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Abstract

This ECE 445 project realizes a flexible, real-time audio filtering and re-mixing platform for general-purpose hearing

aid research. The processing unit used was the Altera DE10-Nano FPGA board that enumerates efficient FIR filters.

A custom audio codec was designed as a daughter-card for the FPGA and includes a programmable ADC, analog-

controlled DAC, custom headers for mounting onto the FPGA and for processing 16-channel stereo audio. Multiple

microphone array PCBs were produced to create a complete array of fourteen digital MEMS microphones. These

microphones were integral to collecting enough audio information to generate unique filter coefficients. A slider board

was designed to give the user control over which FIR filter to use, and demonstrated how they can reload coefficients

in real-time.

Our demonstration showed how users can switch between different FIR filters almost instantly, and showcased a 16

count microphone array comprised of digital and analog microphones. FIR coefficients were generated in software

via the ARM core of the DE10-Nano and loaded into the FIR filter banks located in the FPGA fabric.
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1 Introduction

1.1 Problem and Solution Overview

Current hearing aid research is often hampered by the inability to quickly develop hardware test platforms.

These platforms must be fast enough to process audio signals in real-time, and efficient enough to perform

expensive mathematical operations. Additionally, modern day hearing aid technology is often proprietary

deeming it inaccessible to researchers worldwide. Our ECE 445 project solves these problems by providing

a flexible microphone array processing platform for real-time filtering and audio remixing. By using our

device, researchers can run their own audio processing algorithms, generate custom FIR coefficients and

reload them into the Augmented Listening platform in real-time.

The platform we have constructed is an extension of the work done by the Augmented Listening Laboratory

under Ryan Corey [4]. Our project will be published as an open-source release for researchers to leverage in

order to expedite the hardware design for realizable signal processing devices.

What follows is a discussion of the primary objectives, detailed design procedure, verification and results of

the Augmented Listening Platform.

1.2 Background

Hearing aid devices have long been shrouded in proprietary technology. The Augmented Listening Laboratory

is creating an open source listening platform to improve hearing aid technology. Standard hearing aid devices

typically contain only two microphones close to the ears. Hearing aid performance can be improved by

adding multiple microphones surrounding the headpiece in the relevant space near the target source. Our

demonstration will show off the power of adding many microphones by using a directional listening technique

called “beamforming”.

Beamforming is a signal processing technique used to extract specific sounds from sources in a room. In our

demonstration we attempted to show in practice how to calibrate and beamform towards multiple sources

with user input. Although that goal was not fully accomplished due to a few hardware bugs, this operation

is completely possible and effective within the capabilities of the Augmented Listening Platform.

1.3 High-Level Requirements

• The listener can distinctly hear each unique source one at a time in our demo using a mixing board,

and independently adjust the level of several real-life sound sources.

• The total delay through our system should be no more than 10ms to avoid disorientation.

• The binaural headphones must preserve spatial awareness and directionality of all sources.
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1.4 Visual Aid
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Figure 1: User diagram

2 Design

The Augmented Listening hardware platform is divided into four main subsystems. The FPGA audio

processing block, the custom audio codec and the ”mixing” volume control board are a complete unit. The

microphone array and binaural headphones nested within the ”Listener” design block are affixed to the user,

or in our demonstration we used a mannequin. Figure 2 shows the block diagram of all hardware components

in the system.

For detailed images of the schematics and PCBs involved in this design, turn your attention towards the

Appendix at the tail end of this paper. The schematics and layouts are located in Appendices C, D and E.

What follows is a detailed breakdown of each subsystem.
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Figure 2: Block diagram of full listening platform

2.1 Listener

The Listener design block represents the wearable audio equipment that the user adorns while interacting

with the platform. The two components are the binaural headphones and the digital microphone array.

Binaural headphones are used in order to preserve spatial awareness - these headphones give the user audio

perspective relative to other audio sources. They are a substitution for measuring the ”Head-Related Transfer

Function” which would be necessary in their absence. A microphone array is worn by the user to capture the

audio in the system and provide clean audio signals to the software algorithm computing the unique filter

coefficients for a beamforming application.

2.1.1 Binarual Headphones

The binaural headphones are worn by the listener in order to preserve spatial cues. In this way, the listener

is able to naturally recognize noise regardless of their orientation in the sound field. The headphones used

contain two analog microphones that are then converted digitally to be processed with the microphone array

digital microphones. By positioning these analog microphones close to the ears, the listener can negotiate

the location of audio sources in the room without additional measurements.

2.1.2 Microphone Array

The main microphone array consists of a static grid of 14 small MEMS [1] microphones. These MEMS

microphones have a built in ADC so they connect directly to the FPGA over I2S. We chose 14 microphones
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here to keep a total array size of 16, including the binaural analog microphones.

Each of our MEMS microphones comes on a small breakout board. We chose to use these boards instead of

directly soldering to the MEMS microphones because they are very fragile, and a challenging package to work

with. However, these breakout boards themselves are not sufficient to create a full array. We constructed

a larger board to affix each breakout board to, and daisy chained these larger boards together to form the

complete array. A 16-pin ribbon cable connected each of these larger PCBs together. The schematic and

PCB of this subsystem can be referenced in Appendix C.

Signal integrity and clock skew were our final considerations when defining array specifications. Each mi-

crophone must be on the same sample clock and bit clock to ensure samples are lined up correctly in time.

By virtue of our daisy chain design, each microphone shared the same conductor for both of these clock

signals, which limited our skew to that caused by the wires themselves. Our longest cable ran from the end

of the microphone array daisy chain back to the FPGA, which was no more than 14 feet with the cables we

chose. We did not experience any signal integrity issues, and the microphone array as a whole functioned as

expected.

2.2 Audio Codec Board

The Audio Codec board was designed because the DE10-Nano (the FPGA board we used) did not have an

on-board codec. The Audio Codec board interfaces directly with the DE10-Nano’s GPIO pins - a 40-pin

female header connects the two together. A programmable ADC, input and output amplifiers as well as an

analog DAC were used to have complete control over the audio format and sound.

The complete schematic and PCB layout for the Audio Codec board can be found at Appendix D.

The following sections describe how the input audio is handled, and then describe the output sequence back

to the listener.

2.2.1 Input Stage

The input stage is comprised of three main components: the input microphone jack, input amplifier and

the programmable ADC. The input microphone jack accepted the 3.5mm analog microphone jack and pro-

duced the the left and right analog signals. The input amplifier was a dual op-amp that could boost both

signals to line level. Unfortunately, the input amplifier burned out after it was soldered. Luckily, we had a

programmable ADC on hand.

The ADC IC we used from Texas Instruments was a PCM1863DBT [7]. A standard industry ADC with

programmable registers to configure gain, boosted input amplifiers and I2C control. Via the FPGA hard

processor our team was able to program the ADC registers to boost the input signal to line level, and

configure the audio format to an I2S output.

We tested the sound coming from the ADC by using the the analog microphones. Once the output sound

was clear and showed an I2S data line and clock signals on the oscilloscope, we were confident in our ADC

implementation and in our decision to bypass the input pre-amplifier.
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2.2.2 Output Stage

The output stage of the Audio Codec board is comprised of the DAC and the output amplifier. The DAC

chosen for the codec was a PCM5100APW series IC [8] from Texas Instruments. It was completely analog

controlled which lent itself to a simple PCB layout. However, we ran into issues with the chip and found it

difficult to debug due to an inability to garner any information from information registers. Thus, we pivoted

to using a second daughter board on-hand to complete the codec.

The PIC32 audio codec board [11] we had was a board that broke out the AK4642EN codec from MicroChip.

We used purely just the DAC portion of this chip and configured programmable parameters such as output

gain and volume level via I2C. Once programmed, the custom codec we designed, and the connected codec

IC worked nicely together. The analog microphones from the binaural headphones sounded clear coming out

the DAC through the ”Line-Out” jack.

Even though many modifications to the custom codec PCB were made, the end result was successful. The

board was the bridge between the FPGA and the rest of the system and fed the augmented audio back to

the user of the platform.

2.3 Volume Control

The Volume Control subsystem was designed as a PCB with potentiometer sliders to send an analog signal

to the FPGA to augment the volume of several real-time sources. An AVR128 microcontroller IC [10] was

responsible for sending the sampled voltage level via I2C to the FPGA. However, there were hiccups in

the integration of this block and many of the features designed in theory never made it to the final demo.

Nonetheless, the team provided a simple user-interface to showcase the real-time filtering operation with the

current architecture in place.

2.3.1 Theoretical Design

This module was designed as the third PCB in the Augmented Listening hardware platform. It contained

four potentiometer sliders - the first acting as a variable resistor to control the master volume. This was

done by placing its resistance across the output amplifier on the Audio Codec board. The other three slide

potentiometers were to be used to send independent volume adjustments across the three sources relative to

the level of the master volume. The PCB included the AVR128 to sample the three source slider values and

send their relative position to the FPGA. An on-board 16 pin header (identical to the headers on the Audio

Codec board and Microphone Array board) was connected to send the relevant signals back to the FPGA.

To see the schematic and associated PCB reference Appendix E.

2.3.2 Realized Implementation

However, the full implementation was not included in the final demonstration. There were problems using

the AVR128’s I2C interface with the HPS on the FPGA. The FPGA’s hard processor could not recognize

the supposedly active I2C bus on the AVR128. We reason that the overall pull-up resistance on the bus was

not high enough to pull up the necessary signals for I2C communication, or the code written for the AVR

was faulty.

Nonetheless, user input was a necessary feature and the Ardunio UNO [2] supplied an I2C bus with internal
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pull-up resistors. The UNO controlled one of the potentiometer sliders, and the slider was sampled by

the FPGA’s ADC. This digital signal was sent to a software script on the HPS which selected a set of

FIR coefficients to load into the filters. Thus, user input was factored into the demonstration to showcase

real-time filter reloading.

2.4 FPGA Audio Processing Platform

The main brains of our array processing platform is an Altera DE10-Nano FPGA development board. This

board features a Cyclone V SoC, which has both an FPGA and ARM hard processor built in. We chose

to use this platform as it has the flexibility to support highly parallelized, low latency filtering, as well as

embedded linux to control our many hardware features from a shell.

2.4.1 DC Offset Removal

When dealing with fixed point numbers in our filter architecture, the samples are 16-bit signed integer

numbers. These numbers have a relatively limited dynamic range, so we need to ensure that we make the

best use of it. Unfortunately, the samples directly from our digital MEMS microphones have a nasty DC

offset. The gain in hardware was severely limited, and the 16-bit numbers were easy to clip. To combat

these issues, we wrote a small module to remove the DC offset from each microphone. Every MEMS mic

we tested had a slightly different offset, so we decided to make our DC offset logic dynamic. There is a

two second calibration period, set by software, during which this module records each sample coming in and

averages them together. The resulting average value is very close to the DC offset of the mic. We can then

simply subtract this number from the samples coming in, and the subsequent output sample will be centered

around zero.

2.4.2 Downsampling

Our platform natively runs at a 48kHz sampling rate, which is great as it gives a very high fidelity recording

of the mic audio. However, running as such a fast sample rate limits the maximum length of our FIR filters.

To achieve better performance with longer filters, we needed our system to run at a lower sampling rate of

16kHz. Our clocks are generated directly from the FPGAs hardware PLLs, and it is easy enough to change

the sample rate by just changing a number in software. However, our MEMS mics do not have the ability

to run down to 16kHz; the minimum sample rate is 32kHz.

We decided to implement a downsampling module to get around this limitation of the MEMS mics. Down-

sampling from 48kHz to 16kHz is simple as its an integer factor, and very little data is lost in the speech

frequency range. The first part of our downsampling module is a low pass filter. This filter is built very

similarly to our large FIR filters in the filter bank, but it is only 127 taps long. This filter attenuates all

information over 8kHz to prevent aliasing when it is resampled to 16kHz. After this filtering operation is

complete, every third sample is output from the module, creating a clean 16kHz audio stream.

2.4.3 Floating Point vs Fixed Point

Number systems are a very important consideration when working with embedded signal processing applica-

tions. The larger a number representation, the more memory it takes, and the more complex and arithmetic

operations are. From a user perspective, floating point numbers are far easier to deal with. When designing

fixed point filters, the user needs to be careful not to overflow or underflow the filter, and must scale all
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coefficients carefully. We decided that the extra design complexity of using floating point numbers would be

worth it in the long run for the end users of this platform.

2.4.4 Floating/Fixed Number Conversions

The first challenge of implementing floating point filtering was converting the 16-bit samples from the mics to

their equivalent IEEE-754 representation. We could’ve skipped this step and created multiply/add units that

used both fixed and floating numbers, but it was simpler to just do all arithmetic in the filters using floating

point numbers. Thankfully, we were able to take a bit of a shortcut when creating these modules. The fixed

point numbers we deal with in this system are formatted as fx16.0, meaning that there are 16 magnitude

bits and zero fractional bits. This is to say that our fixed point numbers are all guaranteed to be a whole

number between (−32768, 32767). As such, we could design our fixed/floating converters to simply truncate

the decimal off the floating point numbers. This is not the most complete or correct implementation, but it

greatly reduces the conversion complexity and works well for our application.

2.4.5 Area and Time Constraints

Our filtering architecture is subject to strict time and area constraints. First, each filter needs to perform

its full convolution within one period of the sample clock. In other words, the filter needs to compute its

output for the current input sample before a new sample arrives. We were not interested in doing any sort

of pipelining on these filters, so this is a hard restriction. Next, the FPGA only has 112 multipliers and 5.6

MBits of block ram [9]. Typically FIR filtering is done on an FPGA with a string of multiply/add blocks,

but we would not be able to build a filter in this fashion longer than 112 taps. This architecture becomes

even less appealing when we considered that we wanted the ability to filter 16 channels simultaneously. To

get around this constraint, we chose to utilize a FIR filter architecture that uses a single multiply/add unit

to perform the entire convolution.

2.4.6 Modified ZIPCPU Slowfilters

We were able to find an open source low are FIR filter online, created as part of the ZIPCPU project [5].

The ZIPCPU is a soft processor made by Dan Gisselquist. His filter utilizes a single multiplier and adder,

and has some support for dynamically reloading filter coefficients. The slowfilter can handle fxX.0 numbers

of various widths. This made a great starting point for our FIR bank design.

The first modification was naturally to implement floating point arithmetic instead of the existing fixed point

operations. Unfortunately, it is challenging to find existing modules that are both single cycle and readable.

We were able to find reasonable multiply/add modules, both written by Sheetal Swaroop Burada [3]. They

are both purely combinational, and function pretty well. Though we will cover an issue we ran into with the

floating point multiplier later, and speculate on some issues that we couldn’t quite track.

The second modification we needed to add was some supporting logic to actually reload the coefficients.

Interfacing with the Avalon bus directly from the HPS seemed inconvenient, so we chose to have a module

that would load taps into a small memory, then a state machine that would send those taps one at a time

to the filter’s tap input. Writing taps directly from the HPS is not exactly reliable because the Linux kernel

scheduler does not guarantee that it will execute every instruction in real time.
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2.4.7 Floating Point Filter Bug

We encountered a couple of bugs throughout our work with these modified floating filters, some of which we

could resolve and some of which we did not have time to fix. First, we encountered some impulsive noises in

the output when the sample stream would cross the zero point. This occurred with any filters we tested, so

we could confidently say that the cause was in our floating point math. The floating point multiplier we used

would not properly detect when a product should be zero, instead outputting a very large product. This

caused the impulsive noise we were seeing. We resolved this by checking for zeros in the input multiplicands

rather than checking if the output should be zero after the numbers had been normalized already.

The other bug we encountered was similar in nature but much harder to trace. When we tested our filtering

architecture with the filter sets to do beamforming, we observed an arbitraty impulsive noise at the output.

Figure 3 shows this issue in a recording we took. This issue is likely due to another bug in the floating

point unit, as the nature of the noise is similar to that we saw from the zero crossings before. However, it is

much harder to trace because it does not appear at a specific value, and therefore we can’t just pick out a

point in time to look at on SignalTap. We set up a thorough software testbench to test this multiplier with

every possible input sample, and every product matched with the C++ floating point math. Therefore, we

determined this is likely an issue with timing constraints through our multiplier on the board. Pipelining the

floating point multiplier would likely solve this issue, and that is an important next step for this platform.

2.4.8 Avalon Interface

With all of our hardware setup, we need the ability to interface with many registers directly from the Linux

system. We chose to use the Intel Avalon bus to do most of this communication. Thankfully, setting up an

avalon slave interface is relatively sample from the hardware side. The Cyclone V HPS has an AXI master

hardware peripheral, which is memory mapped to the CPU. We can then use an Intel IP Core to interface

between AXI and Avalon. We will not go into the details about virtual memory and translating between

virtual and physical addresses in Linux. At a high level, reads and writes can be performed over the Avalon

bus simply by dereferencing the virtual memory address.

2.4.9 Hardware I2C Peripheral

Along with the Avalon bus, we utilize the I2C bus to communicate with some peripherals off the board. The

Cyclone V HPS features a hardware peripheral for I2C, much like the AXI bus. However, the I2C peripheral

is simpler for us to use. We built the embedded Linux kernel with support for the peripheral, which allows

us to use the i2cset and i2cget programs to read and write bytes over the I2C bus. In this case the kernel

driver interfaces with the I2C peripheral, which saved us time over writing our own driver.

2.4.10 Coefficient Reloading Code

There are two major components to our coefficient reloading program. First, the program needs to read

the floating point taps from a .csv file to be loaded into the filters. We did this by making use of a small

C++ library that parses CSV files. Once the coefficients are loaded into float vectors, we can then send

those coefficients over the Avalon bus to the FIR system’s coefficient loading logic. This is done relatively

easily, with the one caveat being sending those floating point numbers as their IEEE-754 floating point

representations. In C++, when we write a float to the Avalon interface, it isn’t necessarily send in its binary

representation. We needed to dereference the floating point memory locations as integers to send over the
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Avalon bus.

2.4.11 FPGA Conclusion

These modules and software come together to create a very flexible and robust platform capable of coping

with the imperfections of real world use. The end user has the ability to use microphones that aren’t

perfectly centered about zero, use multiple sample rates, use very long filters, reconfigure the number of

input channels, and much more. Though we have made significant progress on this platform, there are still

a few small bugs to iron out before we feel comfortable with an open source release.
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3 Verification

3.1 FPGA

The FPGA is the most challenging component of our design to verify due to the black box nature of FPGA

development. It is difficult to observe the performance of the platform because we are limited to using

SignalTap to view some internal signals or listening to the output audio. Despite these challenges we were

still able to meet most verification items for our FPGA subsystem.

Our first verification item was to confirm the source to listener latency through our system was less than

10ms. 10ms is a common figure cited as the minimum perceptible latency, though it varies from person to

person. Regardless, we were confident that our system would have an extremely low latency, so we chose to

try to exceed this 10ms figure. Our testing setup for this was relatively simple. We used an audio interface

that can record a pair of microphones, and had a beat ready to play while recordings were taken. One of

the microphone inputs was an analog microphone, and the other input was connected to the headphone jack

on our codec board. The idea was that we could play the reference audio on the speaker, and compare the

difference between the time the sound arrives from the single analog mic against the audio going through

our filter system and coming out of the DAC. Figure 7 shows the results of this test in audacity. You can see

that the time difference between the analog mic on channel 1 and our platform on channel 2 is only about

3ms. This is totally imperceptible and exceeds the 10ms figure we wanted to be under. Low latency is one

of the biggest strengths of this platform over other solutions.

For the second verification item, we wanted to be able to measure the performance of the geometric beam

former. Unfortunately, our final design could not actually perform real time beamforming due to the filter

limitations discussed in section 2.4.7. Therefore, we could not verify any specific attenuation figures.

The third verification item is related to calculating beam former coefficients in real time to reload on the

platform. Originally we were going to be calculating the coefficients to perform the beamforming, but we

changed our final demo to switch between two filters instead. The runtime is very comparable as the actual

operation being done in software is almost the exact same. In our real time demo the filter adjustment time

is almost imperceptible, so we are comfortable saying we meet this requirement.

Next, we wanted to ensure that the transitions between filter coefficients does not create a loud or annoying

popping sound. This can happen because different filters will have a different total energy, and that change

in output amplitude can be large enough to create a pop in the output audio stream. We could easily check

this by recording the output audio while changing the filter coefficients. The results of this test are shown in

Figure 6. As you can see, there is a small noise when the filters change, but it is neither loud nor distracting

from the actual audio. We consider this requirement met.

Finally, we wanted the ability for our platform to calculate filter coefficients and reload them without user

input. Our scripts and programs on Linux are written in such a way to support this kind of operation.

We have scripts that sample user input, modify filters, and load those filter coefficients onto the board. It

is certainly possible to modify our existing scripts to do more complex filter calculations using a python

script. We are satisfied with the flexibility of our assortment of software features, and computing/loading

filter coefficients automatically is well supported.
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3.2 Volume Control

The volume control subsystem was a bit different from our initial plan, but we were still able to demonstrate

the performance. Using a single slider was sufficient to test our verification items.

Our first verification item was related to the sampling resolution of our sliders. We wanted to have at least

20 levels on the sliders to give the users a relatively smooth volume adjustment control. The arduino samples

the sliders at an 8-bit resolution, and these samples are sent over I2C to the HPS. This gives the user 256

levels of control on each slider. From the output of our real time filtering demo script, you can see the slider

takes values between 0x00 - 0xFF. This level of control exceeded our requirement.

The other requirement for our slider system was related to the sampling rate of the slider levels. We wanted

the HPS to sample the sliders at a rate of 1000 samples/second. To verify this, we read 1000 samples from

the arduino over the I2C bus. This is a good approximation of the transfer speed we would get while doing

an actual demo with user input. Figure 4 shows that we were able to read 1000 byes in under one second.

3.3 Audio Codec

The audio codec underwent significant changes from our intial design, so some of the verification items are

not applicable to the current implementation. However, we can still observe the safety of the output level

through headphones.
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4 Cost

The total cost of the whole project amounted to $18,194.94, consisting or $194.94 in parts cost and $18,000

in labor costs. The breakdown of each costs is broken down in detail below.

4.1 Parts

The parts list is listed below in table 2. Both the retail and actual costs are shown. The difference between

the actual and retail costs is the retail cost contains free parts from the ECE 445 or Ryan Corey’s lab.

The total retail and actual cost accumulated to $273.12 and $194.94 respectively.

Table 1: Parts Costs

Item Part Number Quantity Retail Cost

($)

Actual Cost

($)

FPGA DE10-Nano 1 135.00 135.00

Ribbon cables 485-4170 6 1.62 1.62

16-pin headers 649-71918-116LF 12 17.52 17.52

Potentiometer 858-PS6020MC1BR10K 4 9.8 9.8

ATmega328P* SparkFun RedBoard 1 20.32 0

PCB 7 5.00 5.00

Amplifiers RC4580 6 2.58 2.58

DAC DAC8551 2 12.26 12.26

ADC PCM1863DBT 2 11.16 11.16

Resistors* Variety Pack 1 12.93 0

Capacitors* Variety Pack 1 7.95 0

Jumper Wires* Variety Pack 1 6.98 0

Binaural Headphones 1 30 0

Total 273.12 194.94

Items with asterisks were available at no cost from the ECE 445 or Ryan Corey’s laboratory.

4.2 Labor

Our labor costs are estimated to be $40 per hour, 20 hours per week, 10 weeks per semester for three people.

We accomplished 75% of our design this semester:

$40 · 20 · 3 · 10 · 0.75 = $18, 000 (1)
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5 Conclusion

This ECE 445 project made a significant impact on the future of the Augmented Listening Lab at UIUC.

The hardware platform constructed over the course of this semester allows researchers here at Illinois and

other universities to run audio experiments faster and with more precision. Very few existing open-source

audio hardware platforms can provide flexible filtering capabilities across 16 or more channels of analog and

digital microphones.

Although there is more work to be done, this project demonstrates that this hardware platform can be

beneficial to audio and hearing aid researchers for years to come upon its open-source release.

5.1 Accomplishments

Significant accomplishments were made this semester. Using modified slowfilters the system can filter 16

channel audio in real-time. Additionally, in software the FPGA can reload coefficients seamlessly - augment-

ing the audio in real-time. By leveraging the ARM processor with the flexible FPGA fabric, the heart of the

platform is optimized for speed. Further verification indicates the total latency in the platform is 3 ms - an

astronomically low number for audio processing. This in and of itself is a big achievement.

5.2 Ethical considerations

As a team, we fully understand the importance of upholding the IEEE Code of Ethics and we take it very

seriously [6]. We strive to develop and maintain our platform as sustainably as possible, and to protect our

users privacy in accordance with IEEE Code of Ethics #1. Our project, beyond ECE 445, will be released

as an open source platform for hearing aid researchers and manufacturers to take advantage of to improve

accessibility of hearing aid technology to benefit all communities. No user’s audio data will be collected on

our system in accordance with IEEE Code of Ethics #5 and #6. We will take every precaution to uphold

the IEEE Code of Ethics as we develop and release our platform to the public to benefit people who struggle

with hearing impairments. The users of our platform will face no discrimination of any form in accordance

with IEEE Code of Ethics #7.

Our mission as a team is to make the most accessible and safe open-source hearing aid technology to

researchers and hobbyists worldwide. We strongly believe that our system can contribute significant welfare

to the public in a variety of life-changing applications people use everyday.

5.3 Future work

There remains work to be done despite the accomplishments attained over the last 10 weeks. The custom

Audio Codec PCB has several revisions to undergo. Namely adding I2C pull-up resistors across the bus

spanning multiple devices, using a complete codec IC instead of breaking up the ADC and DAC and improve

how clocks are shared among the ICs and FPGA by optimizing the routing.

The noisy audio that results from some combinations of coefficients generated by Ryan Corey’s beamformer

algorithm also must be fixed. Pipelining the multiplier (the longest combinational critical path in the

logic) seems to be a potential solution. Finally, fully paramterizing our hardware modules will increase the

flexibility and configurability of the platform for the end user. As we are targeting an open source release,
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we believe it is important that the hardware can be reconfigured by changing a single parameter.
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Appendix A Requirement and Verification Tables

A.0.1 Microphone Array

Requirements Verification Verification
status (Y
or N)

All microphones are synchronized to the same
bit/sample clock within a single cycle

1. Connect oscilloscope to 4 microphones’
clock pins

2. Verify that clock skew is within one period

Yes?

A.0.2 Audio Codec

Requirements Verification Verification
status (Y
or N)

Input pre-amplifier amplifies microphones to a
line level between 0.75Vpp and 1.0Vpp.

This can be verified using an oscilloscope.
1. Play loud tone on speaker near microphone

to represent maximum input volume
2. Use averaged oscilloscope measured out-

put to verify level is between 0.75Vpp and
1.0Vpp

Yes?

Output volume level does not exceed 85dB SPL 85dB SPL is the threshold for hearing damage.
1. Play loud tone through input microphones

with no filtering
2. Place earbuds in headphone SPL measure-

ment dummy ear canals
3. Adjust output volume slider to maximum
4. Ensure output does not exceed 85dB on

dummy sensor output

Yes?

Output signal noise floor does not exceed 10dB
SPL

1. Disconnect microphones from board input
2. Place earbuds in headphone SPL measure-

ment dummy ear canals
3. Measure SPL from dummy sensors output

Yes?

A.0.3 FPGA

Requirements Verification Verification Met
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Source to listener latency must be less
than 10ms 1. Audio source is connected to a

speaker and oscilloscope
2. Audio output is also connected

to the oscilloscope
3. Observe latency between audio

captured and processed through
the system and the reference sig-
nal

Y: figure REF shows
3ms latency through
the system. Section
REF speaks more
about latency.

Filters should be able to achieve -6dB
attenuation on suppressed sources 1. Record three sounds being

played at 900Hz, 1000Hz,
1100Hz

2. Plot energy spectrum
3. Ensure that suppressed sources

are at least 6dB down from peak
of main source

4. Repeat test with each of the fre-
quencies being attenuated

N: We could not per-
form geometric beam-
forming tests due to
REF SECTION

50ms time to calculate filter coeffi-
cients 1. Set up selective listening demo

2. Run Python script with unix
time command. This will mea-
sure time elapsed

Y: Filters can be
modified in real time

No pops when reloading filter banks
1. Take sound recording
2. Observe in audacity and ensure

waveform maintains amplitude
through filter transitions

Y: Figure REF shows
only a small noise
through filter transi-
tions

Ability to use Python to compute fil-
ter coefficients 1. Python code should be able to

get samples from SD card
2. Python code will export filter

coefficients to a .csv file
3. Bash script will glue together

the Python/C++

Y: Real time filter
loading from .csv per-
forms well
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A.0.4 Volume Control

Requirements Verification Verification Met

Volume sliders should have at least 20
levels for fine control

1. Write small shell script to dis-
play slider level over ssh

2. Move slider and ensure that vol-
ume increments in quantities of
less than 5%

Y: See figure REF for
script output and ex-
planation.

I2C interface is capable of sending vol-
ume levels 1000 times per second

1. Read 1000 bytes from arduino
over I2C using i2ctransfer

2. Use unix time to ensure the
time to read is less than 1 second

Y: Transfer speed ex-
ceeds 1000 transac-
tions/sec. See Figure
REF

Appendix B Figures

Figure 3: Impulsive noise in beamformer output

Figure 4: Speed of a 1KByte I2C transfer
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Figure 5: Logic analyzer trace showing four MEMS mics with synced clocks

Figure 6: Audio showing filter transitions

Figure 7: Audio signal showing latency of 3ms through our processing platform
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Figure 8: Sound pressure level reading showing output level does not exceed 85dB
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Figure 9: Sound pressure level reading showing output noise floor
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Appendix C Microphone Array Schematic and PCB

Figure 10: Schematic of Microphone Array
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Figure 11: Microphone Array PCB Design

Appendix D Audio Codec Schematic and PCB
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Figure 12: Schematic of Audio Codec
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Figure 13: Audio Codec PCB Design
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Appendix E Volume Control Schematic and PCB

Figure 14: Schematic of Volume Control Board

Figure 15: Volume Control Board PCB Design
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