

INTRODUCTION

- A system that detects whether a library seat is available or not.
- Inspired by smart parking lot system.
- Reflect status changes online.

OBJECTIVE

- Design a system that measures the temperature of surrounding area.
 - Used to determine whether a seat is occupied.
 - Transmit status through Wi-Fi.
 - Status updated in web application.
- Saves students' time
 - Ability to check occupancy status of the library before going.
 - Eliminate issues of students holding spots for others.

HIGH-LEVEL REQUIREMENTS

- 1. An accuracy of occupancy status over 95% on repeated tests of the same booth is the benchmark.
- 2. The occupancy status should change from unavailable to available within 15 mins after the seat is no longer occupied.
- 3. The transfer of user data for occupancy status updates on the mobile/web app should be within 30 seconds of a status change.

BLOCK DIAGRAM

CONTROL MODULE

- ESP32 Microcontroller w/Wi-Fi
- USB Serial Adapter

Serial Adapter

ΕN

USB PORT

VBUS

ID

1 VUSB

CONTROL MODULE DESIGN

CONTROL MODULE R&V

- Requirement #1: The control unit must be able to reliably transfer up to 10kB of data within 1 second to ensure 6.8kB can be sent out to convey occupancy status and cubicle ID.
- Steps to verify R #1:
 - 1. Connect the control unit wirelessly to a computer as a wireless serial device
 - 2. Add the name and password of the personal hotspot in Arduino code to connect to a Wi-Fi network
 - 3. Transmit the data over the serial link and record the time it took to transfer the data

CONTROL MODULE R&V

- Requirement #2: When the USB port is plugged into a computer, the device must show up as working.
- Steps to verify R #2:
 - 1. Plug the device into a computer with the CP210x software drivers installed
 - 2. Verify it is listed as a serial device

This device is working properly.	^
	V

CONTROL MODULE R&V

- Requirement #3: The control unit must be able to persist the data with the correct SeatID into the backend DynamoDB table of the software module within 10 seconds of receiving the signal.
- Steps to verify R #3:
 - 1. Repeatedly occupy and leave one seat containing the sensor
 - 2. Confirm the record in the database has been updated

) [

SENSING MODULE

- Thermopile Sensor
- Amplifier

SENSING MODULE DESIGN

$$T_{O} = \frac{|V_{out} - V_{th}|}{S\left(1 + \frac{R_{6}}{R_{5}}\right)} + T_{A}^{B}$$

SENSING MODULE R&V

- Requirement #1: The amplifier must amplify the voltage from the sensor by a factor of $100 \pm 5\%$ (gain of 100).
- Steps to verify R #1:
 - 1. Measure the voltage before (V_{in}) and after (V_{out}) the op-amp while the complete circuit is under operation.
 - 2. Check if V_{out}/V_{in} is within 5% of 100.

SENSING MODULE R&V

- Requirement #2: V_{out} must be between 80 and 520 mV.
- Steps to verify R #2:
 - 1. Put the system under the highest and lowest room temperatures possible.
 - 2. Check if V_{out} is between 80 and 520 mV.
 - 3. Stand in front of sensor and way from sensor.
 - 4. Check if V_{out} is between 80 and 520 mV.

SENSING MODULE R&V

- Requirement #3: V_{out} must achieve at least a 50% decrease when the human leaves the seat.
- Steps to verify R #3:
 - 1. Stand in front of the sensor and away from the sensor while measuring V_{out} .
 - 2. Divide the first measurement by the second measurement to see if it decreased by at least 50%.

POWER MODULE

- USB Power Adapter
- USB Port
- LDO Regulator

POWER MODULE R&V

- Requirement #1: The subsystem must be capable of outputting a regulated 3.3V \pm 0.1 V at 750mA.
- Steps to verify R #1:
 - 1. Provide the subsystem with 4V from a power supply
 - 2. Connect the regulated output to a resistive load pulling 750mA
 - 3. Measure the steady state output voltage using an oscilloscope

POWER MODULE R&V

- Requirement #2: Maintain thermal stability below 125°C
- Steps to verify R #2:
 - 1. Use an IR thermometer to measure the IC

SOFTWARE MODULE

- AWS
 - TOT
 - DynamoDB
- Web Application

FIRMWARE TO AWS FLOWCHART

FIRMWARE TO AWS PROCESS

WEB APPLICATION FLOWCHART

USER INTERFACE

USER INTERFACE

SOFTWARE MODULE R&V

- Requirement #1: The module must reflect the status changes detected by the control module and display the change within 30 secs.
- Steps to verify #1
 - 1. Repeated occupy a singular seat
 - 2. Confirm the status has been reflected to the user

SOFTWARE MODULE R&V

- Requirement #2: The web interface app must be able to establish a connection with the DynamoDB database.
- Steps to verify #2
 - 1. Manually change status values in DynamoDB
 - 2. Confirm the status has been reflected to the user

SOFTWARE MODULE R&V

- Requirement #3: The front end must contain comprehensive internal linking.
- Steps to verify #3
 - 1. Click through all combinations of hyperlinks

PROJECT BUILD

SUCCESS AND CHALLENGES

- Successes
 - Firmware
 - Software
- Challenges
 - Hardware

FAILED VERIFICATIONS

- An accuracy of occupancy status over 95%.
 - "V_{out} must be between 80 and 520 mV."
 - "V_{out} must achieve at least a 50% decrease when the human leaves the seat."

FAILED VERIFICATIONS

- FOV obstruction
- Contamination and damage

FUTURE WORK

- Striking a balance between cost and effectiveness of the sensor
- Website automation instead of manual refresh
- Code Modularity

QUESTIONS?

