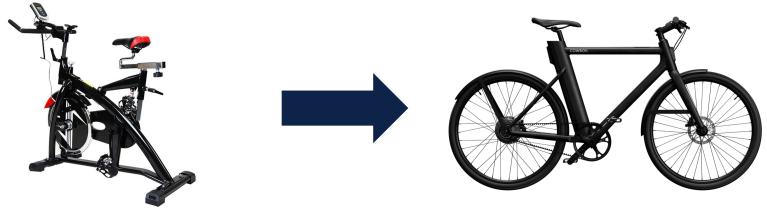
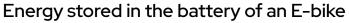
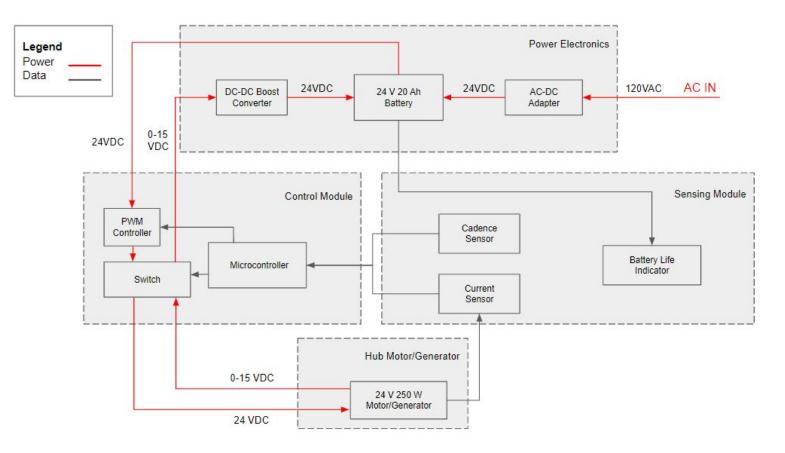
BikeBike Revolution: Energy Efficient E-Bike


Team 20: Gina Jiang, Shannon Lin, Yee Chan Kim ECE 445 Spring 2021 TA: Bonhyun Ku



Introduction

- Combining indoor and outdoor forms of biking
- Energy saving solution for exercise for a large audience
 - 8 hours of indoor biking = 800 Wh
 - Most E-bikes take 300 1000 Wh
- Environmentally friendly and has high potential for improvement

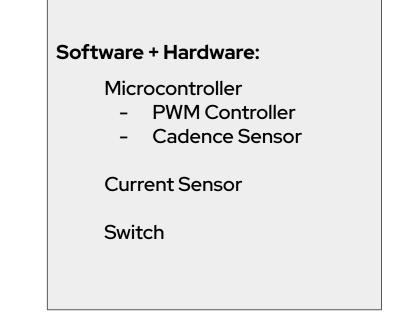


Pedal power from a bike generator

Block Diagram

Project Overview

Hardware:


Battery (24 V 20 Ah)

Grid power and AC-DC adapter

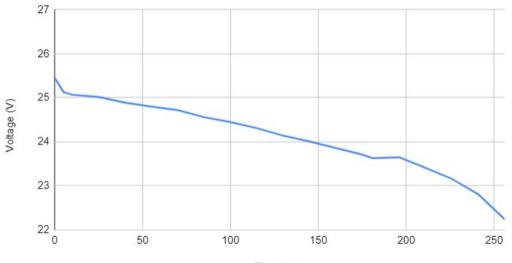
Boost converter

Motor / Generator (24 V 250 W)

Battery life indicator

Battery Requirements

- Battery must be able to power the motor for at least 1 hour
- Charge at 100% efficiency from the grid through the AC-DC adapter
- Charge from the generator through the boost converter



Battery Results

Battery Voltage Discharge

Time (min)

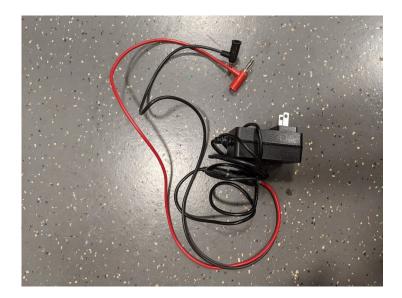
- Voltage discharge data for the battery life indicator
- Ran the motor with the battery for 2+ hours

Lead-Acid Battery Safety Issues

- Chemical (corrosive) hazards
- Risk of fire or explosion
- Electrical shocks
- Ergonomic hazards related to their heavy weight
- Transportation hazards
- Correct clip connection ratings

Battery Challenges

- Not able to test the battery with boost converter
 - Boost was not able to function in time for the full testing in generator mode
- Electrical shock concerns
 - Lower current rated alligator clips should not be used on battery leads

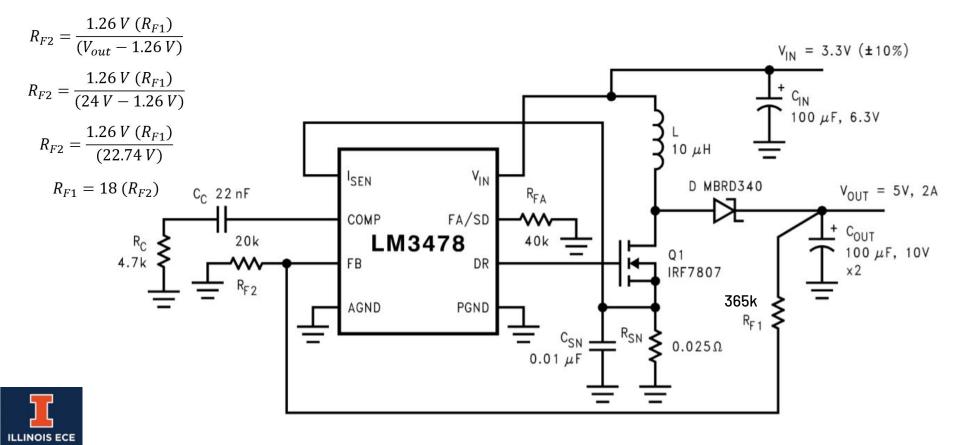


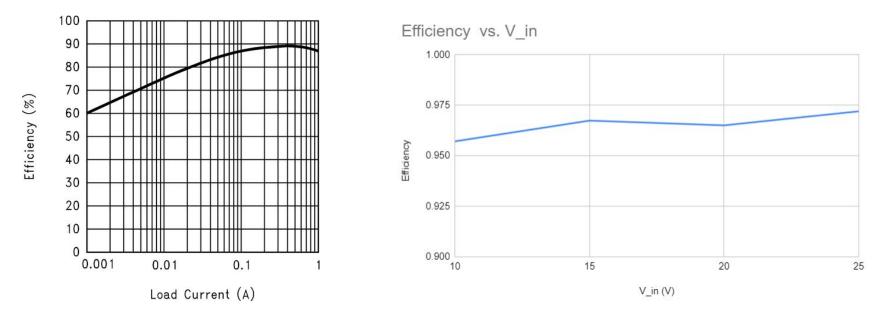
Grid Power and AC-DC Adapter

- Outputs constant 120±0.5VAC power
- Takes in 120±0.5VAC from outlet and outputs 24 ±1 V DC through the port to the battery
- Charged the battery at a consistent rate
- 1 hour charge from 22 V to 24 V

Boost Converter

- Input 10-40 V from the generator
- Output a constant 24 ± 1 V to the battery




10 uH inductor

Boost Converter Schematic

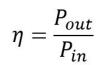
Boost Converter Results

Efficiency vs. Load Current from LM3478 datasheet

Efficiency vs. Input Voltage from testing

Boost Converter Data and Challenges

2_7	7
(@) \4	


V_in	l_in	P_in	V_out	I_out (A)	P_out	Efficiency
10	1.13	11.3	22.3	0.485	10.8155	0.9571238938
15	0.89	13.35	24.6	0.525	12.915	0.9674157303
20	0.67	13.4	24.4	0.53	12.932	0.9650746269
25	0.56	14	25.2	0.54	13.608	0.972

 $P_{in} = V_{in}I_{in}$

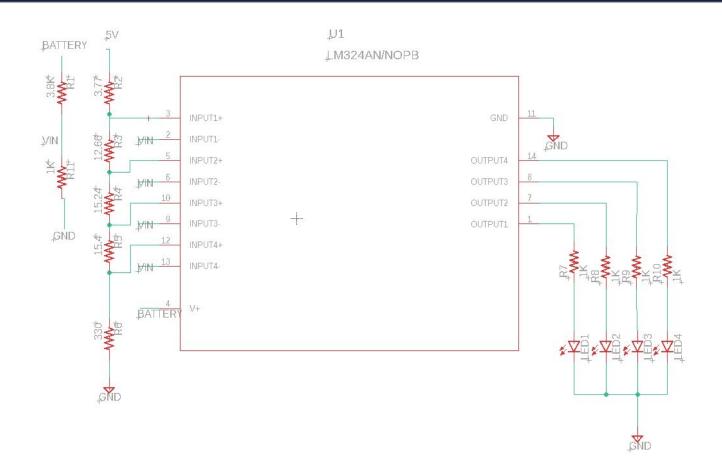
 $P_{out} = V_{out}I_{out}$

- Component unit testing on the circuit design
- Testing with maximum ratings
- Testing above 30 V input

Motor / Generator

- The generator must be able to produce at least 100 W of power
- The motor has three modes when in motor mode: off, low speed, and high speed

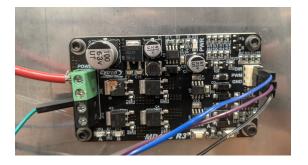
Battery Life Indicator


- Each LED must light up at its corresponding charge (25%, 50%, 75%, 100%)
- Used battery voltage curve to determine approximate percentage
 - 24 V, 23 V, 22 V, 21 V corresponds to the percentage
- Challenges:
 - Flipped LED on PCB

Battery Life Indicator Schematic

ILLINOIS ECE

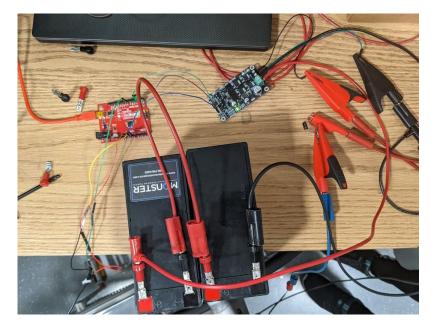
Battery Life Indicator Test



Microcontroller / PWM Controller / Cadence Sensor

- For motor functionality (pedal assist)
- Microcontroller communication with:
 - 1. PWM controller
 - Change motor speed depending on cadence sensor signal
 - 2. Cadence sensor
 - Read signal that varied frequency from pedaling speed

Cadence Sensor Signal

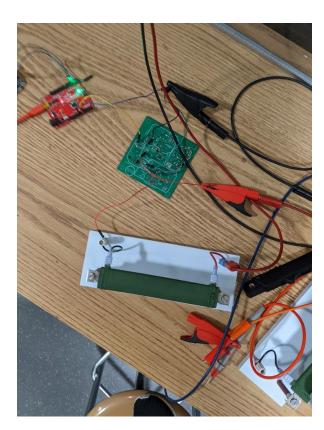


Microcontroller / PWM Controller / Cadence Sensor

- Cadence sensor -> PWM controller -> battery and motor of the bike
- Open-loop feedback
- Pedal assist functionality
 - 0 Hz = no assistance
 - 6-10 Hz = some assistance
 - > 11 Hz = full assistance
- Challenges:
 - Not able to transfer from Arduino

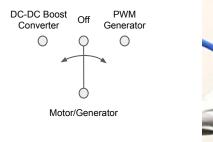
Current Sensor

- Safety feature of our design
- Communicates with switch relay
- Measures current output of the generator
 - If above 10.5A threshold, send signal to turn off switch



Current Sensor Testing

- Input voltage of 10 V
- Load resistance of 10 Ω
- Current sensor reading ~1A
- Challenges:
 - PCB layout in parallel instead of series
 - Without load, generator
 was slipping

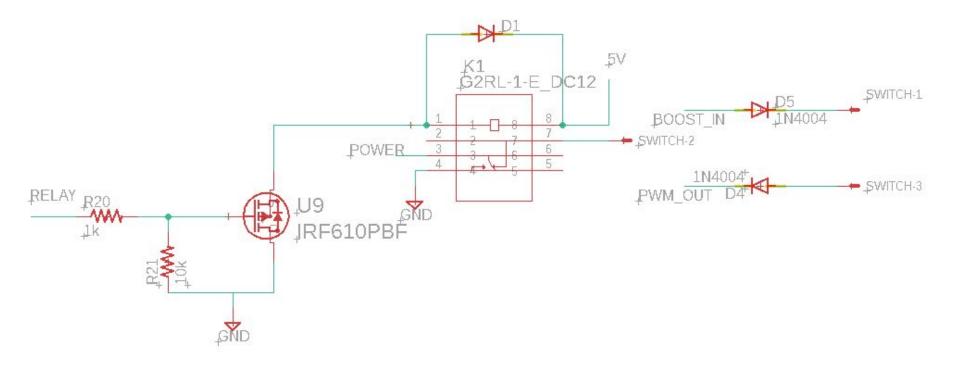


Switch

ILLINOIS ECE

- Let ≤ 10.5A from the generator flow in generator mode
 - Current greater than 10.5 A will
 disconnect the generator
- The switch can select between the

motor mode, generator mode, and off



Switch Schematic

Switch Testing and Challenges

- Relay control
 - Sent 5V and 0V from the microcontroller to turn relay on and off
 - Confirmed voltage applied into the relay and out of the relay matched
 - Some relays did not work and unit testing helped with solution
 - Designing with the appropriate MOSFET
- Switch
 - Measured that current flows in the motor/generator mode and no current flows when the switch is off

Conclusions

- Our design functioned as expected!?
 - Not able to demonstrate :(
- Issues arose due to condensed timeline
 - PCB revisions
 - Wait time for part delivery
- Rewarding to see design come together in a physical form

Future Work

- Higher quality components
 - Boost converter:

integration

- $\blacksquare \quad More \ robust \rightarrow charging \ efficiency$
- Battery:
 - Lithium-ion for better performance
- Motor:
 - Higher rating to increase pedal-assist feature or support full E-Bike mode
 - Making it a hub motor / generator for cleaner

Questions?

References

- <u>https://www.ti.com/lit/ds/symlink/lm3478.pdf?ts=1619801056019</u>
- <u>https://www.concordia.ca/content/dam/concordia/services/safety/docs/EHS-DOC-146_Lea</u>
 <u>dAcidBatteries.pdf</u>
- <u>https://www.mrpositive.co.nz/buying/knowledge-base/lead-acid-battery-types/</u>
- <u>https://keple.com/crocodile-clips-electrical-insulated-wire-multimeter-test-leads-set-alligat</u>
 <u>or-clip-clamps-double-ended-voltage-tester-cable-0-5-meter-red-black.html</u>
- <u>https://www.cyclevolta.com/understanding-e-bike-power-range-and-energy/#:~:text=But%2</u>
 <u>Owhen%20it%20comes%20to,horsepower%20to%20about%201.2%20hp</u>.

