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Glossary

Auto Pilot (A/P) is the main flight automation system governing the attitude of the aircraft consisting

of multiple automation subsystems (including A/T).

Auto Throttle (A/T) Part of the flight automation system that takes full control of the thrust demand

of the aircraft once engaged. The pilot only need to specify a desired performance figure and the A/T

system will automatically adjust engine outputs to achieve said performance.

Control Column is the device for controlling aircraft’s pitch and roll placed in front of the pilots on most

aircraft models.

Flight Simulator is a hardware device, a software program, or a combination of both that artificially re-

creates aircraft flight and the environment in which it flies, for pilot training, design, or other purposes.

FMC/CDU short for Flight Management Computer/Central Display Unit, is the input device for flight

information including route, aircraft performance figures, and performance limits. Must be correctly

configured for flight automation to function.

Main Control Panel (MCP) is the control panel allowing the pilots to select operating modes of the

flight automation system and command automated attitude changes.

Master Caution is the secondary warning for critical non-emergency events such as A/T disengage.

Multi-Function Display is the inboard displays capable of displaying multiple system status including

system recall and engine status.

Primary Flight Display (PFD) is the primary flight instrument in a digitized cockpit, displaying crucial

information including flight automation status and aircraft attitude.

Recall is the log-keeping functionality of the FMC capable of summarizing events occurring with the aircraft

for improved crew awareness.

Speedbrake is mechanised devices on the top-surface of the wings that induces extra drag when deployed

for deceleration. Deployment of the speedbrake is controlled either manually with a lever on the throttle

quadrant or automatically when the aircraft lands.



Throttle Quadrant refers to the unit housing all essential thrust control inputs (buttons and levers).

Often placed in between two pilots in the center pedestal for ease of access.

Thrust Lever is a lever-like input device with a defined travel range. The position of the thrust lever is

mapped to engine thrust demands.

TO/GA (Take Off/Go Around) is the maximum rated thrust the engines can generate.



1 Introduction

1.1 Objective

Modern airliners are equipped with multiple flight automation systems to alleviate the workload of pilots

during long flights. One of these automations commonly fitted is the Auto Throttle (A/T) system. A/T is

able to fully control the engine thrust demand of the airplane in order to achieve constant airspeed cruise and

provide crucial safety functionalities. To improve the situational awareness of the pilots, Boeing, alongside

many major airplane manufacturers, fitted their airplanes with motorized throttle quadrants. When A/T

sends thrust settings to the airplane’s engines, the thrust levers will move accordingly to the positions that

reflect the real-time engine thrust outputs. Such system allows the pilots to regain control of the throttle

at any moment with full awareness of the current thrust settings. This is a crucial control characteristic of

these airplanes. Without this consistency between thrust lever positions and actual engine thrust outputs,

when A/T is disengaged, the airplane’s engines will immediately try to adjust to the current thrust lever

positions, which may cause a sudden and unexpected power increase or decrease of the engines.

Current main-stream consumer-level flight simulator peripherals use spring tension to simulate the weight

felt by the pilot when operating the control column. However, no effort is made to simulate the synchronous

movement of the throttle quadrant with A/T commands. Home-based simulation systems often have the

pilots to manually adjust the thrust levers to match the actual thrust setting inside the simulator software

program, hence deteriorating the experience. Being able to recreate the motorized throttle will bring the

realism of the flight simulation experience to a whole new level.

With this project we aim to design and create a motorized throttle quadrant for casual flight enthusiasts.

The throttle quadrant can interface with mainstream simulation software (Microsoft FSX [1] or Lockheed

Martin Prepar3D [2]) via universal protocol (e.g., USB 3.0) and synchronize thrust levers’ positions with

A/T commands. Figure 1 is an illustration of such process in action which vaguely represents the final

product’s main functionality.

Figure 1: Illustration of device operation. Multi-function display (MFD) of the aircraft (left). Real looking of
the throttle quadrant (middle). Flight simulator throttle quadrant (right). The MFD, real throttle quadrant,
and simulator throttle quadrant on the same row represent the same the engine thrust setting.
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Figure 2: Comparison of a casual in-home flight simulator (left) and the real cockpit view in Prepar3Dv4
(right). Corresponding components are labelled by the same color (for example, red boxes mark the control
columns in both pictures.

1.2 Background

Despite commercial full-scale flight deck simulators for professional pilot training purpose, a common choice

for casual flight enthusiasts is Logitech Flight Yoke and Throttle Quadrant [3, 4], often purchased together

with a Rudder Pedal System, as shown in Figure 2. While Logitech’s solution is affordable and popular, it

does not have a motorized throttle quadrant, thus deteriorating the realism of flight simulation.

In the domain of driving simulators, wheel and pedal systems such as Logitech G920 [5] already support

force feedback, and existing solutions are affordable to casual players. These simulators use a motorized

wheel to simulate the actual behavior of a car’s wheel. Our project aims to build motorized throttle levers

for flight simulators.

Flight Illusion has motorized flight yokes on sale [6], but their solutions cost more than $1200 and are too

expensive for casual players. No ready-to-use motorized throttle quadrant under $1000 is available on the

market as far as we have discovered.

1.3 High-Level Requirements

To better evaluate the outcome of the project, three major requirements must be met:

• The throttle quadrant must be recognized by both the OS (i.e., be listed in Device Manager in Windows

10) and flight simulator software (i.e., be listed in the corresponding settings menu) as a valid input

source. We will be targeting Windows 10 and Prepar3Dv4. Supporting more OSes and simulators

is possible but out of the scope of this work. The flight simulator must also be able to calibrate the

throttle quadrant input according to the documentation provided by the flight simulator software [2].

• If A/T is engaged and commands a thrust change, the throttle quadrant must reflect the movement

(speed and direction of position change) of the thrust levers shown in the simulator’s virtual cockpit

with a latency less than 100ms, which is an unnoticeable delay comparable to that of a wireless game

console controller [7]. The thrust levers must stop within 2% of the commanded position. We assume

that the simulator software is reliable for sending appropriate A/T commands so that the speed of the

levers under A/T can be realized by the motors. The pilot is allowed to move the levers at a faster

speed than A/T does.
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• If the pilot overrides A/T thrust settings by moving the thrust levers while A/T is engaged, the throttle

quadrant must set free the thrust levers in less than 50ms to hand over the control of the levers to

the pilot. The extra force needed to initiate the override must be less than 1 N. The movement of the

thrust levers from then on must be unhindered until A/T is engaged again.

2 Design

Figure 3 is an overall view of our design. Our design is divided into two parts that will work in tandem

to achieve the requirements listed in Section 1.3. The software part includes an add-in for selected flight

simulation software and a USB driver. The add-in will gather airplane status information from APIs provided

by the flight simulation software. The USB driver will allow bidirectional communication between the A/T

controller inside the flight simulator and the throttle quadrant we build. The hardware part includes a

custom control board carrying a microcontroller and a stepper-motor driver chip. The control board will

translate between thrust lever position and throttle input. Stepper motors with feedback enabled will provide

accurate movement of the thrust levers, feedback from the plant for proportional control, and slip detection

for override detection. In addition to software and hardware components, we will also include a specification

of the host/device communication protocol we use.

USB Driver

Host (PC) Software

ASDF Protocol over
USB Serial Connection

Hardware and Mechanical Parts
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(ATMEGA 2560)

Motor Driver
5V/12V H-Bridge
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Figure 3: Block Diagram of the Design.
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2.1 Host Software

The software subsystem running on the host computer consists of the simulation software’s Auto Pilot

functionalities, an add-in for data gathering and virtual inputs, and a USB driver for device registration and

communication over serial protocol on the USB bus. The software subsystem must be capable of constant

polling from both the simulation software and the throttle peripheral to ensure continuous and immediate

response once any change is made. The R&Vs of the host software are listed in Table 1.

2.1.1 Auto/Pilot

The A/P system is provided by the flight simulation software with well-documented APIs allowing access to

aircraft status data and control inputs. This block will be the software endpoint of our system.

2.1.2 Flight Simulator Add-in

The add-in block will be written to be compatible with select flight simulation software. It will be responsible

for gathering flight simulation data from the A/P system API as well as transmitting pilot input into the

flight simulation software for interpretation. It must be able to achieve continuous, real-time bidirectional

communication.

2.1.3 Windows USB Driver

The USB driver will allow the Windows 10 operating system to recognize our hardware as a valid peripheral

connected to the USB bus. All data and signal traffic to and from the software add-in will be handled by the

USB driver. Once installed on the host PC, the USB driver should enable PnP for the throttle peripheral.

Table 1: R&Vs for Host Software.

Requirement Verification

The FS Add-in can read flight

data from the simulator software

via its API calls.
1. Start the simulator program with the add-in.

2. The debug terminal of the add-in should appear automati-

cally or be opened manually.

3. Load a scene in the simulator program, bring the aircraft

into sky, manually adjust thrust demand for both engines

and extend the speedbrake.

4. Verify that the debug terminal of the add-in prints correct

data that agree with the flight instruments in the virtual

cockpit.
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The FS Add-in can write data

via the simulator API to control

the airplane with < 10ms delay.
1. Start the simulator program with the add-in and the debug

terminal.

2. Load a scene in the simulator program.

3. Send thrust demand change commands via the debug ter-

minal and start the timer.

4. Confirm requested flight control changes corrects takes ef-

fect and end the timer.

5. The time between command sent and flight control response

should be less than 10 ms.

The FS Add-in registers the

throttle quadrant as a valid con-

troller in the simulator software

so that it can be calibrated and

used as a controller input source.

1. Connect the throttle quadrant to the host computer.

2. Start the simulator program with the add-in.

3. Go to Input Calibration in Settings menu in the simulator

program.

4. The throttle quadrant must be listed as a input source and

all input channels (3 levers and 2 buttons) are ready to be

assigned to simulator functionalities.

5. Start input calibration process of the simulator program,

and verify that the simulator program correctly adjust con-

trol mappings to the input range of the device.

The USB Driver registers the

throttle quadrant as a valid USB

controller in the Windows OS

and the OS can identify the new

hardware once the throttle quad-

rant is plugged into the host via

USB 3.0.

1. When the Windows OS operates normally, start the USB

Driver and plug in the throttle quadrant to an operating

USB 3.0 port.

2. Observe the “new device” notification from the Windows

OS, and check that the throttle quadrant is recognized in

the Device Manager.

5



The FS Add-in can read (write)

data from (to) the throttle quad-

rant microcontroller via USB Se-

rial Protocol with < 100ms delay

in each direction.

Note: This test procedure assumes that the throttle quadrant mi-

crocontroller correctly handles USB Serial Communication with

the host.

1. Start the FS Add-in debug terminal.

2. Connect the throttle quadrant to an operating USB 3.0

port.

3. The data read from the throttle quadrant will be automat-

ically printed onto the debug terminal every 250 ms.

4. Open the ATMega serial debug terminal and connect it to

the throttle quadrant.

5. Send thrust demand change commands via the debug ter-

minal to the throttle quadrant and start a timer

6. Verify that correct information is printed in the ATMega

debug terminal.

7. Observe the thrust levers move automatically to the de-

manded thrust position and end the timer

8. The delay between command issuance and thrust set should

be no more than 100 ms.

2.2 Electrical & Electronic Parts

The hardware subsystem consists of a microcontroller, a stepper motor driver unit, three stepper motors,

and the user interfaces (levers and buttons). The hardware subsystem should provide the pilot with a firm

but effortless operational feel as close to that of real airplanes as possible. The levers must be able to

move at a constant rate smoothly whenever A/T commands a thrust adjustment. The levers must stop

exactly and firmly at the designated position without slipping or drifting. The motors should never impose

opposing torque to pilot inputs and must report any override to the software subsystem. The R&Vs of the

EE hardware are listed in Table 2.

2.2.1 Microcontroller

The microcontroller will be the processing center on the peripheral side. Connected to the host PC via

USB 3.0 and powered by USB, the microcontroller will interface with the host USB driver to deliver and

collect necessary data. The microcontroller will also be responsible for instructing movements of the motors,

responding to button presses, and decoding thrust lever positions. This will be an ATMega microcontroller

running the controller firmware program. As parts of the firmware, the communication with the host software

will utilize the ASDF protocol, which we propose in Section 2.4, and the commanding of the motors and the

tracking of lever positions will be done via PID (proportional–integral–derivative) control loop.

2.2.2 Motor Driver

The motor driver manages power and control signals for the stepper motors. Special stepper motor drivers

are necessary due to the special construction of stepper motors and the unique requirements to run them.

This will likely to be an aftermarket component.
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2.2.3 Stepper Motors

Three stepper motors will be used to physically move the levers. Each stepper motor will be responsible for

only one lever. The stepper motors will be powered externally by a power adapter and controlled by the

stepper motor driver. They will remain unpowered unless an instruction was received to move. The stepper

motors will have closed feedback loops for accurate determination of the motors’ positions.

2.2.4 Power Supply

The power supply will be the source of energy for the 3 stepper motors. The power supply must be able to

rectify, convert, and filter the input voltage to 12 V DC required by the stepper motors to function. The

power supply should output 12±0.5 V DC at 2 A under any load condition without active cooling.

Table 2: R&Vs for Electronic Hardware.

Requirement Verification

The microcontroller firmware

can decode and encode data in

the correct format.
1. Start the simulator program with the add-in and the debug

terminal.

2. Connect and set up the throttle quadrant with ATMega

serial debug terminal monitoring.

3. Send thrust demand change and speedbrake deployment

commands to the throttle quadrant.

4. Verify the successful decoding of the test pattern in the

serial debug terminal.

5. Manually apply test signals to the microcontroller via debug

ports. (bypassing hardware encoder/motor feedback)

6. Verify the reception of test signals in the Add-in debug

terminal.

The motor driver can advance

the stepper motor without slip-

ping and stop within 1.8° of as-

signed position.

1. Power up the throttle quadrant with 12 V DC.

2. Manually send thrust lever position change commands to

the motor driver circuit (bypassing the microcontroller).

3. Verify all 3 steppers can start without slipping and stop

within 1 step (1.8°) of assigned location after continuous

(more than 2 steps) motion.
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The stepper motors can move

all levers smoothly. Individual

levers can move without affect-

ing its neighbors. The motors

sustain long operations without

reach above 60°C.

1. Fully power the throttle quadrant (5 V rail and 12 V rail).

2. Open ATMega debug terminal and send stress test com-

mand (cycle all motors at full power continously).

3. Verify the movements of the levers are steady at 12.6° /s

turn rate (7 seconds to complete idle-TO/GA travel).

4. Leave test running for at least one hour.

5. Confirm with infrared camera that the stepper motor pack-

ages are below 60°C.

The microcontroller can accu-

rately respond to virtual thrust

adjustments and adjust the

thrust levers accordingly with

delay of < 100ms.

Note: This test procedure assumes that the software host is func-

tional.

1. Start the simulator program.

2. Connect the throttle quadrant to an operating USB 3.0

port.

3. Load compatible scenario.

4. Verify the levers are moved to standby positions when the

aircraft system is initialized.

5. Engage A/T inside the simulation software and command

a thrust change via the MCP and start a timer.

6. Verify the movement of the thrust levers follows that of the

thrust levers in the virtual cockpit and stop the timer

7. The delay should be no more than 100 ms.

8. Extend the speedbrake inside the virtual cockpit and start

a new timer.

9. Verify the speedbrake lever moves to match its position in

the virtual cockpit and stop the timer.

10. The delay should be no more than 100 ms.
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The resisting torque from the

steppers when the lever is sta-

tionary prevents thrust changes

from ambient interference but

does not require more than 1 N

applied to be overriden.

Note: This test procedure assumes that the software host is func-

tional and a compatible scenario is loaded.

1. Measure with newton meter the force required to move the

thrust lever at least one step.

2. Engage A/T inside the virtual cockpit.

3. Lightly touch the thrust levers.

4. Confirm the levers are not moved and no thrust change is

registered.

5. Attempt to operate the levers like in normal manual flight.

6. Confirm the levers can travel within the 90° movement

range with the same 2% report accuracy.

7. Measure with newton meter the force required to move the

thrust lever at least one step.

8. The extra force required should be no more than 1 N.

The power supply is capable of

motorizing all steppers at 12V

0.5A each constantly without

reaching > 60°C on the unit

package.

1. Power up the throttle quadrant 12 V rail with the power

supply.

2. Send power stress test command via the ATMega debug

terminal (run all motors at 12 V 0.5 A continuously).

3. Confirm with an oscilloscope that the output of the power

supply is at 12± 0.5 V DC.

4. Keep the test sequence running for 1 hour

5. Confirm with infrared camera the temperature of the exte-

rior of the power supply unit is < 60°C
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Figure 4: Visual Aid for Physical Design.

2.3 Mechanical Parts

The R&Vs of the mechanical hardware are listed in Table 3.

2.3.1 Levers and Buttons

The thrusts levers and buttons are the main user interface. They will be fixed on one end with a hard-limited

travel range. Rotation of the thrust levers about the fixed end will correspond to adjustments to the thrust

setting. The travel range and thrust mapping will be as close to a Boeing 737-800 as possible for realism.

Buttons will be attached to the top of both thrust levers and one on the left thrust lever. These button

presses will be handled by the microcontroller and be mapped to corresponding functionalities found on the

Boeing 737-800. Figure 4 is an illustration of the physical look of our product.

Table 3: R&Vs for Mechanical Parts.

Requirement Verification

The levers can be mapped to cor-

responding functionalities in the

simulation software.

Note: This test procedure assumes that the software host and the

EE hardware are functional.

1. Open the simulator settings and select throttle/speedbrake

lever mappings

2. Map the physical levers to corresponding controls and ini-

tiate calibration.

3. Confirm the levers can be mapped to full control range (de-

termined automatically by the simulation program) with at

least 1:1 resolution.
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The TO/GA button and both

A/T disengage buttons are func-

tional with < 100ms input la-

tency.

Note: This test procedure assumes that the software host and the

EE hardware are functional.

1. Start the simulator program.

2. Load a compatible scenario.

3. Setup FMC/CDU for takeoff.

4. Press the TO/GA button and start a timer.

5. Confirm on the PFD that A/T mode has changed to

TO/GA and stop the timer.

6. The delay should be no more than 100 ms.

7. Press A/T disengage button and start a new timer.

8. The A/T ARM switch on the MCP flicks to off position.

The Master Caution is lit up. A/T DISENGAGE is shown

on the MFD recall section and stop the timer.

9. Verify that the delay is no more than 100 ms.

2.4 Host/Device Communication Protocol

The host program and the device microcontroller will communicate over a USB Serial connection, which

provides a streaming interface for bidirectional reads and writes. We use existing USB Serial libraries for

the Windows OS and the ATMega chip to implement our communication protocol.

We present the packet-based communication protocol, the Aviation Simulator Data Format (ASDF) Protocol,

for the host to poll data from the thrust quadrant and send commands to set thrust position. The packet sent

by the host consists of a command opcode and optionally several bytes of data. The opcode is 1 byte with

the most significant bit set to 1. Each data byte will have the most significant bit set to 0 to be distinguished

from opcode bytes. This scheme limits the number of opcodes and the maximum value of one data byte to

27 = 128, which is more than enough for our purposes. The details of each command are specified in Table 4.

Table 4: Host Commands for the ASDF Protocol.

Command Opcode Function

CMD_RESET 0x80 Reset the throttle quadrant device.

CMD_POLL 0x81 Get current status of the thrust levers and the buttons.

CMD_LVR_SET 0x{8-F}2 Lock and set lever positions. This command is actually a combination of 8

commands. Bit 6 to bit 4 form a bitmask indicating which thrust levers are

to be set. The opcode is then followed by the position values in the order

of the bitmask. If none of the bits are set, this command does nothing, and

no following value bytes are required.

CMD_LVR_RELS 0x83 Release the thrust lever (and might let the flight simulator disengage A/P).

CMD_ASDF 0xFF Reserved for debug purposes.
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The response packet sent by the thrust quadrant microcontroller contains one or more bytes depending on

the command received from the host. The response formats are listed in Table 5.

Table 5: Device Responses for the ASDF Protocol.

Response Format Function

ASDF_ERROR 0xFF Response when the device encounters an error.

ASDF_ACK 0x00 A generic response when the device successfully completes a command.

ASDF_RESET 0x01 Generated when the device finishes initialization, which might be the result

of a CMD REST command or the normal bootup.

ASDF_POLL_OK 0x02 First byte of the response to a CMD POLL command. This byte will be

followed by the data bytes asked by the command.

ASDF_LVR_RELS 0x{0,8}3 Generated when the thrust lever is released to pilot’s control. If bit 7 is set,

then this response is the result of a CMD THR RELS command. Otherwise,

this indicates that the pilot wants to forcibly disengage A/P by moving the

thrust lever.
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2.5 Tolerance Analysis

The most essential component in our design would be the stepper motors that moves the thrust levers. We

have identified three important parameters that impact the final product the most and performed analytical

calculations to establish performance targets.

• When the TO/GA button is pressed on a Boeing 777-300ER while both engines are at idle, it will take

exactly 7 seconds for the thrust levers to advance to the TO/GA position. Our intended stepper motor

model, the 17HS4401S, is capable of 1.8° steps. To closely simulate the motion of the thrust levers on

a real plane, our motor must have a maximum turn rate of at least

90° / 7 second

1.8° / step
≈ 7 step/second.

The target turn rate will also affect the maximum running torque of the motor during operation.

• For simulation accuracy as well as user experiences, the thrust levers must be able to react to con-

troller signals with as little delay as possible. It is also crucial that the thrust levers are capable of

remaining stationary under minor external influences such as table vibration or device movements. The

17HS4401S offers 2.2 N· cm maximum detent torque and 40 N·cm minimum holding torque. We have

the choice of either leaving the motor wings de-energized until motion request or have them energized

all the time and de-energize when the pilot overrides. Having constantly energized wings will maximize

the ”locking” effect of the thrust levers and filter any unintended inputs. The response delay of the

motors will also be reduced. However, the pilot will need to exert extra force to move the lever by at

least one step to have the override be detected. Assuming a thrust lever of length 14 cm (measured

from Logitech Saitek throttle quadrant), the extra force required is

Fextra =
40 N · cm

14 cm
≈ 2.86 N.

Such amount of force will be noticeable to the pilot.

De-energizeing the wings until movements are requested will provide lower locking force holding the

thrust lever position and the pilot can move the levers with little extra force. But the motor will take

longer to reach desired angular velocity once requested to move and external noises (vibrations, small

nudges, etc) cannot be filtered as effectively.

• In complicated flight scenarios (crosswind approach, wind shear, damaged airplane, etc.), the A/T will

make minute adjustments at very high rates. We expect all thrust lever motors to be operating at full

torque output to keep up with the rapid thrust changes. With a rated voltage of 12 V and a maximum

current of 1.7 A, the maximum power of the motor one motor is

Pmax = 1.7 A× 12 V = 20.4 W.

Then the two thrust motors combined will consume more than 40 watts of heat. For the depicted

worse-case-scenario, most of the power will be dissipated as heat when the motors need to quickly

change direction. Apparently, removing 40 watts of heat passively from the small throttle quadrant

package will be challenging. The two possible solutions are reducing current at the cost of lower running

torque or including active cooling systems which will add to the complexity and cost of the project.

After close analysis and considerations over the three identified problems, we have made the final design

choice that will minimize the compromise made to user experience while keeping the design simple and the
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cost reasonable. Our final design choice is a current limit enforced by the stepper motor driver circuit. The

ATmega-2560 microcontroller will contain firmware capable of detecting abnormal torque surges and cutoff

motor power should a stall is detected. A resistor-based current limiter will be the fail-safe backup should

the microcontroller fail. The limit is currently discussed to be 0.5 A. With the new limit in place, the new

holding torque would be

Tnew = 40 N · cm× 0.5 A

1.7 A
= 11.8 N · cm.

With a 17 cm thrust lever (accurate to Boeing 777 specification), the required user input force to override

the stepper motor is

F
′

extra =
11.8 N · cm

17 cm
= 0.69 N.

This significantly reduces the chance that the pilot will need to exert noticeably high (>1 N) of force to

perform emergency overrides. The reduced current will also lower the thermal output of the motor drivers

for the steppers. The new anticipated thermal capacity for the motor driver is

P
′

max = (0.5 A)2 × 0.5 Ω = 0.125 W.

The three driver chips for thrust lever steppers combined will have a maximum thermal output of 0.375

watts. Such thermal output from driver chips TB6612FNG can be easily managed with externally-mounted

heat-sinks such as the DA-T268-301E-TR with 7W of thermal dissipation at 35°C. The anticipated thermal

capacity for the motor is

P
′

motor = 12 V× 0.5 A = 6 W,

or

∆T =
6 W

(0.045 m)3 × 205.0 W/(m K)
≈ 2.41 °C.

Given the ∆T is 2.41 °C, we assume the working environment for the motor is 30 °C, the anticipated tem-

perature is below our temperature limits. Last but not least, we confirm that our new current limit can still

satisfy the minimum RPM requirement:

tstep, min =
2LImax

V
=

2× 2.8 mH× 0.5 A

12 V
= 0.23 ms.

This is lower than the required minimum of 143 ms per step and hence will still satisfy the required RPM

for accurate simulation.
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3 Costs

We estimate the costs for each component of our prototype and bulk product in Table 6.

The total labor cost for this project is estimated to be 100 hours for each of us, we also estimate that the

ECE machine shop will take 6 hours to complete our design. Considering that the average hourly income

for Illinois Electrical Engineers is $30 to $40, we take the average and assume the total labor cost is

[(100× 3 + 6) hours]× [$35 per hour]× 2.5 = $26775.

Our intended competitor product is the Logitech G Pro Flight Throttle Quadrant with 557 customer ratings

on Amazon US [8]. Assume a typical 15% sales-to-feedback ratio [9], our anticipated sale is approximately

4000 units. With the assembly process optimized, the time estimated for an experienced worker to assemble

a unit from bare components is 2 hours, including basic quality control and testing. Then the total retail

unit cost is

$35/hour× 2 hours + $33.2 = $103.2.

Splitting the development costs to 4000 units and apply a revenue of 5%, the final retail price before tax

would be (
$26775 + $94.06

4000
+ $103.2

)
× 105% = $115.41.

This is slightly higher than the non-motorized Logitech G at $87 before tax. However, non-motorized offers

from Thrustmaster is more expensive than our product at $152.44 before tax.

Table 6: Component Costs Per Unit.

Part Description Qty Cost (Protptype) Cost (Bulk)
17HS4401S Stepper Motor 3 $29.91 $14.97
ATmega-2560 Microcontroller 1 $3.82 $3.82
TB6612FNG 5V/12V H-bridge 3 $14.85 $1.65
485-1503 Switch Button 2 $1.90 $1.90
292303-1 USB Female Connector 1 $1.11 $1.11
JX-12069 12V DC 2A Power Supply 1 $7.95 $3.65
B002KKZRYM USB A to A Cable 1 $4.52 $1.00
PCB Cost of customized PCB 1 $10.0 $0.10
Mechanical Parts Cost of Levers and the Outer Shell 1 $20.0 $5.0
4010S 40mm Cooling Fan 1 $0.99 $0.99
Total $95.05 $34.1
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4 Schedule

Our schedule is listed in Table 7.

Table 7: Weekly Project Schedule.

Week Wendi Yuqi Ziang

02/22/21 Research on motor control;

communicate with machine

shop

Research Prepar3Dv4 SDK

and Windows 10 USB Serial

API

Familiarize with PCB design

workflow and layout in Auto-

CAD Eagle with Wendi

03/01/21 Research on customized

PCB design and microcon-

troller; validate and finalize

mechanical design

Design Host/Device com-

munication protocol; be-

gin host software develop-

ment (Prepar3Dv4 Add-in

and Windows OS driver)

Complete first PCB

schematic and layout draft;

Source testing equipment

locally for asynchronous

testing and validation

03/08/21 Complete mechanical parts

with machine shop; finish

purchase all required parts;

draw the PCB for the micro-

controller

Continue host software de-

velopment, including debug

terminal command line in-

terface (CLI) and automatic

software test suite

Source components locally

and perform conceptual test

on bread boards; Contact lo-

cal PCB prototyping service

and print first PCB design

03/15/21 Test the effectiveness of the

mechanical design; finalizing

mechanical design; begin im-

plementing control unit

Finalize development of de-

bug terminal CLI

Perform validation of first

PCB version; Report any

problem to Wendi and dis-

cuss possible fixes

03/22/21 Finalize control logic and

control unit; test the PCB

and make necessary improve-

ments

Finalize Add-in and in-

simulator A/P communica-

tion as well as corresponding

software test suite

Validate improved PCB de-

sign; Contact local PCB pro-

totyping service for second

revision

03/29/21 Implement and finalize the

hardware and test; integrate

the hardware and software

Finalize Windows OS driver,

including device registration

in Device Manager and and

in simulator program as well

as corresponding software

test suite

Improve PCB design based

on Wendi’s test results for

third PCB revision; Contact

local PCB prototyping ser-

vice for third revision; Vali-

date third PCB revision

04/05/21 Test and validate require-

ments with real device

Test and profile host software

with real device

Finalize PCB design in time

for last PCBway order

04/12/21 Performance analysis and

optimization of microcon-

troller and device effective-

ness; finalize the project

Performance analysis and

optimization of host software

and host/device communica-

tion; finalize software stack,

including both host software

and microcontroller program

Perform stress tests and ex-

tended flight simulation ses-

sions for debugging and opti-

mization purposes; Confirm

all performances meet R&V

requirements

04/19/21 Reserved for schedule slip, or

begin preparing final report

Reserved for schedule slip, or

begin preparing final report

Reserved for schedule slip, or

begin preparing final report

04/26/21 Final demo Final demo Final demo

05/03/21 Final presentation and final

report

Final presentation and final

report

Final presentation and final

report
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5 Ethics and Safety

Our throttle quadrant aims to provide an actual and smooth experience to the audience of flight simulations,

we believe that our product can bring a more authentic and affordable option to the publicity, which facilitates

the wide audience of flight enthusiasts to access actual flight experience, and may serve as training equipment

before they step up to planes. Thus our design aligns with the IEEE Code of Ethics Section 7.8.2: “to improve

the understanding by individuals and society of the capabilities and societal implications of conventional and

emerging technologies, including intelligent systems” [10].

Since our design-related extensively to mechanical and electrical parts, the safety concerns related to our

physical design during our session of design, experiment and use need to be addressed. Such safety concerns

could be potential safety threats towards users, also the misuse of our design may cause undesired conse-

quences to the user and the peripheral itself. To optimally be following the IEEE Code of Ethics Section

7.8.9, striving to reduce potential harm to the user and the property, we make efforts to optimize our design

[10].

Our design involves 5V/12V power supplies to drive our microcontrollers and the stepper motors to perform

actions. Although the voltage does not exceed the safety voltage of 22V, power leakage may also lead to

uncomfortable experience and safety threats to the users. To address the concern regarding the electric

shock and power leakage, the handle of our design will be made from or covered by insulating materials to

isolate the user from the electrical components as well as to prevent external items from entering the throttle

quadrant and short the internal components.

The lever moving during A/T mode is controlled by the simulator program, thus may possess a possibility

that the lever may cause physical damage toward the user. There is a possibility which the motor stuck the

thrust lever to one end of the designated track on the frame and finally cause the motor failure. To address

the safety concerns towards these mechanical issues, we will control and limit the angle of our thrust lever

through a feedback loop, and the motor will disengage as soon as manual inputs involve. Also, as the Auto

Throttle reflects the actual thrust level, the lever will not exceed the angle limit which we measure and set

up in the microcontroller.
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