

the edges of the PCB for easy access and the traces are carefully wired to minimize the use of vias. Ground-

planes are added to cover all components and the two ground-planes are connected by a 60-mil trace capable

of hosting >10 A current with <10 ◦C temperature rise. The 12 V power rail also features thicker traces for

higher current capacity and less temperature rises. Figure 15 is the final PCB layout. A copy of the .brd

file can also be found on the project homepage.
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2.6 Mechanical Parts

The mechanical portion of our design consists exclusively of user interfaces (levers and buttons). The three

levers are connected to the output shaft of the three stepper motors. The two throttle levers on the right

are mapped to the two engine of a twin-engine airplane, and the left most lever is mapped to the speedbrake

handle. The arrangement is chosen to resemble the layout of a Boeing-spec airliner cockpit center pedestal.

Two push buttons are located on the side of the body of the throttle quadrant and are mapped to TO/GA

and A/T disengage.

2.6.1 Levers and Buttons

The three levers are fixed on one end with a hard-limited travel range enforced by slots cut into the throttle

quadrant body. The angle at which the levers sit corresponds to the value of inputs made to the respective

axis and is determined by single-turn linear potentiometers connected to the root of the levers. Moving the

levers either by hand or through the stepper motors will alter the corresponding input inside the simulator.

The levers are designed with a travel range close to that on a Boeing 737-800. The lever travel are mapped

linearly to the allowed value ranges for respective inputs in the simulator by a linear mapping function in the

microcontroller firmware, as discussed in Section 2.4. Two buttons are also present on the throttle quadrant.

The first button is mapped to the TO/GA button that, once pressed, will engage A/T and immediately

demand maximum allowed thrust from both engines. The second button is the A/T disengaged button.

Pressing it once will disconnect the A/T system. Figure 8 is an illustration of the concept look of our

product and a close-up picture of the final prototype is in Figure 16 in the Appendix.

Figure 8: Conceptual Physical Design.
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3 Design Verification

3.1 Host Add-On

The R&Vs of the host software are listed in Table 4. There are four major functionalities to be verified:

1) SCThread correctly sends user inputs to the flight simulator; 2) SCThread correctly receives simulation

events of interest such as a lever position change or A/T status change; 3) TQThread correctly reads user

inputs from the throttle quadrant hardware; 4) TQThread correctly sends lever positions to the hardware.

Correctly implementing these four functionalities guarantees the connectivity between the flight simulator

and the throttle quadrant hardware. In addition, the add-on should also correctly map between different

data representations. For example, the flight simulator requires a throttle lever position to be a double

number between 0 and 100, while the ASDF protocol encapsulates lever position as a 7-bit unsigned integer

ranging between 0 and 127.

In practice, we first verify the implementation of ASDF protocol in the device firmware, as discussed in

Section 3.2. Then, we use the verified firmware to test TQThread. Once TQThread is verified, we can directly

test the whole system and examine any misbehavior and debug messages from SCThread. While directly

verifying SCThread is possible, it requires significant amount of work just to develop a test bench due to

the complexity of the Prepar3Dv4 SDK. We estimated that developing a test bench for SCThread requires

comparable amount of effort as testing the system as a whole after all other components are verified.

In addition to correctness, we are also interested in the performance of the host add-on. In particular, we

want to estimate the latency between the flight simulator and the throttle quadrant device. This latency

approximates the time needed for a user input to be reflected in the virtual cockpit and for a visual change

in the virtual cockpit to be reflected on the actual hardware.

Instead of profiling the latency directly by a global timer, which is almost impossible due to the natural

complexity of the Prepar3Dv4 SDK, we split the critical path into three separate parts: 1) simulator to add-

on latency; 2) add-on internal latency; 3) add-on to device latency. We estimate part 1) by measuring the

average latency of a SimConnect API call. Part 2) is dominated by the synchronization between SCThread

and TQThread, i.e., the time taken to read or write the shared structure. Part 3) is the time taken between

sending an ASDF command and receiving the corresponding response. Empirically, part 1) takes on average

0.5 ms and at most 1 ms, part 2) takes 10 µs to 20 µs, and part 3) takes around 1 ms. Putting these numbers

together, we calculate that the latency between the flight simulator and the throttle quadrant device is on

average 1.5 ms and at most 2 ms.

3.2 ASDF Protocol

The verification of the ASDF protocol follows from the specifications in Table 2 and Table 3. To verify that

the device correctly implements the ASDF protocol, we develop a Python script that accepts user inputs

in terminal and sends corresponding ASDF commands to the device. When the user types poll, the script

will send CMD POLL to the device and displays any responses it receives (Figure 9). Note that the printed

poll rate does not represent the actual poll rate in our implementation, which is written as a C++ program.

To send CMD LVR SET, the user needs to type in lvrset followed by a bitmask indicating which lever to set

followed by values to be set (Figure 10). To reset the device and the serial session, the user inputs reset,

and the script will send CMD RESET to the device and wait for the ASDF RESET response (Figure 11). Other

commands can be verified in a similar manner.
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Figure 9: Using Python script to verify CMD POLL.

Figure 10: Using Python script to verify CMD LVR SET.

Figure 11: Using Python script to verify CMD RESET.

After verifying the ASDF implementation in the device firmware, we can use this verified firmware to test

that the TQThread (Section 2.1.1) correctly implements the ASDF protocol. At the same time, we write

microbenchmarks to measure the average latency for CMD POLL and CMD LVR SET by sending each command

consecutively for more than one thousand times in C++. The average round-trip latencies for both commands

are around 1 ms, implying that the host add-on is able to poll user inputs from the device at a rate of 1000 Hz

and send lever position data to the device at a comparable rate. We also measured the latency of CMD RESET

in a similar way, and the average latency of running 50 trials is 1.9 s.

3.3 Hardware

The R&Vs of the EE hardware are listed in Table 5.

3.3.1 Circuit and PCB

The circuit is first compared to the open-sourced Arduino Leonardo reference board design to confirm

that all the necessary supporting circuits are present for the microcontroller to work. For every revision

of PCB manufactured, components are welded on to the board and immediately checked for accidental

connection/disconnection between nodes. The microcontroller is then connected to a PC running AVRDude

and Arduino IDE to confirm that it can be recognized by the driver as a valid ATMega 32u4 microcontroller.

The frequency of the 16 MHz crystal oscillator is then checked with an oscilloscope to confirm that a steady 16

MHz signal is being fed into the 32u4’s external clock pin. To this point, the microcontroller and peripheral

circuit is considered to be functional. The 12 V power is then introduced to the Vmotor line. A simple

script provided by the Arduino stepper.lib library is used to run the motors. Heating and instability issues

are observed for a few minutes to confirm that the PCB traces and soldering can withstand the current

demanded by the motors. Then the Arduino bootloader is flashed onto the microcontroller. Figure 12 shows

our ATMega 32u4 being successfully recognized by Windows 10 with correct device name and driver.
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Figure 12: ATMega 32u4 Being Recognized by Windows 10.

3.3.2 Microcontroller Firmware

The firmware is tested once a stable serial connection can be established between the host and the micro-

controller. First, the firmware is flashed with the Arduino bootloader, and we can see the microcontroller

appears as an Arduino Leonardo at the COM port. Then we upload the firmware to the board and open

the debug terminal. We can verify the functionality of the firmware with the verification of ASDF protocol,

which follows the specifications in Table 2, Table 3 and Table 4. The functionalities of instruction decoding

and data processing is verified by examining the debug terminal printout when buttons are pressed and

levers are moved. The levers are moved, first individually then in groups, from the lowest position to the

maximum position. The potentiometer readout is constantly printed on the serial debug monitor to verify

the analog input taken from the potentiometers and buttons is correctly mapped to the accepted data range.

The motor actuation firmware’s verification follows the specifications in Table 5 and Table 6.

3.3.3 Mechanical Parts

The mechanical parts are verified by a Python test script we developed to test the functionality of ASDF

protocol (Section 2.2). A CMD POLL command is issued to the microcontroller which gathers, maps, and

encodes the readings of potentiometers and buttons to send back to the host PC to be printed in the debug

console. The potentiometer range is checked in the serial monitor to be correctly mapped to the required 0 to

127 input range with a linear relation. The three levers are individually calibrated to satisfy the requirements

as discussed in: Table 6. Any differences of the lever readouts caused by variations in the potentiometer,

variations during the assembly, and the simulator’s requirement of different data is accounted for, as discussed

in: Figure 13.

Figure 13: Voltage Output for Different Lever Angles and Different Levers.
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4 Costs

4.1 Parts

Table 1 is the total component costs for a complete build of our product. This does not include the costs of

damaged/extra components we purchased during R&D. The ECE Machine Shop actively contributed in the

manufacturing of the mechanical parts of our product. It is possible to contract third-party manufacturers

with the manufacturing of these parts and may alter the cost.

Table 1: Parts Costs

Part Manufacturer Retail

Cost

Bulk

Purchase

Cost

Actual

Cost

ATmega32u4-AUR ATmega $ 4.66 $ 3.66 $ 4.66

17HS4401S Usongshine $ 14.97 $ 14.97 $ 14.97

TB6612FNG 5V/12V H-bridge Sparkfun $ 1.98 $ 0.863 $ 1.98

SMD Mini-B USB Female Connector Amphenol ICC $ 1.11 $ 1.11 $ 1.11

16mm Push Button Switch APIELE $ 9.66 $ 7.74 $ 9.66

12V 10A Adapter Power Supply BINZET $ 19.98 $ 15.98 $ 19.98

PCB JLCPCB $ 12.6 $ 0.10 $ 12.6

Mechanical Parts Machine Shop $ 35.0 $ 5.0 $ 35.0

Total $ 49.36 $ 99.96

4.2 Labor

Given an average hourly wage of $ 25 /hr for a graduate-level electrical engineer, we can estimate the rough

total R&D labor cost of this project as shown in Equation (2). Our calculation is based on three development

members working 12 hours per week for a total duration of 10 weeks. The parameters are estimated by the

total workload experienced by our team members divided by the total length of this course after approval

of this project.

3 engineers× $ 25 /hr× 12 hr/week× 10 weeks = $ 9000 (2)

After applying the 2.5x modifier adjusting for actual personnel expenses, the total cost of this project in

terms of labor is $ 22500.
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4.3 Profit Analysis

With the unit cost of production and labor cost of R&D determined, we can analyze if our project has

sufficient room for profit if commercialized and marketed. Searching the key word ”Flight Yoke System” on

amazon.com shows 4 similar products at the same targeted $ 200 price bracket as our product. The total

rating count on these four products is 1584. Since none of these 4 competing products are motorized, we

expect to be able to take away at least 50% of purchases with the motorization functionalities if our product

is listed. We estimate that, with sufficient optimization of the process, the time required for a skilled engineer

to assemble a complete product and perform basic quality assurance is 1.5 hours. Then we can estimate the

listing price for our product assuming a 30% profit as shown in Equation (3).[
$ 49.36 /unit +

(
$ 22500

1584 units× 50%

)
+ 2.5× $ 25 /hr

]
× 1.3 = $ 182.35 /unit (3)

This estimated MSRP falls right in our targeted consumer-grade price bracket and can be a strong competitor

with the innovative motorization features.
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5 Conclusion

This paper has discussed our design of a motorized throttle quadrant aimed to improve the realism of

consumer-grade desktop flight simulation. The software add-on written in C++ interfaces with the flight

simulator via the SimConnect API and receive/send raw data corresponding to events within the simulator.

The software add-on also interfaces with the microcontroller using the proprietary ASDF protocol. The

ASDF protocol provides a compact and robust communication scheme for bidirectional data and command

transfer between the host and the device. The microcontroller runs firmware designed to work alongside

the ASDF protocol and control the activity of the stepper motors through H-bridge motor controllers. The

immediate and direct communication pipeline allows for accurate following and setting of the thrust levers

when A/T is engaged, and allows for responsive disengagements and overrides when the appropriate button

is pressed1.

5.1 Accomplishments

5.1.1 ASDF and Host Add-on

The ASDF protocol presented was successfully implemented and achieved > 1000 poll-per-second transfer

rate. The empirical latency between the transmission of an ASDF command to the receiving of all data

packets is measured to be less than 2 milliseconds. We consider such performance to be above our initial

expectation and the requirement of all possible operating scenarios.

The host add-on can be recognized by Prepar3Dv4 as a valid modification and can successfully control

related events inside the simulator. The multi-threaded design scheme adopted by the host add-on prevents

blocking events in the operation of the system and can achieve an input delay of less than 5 millisecond.

This exceeds our delay tolerance of 100 ms.

5.1.2 Microcontroller Firmware

The communication firmware is able to interface with the host add-on via serial connection over USB. The

firmware uses standard serial connection and does not require the installation of additional proprietary driver.

The device can be signaled to reset spontaneously through instruction timeout, and automatically performs

setup again upon boot-up. This enables plug-and-play capabilities that does not require a restart of the

simulator for the throttle quadrant to function.

The ASDF parsing and processing firmware is able to efficiently convert between raw data from potentiates

and buttons to standardized ASDF data packets. The mapping functions enable the levers to perform in a

predictable, linear manner. The switch-case based parsing structure minimizes the round-trip response time

of the microcontroller to allow the completion of a poll-type request in less than 3 ms.

The motor actuation firmware is able to control all motors via PWM signal and directional control signals

issued to the motor drivers. The levers can move in synchronization with their virtual counterparts, The

firmware can also perform hard stopping and halting to further enhance the performance and responsiveness

of the motors.

5.1.3 Circuits

The supportive peripheral circuits are capable of sustaining the operation of the microcontroller steadily.

The filtering capacitors can maintain the supply line voltages to within 0.2 V of specified level. The crystal

oscillators operate at a steady 15.9998 MHz.

1Demo videos are available online at: video 1, video 2
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The ground planes and thickened traces on the printed circuit board can carry the peak 4.5 A current

draw without overheating. Heatsinks attached to the motor drivers keeps them cool even during sustained

operation of the throttle quadrant.

5.2 Uncertainties

5.2.1 Power Supply

Due to the large amount of torque required to accurately position the levers without slipping, the motors

will draw high currents (> 5A) at onsets of lever movements. The high current demand can pull down on

the 12 V line voltage and cause immediate loss of torque and subsequently slipping of the rotor. Adopting

high current supplies from OEM sellers will lead to increases in the overall product cost as well as bulkiness

of the product. The bigger power supply may also increase loads on the passive cooling system we have

adopted.

5.2.2 Ergonomics

Consistent with Boeing airplane systems, our A/T override sequence starts with the pilot pressing the A/T

disengage button. On real Boeing aircraft, the buttons are placed on the tips of the thrust levers, one per

side. Such button arrangement allows the pilot to quickly and intuitively press them and send the A/T

override signal. Due to prototyping limits, we cannot adopt physical designs that accurately reflects the

thrust levers on real aircraft. Our current setup with both buttons on the side of the body of the thrust

quadrant may cause ergonomic inconveniences and compromises the realism somewhat.

5.3 Ethical Considerations

Our throttle quadrant aims to provide an actual and smooth experience to the audience of flight simula-

tions, we believe that our product can bring a more authentic and affordable option to the publicity, which

facilitates the wide audience of flight enthusiasts to access actual flight experience, and may serve as training

equipment before they step up to planes. Thus, our design aligns with the IEEE Code of Ethics Section

7.8.2: “to improve the understanding by individuals and society of the capabilities and societal implications

of conventional and emerging technologies, including intelligent systems” [10].

Since our design-related extensively to mechanical and electrical parts, the safety concerns related to our

physical design during design, experiment, and use need to be addressed. Such safety concerns include

potential safety threats towards users, the misuse of our design may cause undesired consequences to the

user, and the peripheral itself. To optimally be following the IEEE Code of Ethics Section 7.8.9, striving to

reduce potential harm to the user and the property, we make efforts to optimize our design [10].

Our design involves 5 V/12 V power supplies to drive our microcontrollers and the stepper motors. Although

the voltage does not exceed the safety voltage of 22 V, leakages may lead to physical irritation or fire hazards.

To address the concern regarding electric shocks and leakages, the handle of our design will be made from or

covered by insulating materials to isolate the user from the electrical components, and to reduce the chance

of foreign objects from damaging the circuits inside.

The lever movements when A/T is engaged are controlled by the simulator program and, if not regulated,

may cause physical damage to the user. There is a possibility for motor overheating and damage if the lever

is obstructed or stuck. It it also possible for the user to be impacted by the automatically-moving levers.

To address the safety issues concerning mechanical components, we will control and limit the travel of our

thrust lever through both physical blockage and current limits. Also, the firmware mapping function ensures

that the motors will never be instructed to move the levers outside of the designated range.
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5.4 Future Work

5.4.1 Motorized Speedbrake

Apart from the throttle levers we successfully motorized in this project, Boeing airplanes also has motor-

ization enabled on the speedbrake lever. When the main gears touch the ground with the speedbrake lever

in the ARMED position, the speedbrakes are automatically deployed and the speedbrake lever will move to

the fully extended position. The addition of a motorized speedbrake lever will enhance the realism brought

by the throttle quadrant even more. We already have the motor, potentiometer, and wiring to implement

this functionality. But due to time constraints imposed by the course, we have elected to leave such feature

to be completed in the near future.

5.4.2 Circuit Integration

Being a prototype device, our current version of the throttle quadrant features a functional but modular

PCB design. There still exists debug pin-outs and it requires fly-wires to connect to the motors and the

potentiometers. While the functionality of such circuit is not a concern, a fully intergrated PCB with every

component soldered onto it will make the overall construction more rigid and robust against unexpected

impacts.

5.4.3 Replica Levers

Due to the limiting manufacturing capability we have in the prototyping stage, we elected to use 3D-printed

levers in our prototypes. These levers do not represent the real cockpit of the aircraft we intended them to

be matching hence may reduce the realism brought by the throttle quadrant. These prototype levers are

also not ergonomically designed in anyway to be comfortable in the pilot’s hands. To improve on this, we

can use 3D-printed replicas of real Boeing thrust levers. Having matching lever designs will also allow the

TO/GA and A/T disengage buttons to be fitted to the correct locations for ease of access. Not only will

realism be augmented with aesthetically-correct levers, the improved ergonomics will also make pilot inputs

feel more natural and smooth.
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Appendix A ASDF Protocol Specification

Table 2: Host Commands for the ASDF Protocol.

Command Opcode Function

CMD_RESET 0x80 Reset the throttle quadrant device.

CMD_POLL 0x81 Get current status of the thrust levers and the buttons.

CMD_LVR_SET 0x{8-F}2 Lock and set lever positions. This command is actually a combination of 8

commands. Bit 6 to bit 4 form a bitmask indicating which thrust levers are

to be set. The opcode is then followed by the position values in the order

of the bitmask. If none of the bits are set, this command does nothing, and

no following value bytes are required.

CMD_LVR_RELS 0x83 Release the thrust lever (and might let the flight simulator disengage A/P).

CMD_ASDF 0xFF Reserved for debug purposes.

Table 3: Device Responses for the ASDF Protocol.

Response Format Function

ASDF_ERROR 0xFF Response when the device encounters an error.

ASDF_ACK 0x00 A generic response when the device successfully completes a command.

ASDF_RESET 0x01 Generated when the device finishes initialization, which might be the result

of a CMD REST command or the normal bootup.

ASDF_POLL_OK 0x02 First byte of the response to a CMD POLL command. This byte will be

followed by the data bytes asked by the command.

ASDF_LVR_RELS 0x{0,8}3 Generated when the thrust lever is released to pilot’s control. If bit 7 is set,

then this response is the result of a CMD THR RELS command. Otherwise,

this indicates that the pilot wants to forcibly disengage A/P by moving the

thrust lever.
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Appendix B PCB Schematic and Layout

Figure 14: Circuit Schematic.
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Figure 15: PCB Layout.
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Appendix C Exterior Appearance of Final Prototype

Figure 16: Exterior Appearance of Final Prototype.
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Appendix D Requirement and Verification Table

Table 4: R&Vs for Host Software.

Requirement Verification Verified

The Flight Simulator (FS)

Add-on can read flight data

from the simulator soft-

ware via its API calls.

1. Start the simulator program with the add-on.

2. The debug terminal of the add-on should appear auto-

matically or be opened manually.

3. Load a scene in the simulator program, bring the aircraft

into sky, manually adjust thrust demand for both engines

and extend the speedbrake.

4. Verify that the debug terminal of the add-on prints cor-

rect data that agree with the flight instruments in the

virtual cockpit.

Y

The FS Add-on can write

data via the simulator API

to control the airplane with

< 10ms delay.

1. Start the simulator program with the add-on and the de-

bug terminal.

2. Load a scene in the simulator program.

3. Send thrust demand change commands via the debug ter-

minal and start the timer.

4. Confirm requested flight control changes correctly takes

effect and end the timer.

5. The time between command sent and flight control re-

sponse should be less than 10 ms.

Y

The FS Add-on correctly

maps data ranges between

the flight simulator data

and the raw user inputs.

1. Connect the throttle quadrant to the host computer.

2. Load the test firmware onto the throttle quadrant mi-

crocontroller. The test firmware emulates the user in-

puts by continuously changing the throttle lever position

variables and intermittently changing the button status.

When the host add-on sends a poll command, the emu-

lated data will be sent rather than the real user inputs.

3. Start the simulator program with the add-on.

4. Load a scene in the simulator program.

5. Observe that the levers in the virtual cockpit move con-

tinuously and can reach both ends.

6. Observe that the buttons in the virtual cockpit are also

automatically pushed.

Y
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The FS Add-on can read

(write) data from (to) the

throttle quadrant micro-

controller via USB Serial

Protocol within < 100 ms

delay in each direction.

Note: This test procedure assumes that the throttle quadrant

microcontroller correctly handles USB Serial Communication

with the host and correctly controls at least one motorized

lever.

1. Start the flight simulator with the add-on.

2. Connect the throttle quadrant to an operating USB 3.0

port.

3. Load a scene in the simulator program.

4. The data read from the throttle quadrant will be auto-

matically printed onto the debug terminal every 250 ms.

By default, A/T is not active, and the add-on will con-

tiguously send poll commands to the device. A running

average latency is also measured for each poll command.

5. Move any levers on the throttle quadrant. Verify that

correct data is printed in the ATMega debug terminal,

and that the printed latency for poll commands is less

than 100 ms.

6. Push the TOGA button on the throttle quadrant. This

will put the add-on into A/T engaged state so that it

starts sending lever set commands.

7. Observe that the throttle levers move accordingly with

the throttle levers in the virtual cockpit.

8. Verify that the lever set latency printed in the debug ter-

minal is less than 100 ms.

Y
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Table 5: R&Vs for Electronic Hardware.

Requirement Verification Verified

The microcontroller

firmware can decode and

encode data in the correct

format.

1. Start the simulator program with the add-in and the de-

bug terminal.

2. Connect and set up the throttle quadrant with ATMega

serial debug terminal monitoring.

3. Send thrust demand change and speedbrake deployment

commands to the throttle quadrant.

4. Verify the successful decoding of the test pattern in the

serial debug terminal.

5. Manually apply test signals to the microcontroller via de-

bug ports. (bypassing hardware encoder/motor feedback)

6. Verify the reception of test signals in the Add-in debug

terminal.

Y

The motor driver can ad-

vance the stepper motor

without slipping and stop

within 1.8° of assigned po-

sition.

1. Power up the throttle quadrant with 12 V DC.

2. Manually send thrust lever position change commands to

the motor driver circuit (bypassing the microcontroller).

3. Verify all 3 steppers can start without slipping and stop

within 1 step (1.8°) of assigned location after continuous

(more than 2 steps) motion.

Y

The stepper motors can

move all levers smoothly.

Individual levers can move

without affecting its neigh-

bors. The motors sus-

tain long operations with-

out reach above 60°C.

1. Fully power the throttle quadrant (5 V rail and 12 V rail).

2. Open ATMega debug terminal and send stress test com-

mand (cycle all motors at full power continously).

3. Verify the movements of the levers are steady at 12.6° /s

turn rate (7 seconds to complete idle-TO/GA travel).

4. Leave test running for at least one hour.

5. Confirm with infrared camera that the stepper motor

packages are below 60°C.

Y
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The microcontroller can

accurately respond to vir-

tual thrust adjustments

and adjust the thrust levers

accordingly with delay of <

100ms.

Note: This test procedure assumes that the software host is

functional.

1. Start the simulator program.

2. Connect the throttle quadrant to an operating USB 3.0

port.

3. Load compatible scenario.

4. Verify the levers are moved to standby positions when the

aircraft system is initialized.

5. Engage A/T inside the simulation software and command

a thrust change via the MCP and start a timer.

6. Verify the movement of the thrust levers follows that of

the thrust levers in the virtual cockpit and stop the timer

7. The delay should be no more than 100 ms.

8. Extend the speedbrake inside the virtual cockpit and

start a new timer.

9. Verify the speedbrake lever moves to match its position

in the virtual cockpit and stop the timer.

10. The delay should be no more than 100 ms.

Y

The power supply is capa-

ble of motorizing all step-

pers at 12V 0.5A each con-

stantly without reaching >

60°C on the unit package.

1. Power up the throttle quadrant 12 V rail with the power

supply.

2. Send power stress test command via the ATMega debug

terminal (run all motors at 12 V 0.5 A continuously).

3. Confirm with an oscilloscope that the output of the power

supply is at 12± 0.5 V DC.

4. Keep the test sequence running for 1 hour

5. Confirm with infrared camera the temperature of the ex-

terior of the power supply unit is < 60°C

Y
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Table 6: R&Vs for Mechanical Parts.

Requirement Verification Verified

The levers can be mapped

to corresponding function-

alities in the simulation

software.

Note: This test procedure assumes that the software host and

the EE hardware are functional.

1. Open the simulator settings and select throt-

tle/speedbrake lever mappings

2. Map the physical levers to corresponding controls and

initiate calibration.

3. Confirm the levers can be mapped to full control range

(determined automatically by the simulation program)

with at least 1:1 resolution.

Y

The TO/GA button and

both A/T disengage but-

tons are functional with <

100ms input latency.

Note: This test procedure assumes that the software host and

the EE hardware are functional.

1. Start the simulator program.

2. Load a compatible scenario.

3. Setup FMC/CDU for takeoff.

4. Press the TO/GA button and start a timer.

5. Confirm on the PFD that A/T mode has changed to

TO/GA and stop the timer.

6. The delay should be no more than 100 ms.

7. Press A/T disengage button and start a new timer.

8. The A/T ARM switch on the MCP flicks to off posi-

tion. The Master Caution is lit up. A/T DISENGAGE

is shown on the MFD recall section and stop the timer.

9. Verify that the delay is no more than 100 ms.

Y
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