
Portable In-Line Audio Equalizer

Design Document

Team Number 8

Ankit Jayant (ajayant2)

Avinash Subramaniam (avinash6)

Ji Yeon In (jiyeoni2)

ECE 445
TA: Prashant Shankar

March 4, 2021

1 Introduction

1.1 Objective

There are varying preferences to equalization (EQ) in audio, whether it is through personal pref-
erence or a need, such as helping with a hearing impairment. Some media players do not have a
built-in equalizer nor do they allow for downloading EQ mobile apps. Therefore, users are unable
to adjust the sound signature of what they are listening to. Also, many pre-existing EQ devices are
too large or heavy to be portable.

The solution is the Portable In-Line Audio Equalizer (PIAE). Using the data from a desired media
player, the PIAE uses signal processing algorithms to output audio data with a boost or attenu-
ation at certain frequency ranges. This device allows for equalization, and has the advantages of
convenient everyday use.

1.2 Background

Hearing loss can come in different ranges. One form of hearing loss to consider is a “notch” hearing
loss, which is hearing loss at a certain frequency range [1]. In order to help with this type of issue,
any desired frequency range can be boosted by an audio equalizer when using a media player. There
are also people with personal preferences with sound signatures who use equalizers.

Some devices have built-in equalizers, like in computers and MP3 players, but that is dependent
on the specific version and brand. Equalizer mobile apps can also be downloaded, but that is not
possible for older devices, such as CD players.

There are also portable audio equalizers that exist. Typically, the more portable an audio equalizer
is, the fewer operating ranges, or bands, it will have. Larger operating ranges allow for more options
for the user, as well as a greater ability for the user to fine-tune the emphasis on the desired fre-
quencies. This is especially important for users suffering from hearing loss. Commercial equalizers
can have eight band filters, but those devices are not usable in a casual setting [2]. Portable devices
are more convenient, but sacrifice performance by using less operating ranges [3]. The goal for
the PIAE is to maintain the performance provided by commercial equalizers while also providing
usability for everyday people.

The performance of an audio equalizer is not only restricted to operating frequencies, but also
to latency. If the latency introduced by the PIAE is too large, then users may prefer compara-
ble products with lower latencies [13]. This may drive down customer satisfaction and demand.
Therefore, we limit the PIAE to having a latency below 100 ms.

1

1.3 Visual Aid

Figure 1: A Diagram of a Possible Use of the PIAE

1.4 High-Level Requirements List

• The PIAE must have a low latency of less than 100 milliseconds.

• The PIAE should use eight frequency bands when constructing its filters, instead of the typical
three frequency bands. The frequency bands will be centered at the following frequencies
measured in Hz : [100, 250, 500, 1000, 2000, 4000, 8000, 16000].

• The PIAE must have a size of less than 14 x 10 x 6 cm for the device to be sufficiently
portable.

2

2 Design

2.1 Block Diagram

Figure 2: A Block Diagram of the PIAE

The PIAE design has power, control, user interface, and audio input/output as the primary units.
The power module generates an adequate amount of voltage for the other modules to use. The audio
input/output module formats audio data accordingly, allowing other components to understand the
data. Using the data and desired filters that the user interface decides, the control module generates
filtered data. This filtered data returns to the audio input/output module which is then outputted.

3

3 Subsystem Block Descriptions

3.1 Power Subsystem

Figure 3: Circuit Schematic for the Power Subsystem

3.1.1 Battery

The lithium-ion battery provides power for the rest of the device. It interfaces exclusively with
the on/off switch, routing power through the switch to the low-dropout (LDO) regulator and
subsequently the rest of the circuit. This specific battery model was chosen because it supplies a
voltage relatively close to the operating voltage of our circuit, an output voltage of 3.7 V compared
to a circuit voltage of 3.3 V. This allows the LDO regulator to be far more efficient, according to

4

the equation [5]

Efficiency =
IOUT

IOUT + IGND
· VOUT

VIN
(1)

Efficiency ∝ VOUT

VIN

Efficiency ∝ 3.3

3.7

Efficiency ∝ 89.12%

Therefore, the voltage of our chosen battery ensures excellent efficiency in the LDO regulator.
Furthermore, the capcacity of the battery is 2500 mAh, which allows for at least 3 hours of circuit
operation if max current is drawn according to the equation.

Battery Life =
Battery Capacity (mAh)

Load Current (mA)
(2)

3 h ≈ 2500 mAh

791.1 mA

Note that the figure of 791.1 mA for the load current was derived from Table 1 below. We believe
this amount to be reasonable, and procuring a battery with more capacity may compromise the
portability high level requirement due to a larger battery being needed. It would be wiser instead
to focus on efficiently using the audio codec and the microcontroller unit (MCU) to increase the
uptime of the PIAE.

Table 1: Max Current for Each Component

Name Max Current (mA)
Audio Codec Chip 150

STM32 Microcontroller 600
LCD Display 41.1

Total 791.1

5

Table 2: Requirements and Verifications of the Batteries

Requirements Verifications

1. Supply +3.7 V +15%/-5% power.

2. The lifetime of the battery is 3 hours ±5%

1. Check that the battery has an output
voltage in the acceptable range.

(a) Ensure that the battery is fully
charged, reading +4.2 V using a
DMM across JST pins.

(b) Let the battery power the circuit for
30 minutes.

(c) Measure the voltage across the JST
pins using an oscilloscope to verify
that the voltage is +3.7 V +15%/-
5%.

2. Measure how long the device lasts when
it is on. If measurement is not possible
at a given time, simply turn off the PIAE
and turn it back on when measurement
becomes possible again.

(a) Ensure that the battery is fully
charged, reading anywhere from
+4.2 V to +3.7 V using a DMM
across JST pins.

(b) Let the battery power the circuit
and begin a timer.

(c) Measure the voltage across the JST
pins of the battery every 30 minutes
using a DMM, reducing the interval
to 10 minutes after 2 hours and 30
minutes.

(d) When the voltage of the battery is
less than +3.3 V, record the time
elapsed, and verify it is 3 hours±5%.

3.1.2 On/Off Switch

The on/off switch powers the PIAE on and off to prevent constant draining of the batteries. This
makes the PIAE more sustainable. This switch is connected to the batteries and the voltage regu-
lator.

6

3.1.3 Voltage Regulator

The voltage regulator ensures that the voltage supplied to the circuit is maintained at 3.3 V ±5%
and an output current of 800 mA ±5%. When the switch is on, the regulator takes the output of
3.7 V and converts it to a usable 3.3 V, which powers the rest of the device. Considering our initial
output is 3.7 V, a low dropout regulator is necessary as it is also effective with regulating voltages
that are close to the desired 3.3 V output.

Table 3: Requirements and Verifications of the Voltage Regulator

Requirements Verifications

1. The voltage regulator should regulate the
output voltage of the batteries to 3.3 V
±5% and maintain an output current of
700 mA ±5%.

1. We will use a 3.3 V Voltage regulator IC
chip to ensure that regardless of the bat-
tery output voltage, 3.3 V will be supplied
to the STM32 microcontroller so it can
operate safely. We will also check that
700 mA will be output from the regula-
tor. We will verify the chip as follows :

(a) Connect a variable voltage source in
series with our IC chip input pin.

(b) Connect the ground pin to the ap-
propriate ground in the circuit.

(c) Connect a resistor in series with the
output of our IC chip.

(d) Connect probes across the resistor to
check the voltage drop across the re-
sistor.

(e) Start the variable voltage source at
3.3 V. Increase the voltage and check
if the voltage across the resistor. If
it is 3.3 V ±5% consistently, we have
been successful.

(f) Use a DMM to measure the current
that the regulator is outputting in
the PCB, and verify that it is 800
mA ±5%. If our current is within
this range, we are successful.

7

3.2 Control Subsystem

3.2.1 Microcontroller

The microcontroller filters the I2S audio data from the audio codec chip according to the currently
selected EQ settings. For filtering, the microcontroller uses eight frequency bands in the digital
signal processing of the audio data within a frequency range of 100 Hz to 20000 Hz. Additionally, the
unit controls the screen display so that the currently selected EQ setting, as well as other possible
EQ settings, are shown. Therefore, the microcontroller ensures that users can quickly and accurately
change EQ settings to their preference. The microcontroller interfaces with all components of the
device. The STM32 MCU provides many advantages as opposed to other microcontrollers. It has
1 MB of RAM and can compute complex FFTs quickly. Also, it is highly accessible as it allows for
users to program in C/C++, allowing for ease of use.

Figure 4: Circuit schematic with Pin Layout for STM32H743VIT6

8

Table 4: Requirements and Verifications of the Microcontroller

Requirements Verifications

1. The microcontroller must be able to re-
ceive and store audio data of size 4000
bytes incoming from the audio codec chip.

2. The microcontroller must be able to out-
put modified audio data through the au-
dio codec.

1. To check if the microcontroller receives
audio data from the audio codec chip, we
will do the following :

(a) Load the audio codec driver into the
microcontroller flash memory.

(b) The power module supplies an ap-
propriate amount of power so the
microcontroller is operational.

(c) Plug the audio source into the line-
in audio jack and start sending the
data.

(d) Verify that the data is accessible in
memory. stored in the appropriate
address specified by the audio codec
driver.

2. To check the microcontroller is able to
modify and output audio data, we will do
the following :

(a) Power on each device and transmit
audio data to the microcontroller as
specified by Process 1.

(b) Access audio data stored in mem-
ory address specified by audio codec
driver.

(c) For each frequency band, shift the
decibel value by precisely +5 dB us-
ing the navigation system.

(d) Plot the FFT of both the original
signal and the modified signal and
compare. If the plots match a +5
dB shift, we have modified the signal
correctly.

(e) Transmit the data through the head-
phone jack in the PCB to a speaker
to verify that the audio is being out-
put through the microcontroller.

9

3.3 User Interface Subsystem

3.3.1 Screen

The LCD screen displays the currently navigated EQ setting, and is able to display any EQ setting
option. Data, which contains the screen contents, is sent from the microcontroller to the LCD
screen by I2C.

Figure 5: Circuit Schematic for the LCD Screen

10

Table 5: Requirements and Verifications of the Screen

Requirements Verifications

1. The screen must display a maximum of
80 characters.

1. (a) Connect the microcontroller and the
LCD screen.

(b) Create and run a script in the mi-
crocontroller that makes the screen
display 80 characters.

(c) Create and run a script in the mi-
crocontroller that makes the screen
display 81 characters.

(d) If the screen successfully displays 80
characters with the first script, but
unsuccessfully displays 81 characters
with the second script, then the ver-
ification is a success.

3.3.2 Navigation Subsystem

The navigation subsystem consists of a thumbstick and a push button. The thumbstick navigates
the different EQ settings and the push button selects the current EQ setting that is displayed.
Signals, which indicate user input, are sent to the microcontroller when the buttons are pushed.

11

Table 6: Requirements and Verifications of the Navigation System

Requirements Verifications

1. The thumbstick must change the screen
display, depending on what direction it
is pushed, and the current screen display
must be selected by the push button.

1. (a) Connect the microcontroller, the
thumbstick, the push button, and
the LCD screen appropriately.

(b) Create a script in the microcon-
troller which can create five different
displays depending on the thumb-
stick input. Each display must have
two unique characters, one being
a number for the x-direction and
the other being a letter for the y-
direction. The first display will be
the starting display. The other four
display options must correspond to
the four directions of the thumb-
stick. The current display should
show the two unique characters of all
currently selected displays, if any.

(c) Push the joystick in each corre-
sponding direction.

(d) Select each display with the push
button.

(e) The verification is successful if all
combinations of settings are shown
to be selected and unselected.

3.4 Audio Input/Output Subsystem

3.4.1 Audio Codec Chip

The audio codec chip converts analog data, incoming from the media player, to digital data for
the microcontroller. It also converts the outgoing filtered digital data from the microcontroller to
analog data for the listening device. Therefore, the audio codec chip interfaces with the microcon-
troller, the output device, and the listening device. Specifically the microcontroller communicates
with the audio codec chip through I2S and I2C. To setup the audio codec chip, we need to write to
the registers on the chip using the I2C protocol from the microcontroller. Meanwhile, the unfiltered
digital audio data coming from the audio codec and going to the MCU and the filtered digital audio
data coming from the MCU and going to the audio codec will be communicated through the I2S
protocol. Both the output device and the listening device are connected to the audio codec through

12

Figure 6: Circuit Schematic for the Audio Input/Output Subsystem

3.5 mm jack connectors.

We chose the TLV320AIC3204 for many reasons. Firstly, the chip can run on 3.3 V, which is
the output of the LDO regulator in our circuit [6]. Secondly, the chip can sample stereo (2 chan-
nels, as with headphones) data up to 192 kHz, which is well above the nyquist rate of 40000 Hz
required, where the nyquist rate is the minimum rate needed to sample a signal while losing no
information [7]. The 40000 Hz number was derived from the largest frequency we equalize, 20000
Hz, and the equation

Nyquist Rate = Bandwidth · 2 (3)

The chip also supports bit depths of 16, 20, 24, and 32, which allows flexibility as to what bit depth
we can use for our final product. Finally, the TLV320AIC3204 has the PowerTune feature, which
may allow us to reduce the power consumption of the codec considerably.

13

Table 7: Requirements and Verifications of the Audio Codec Chip

Requirements Verifications

1. The audio codec must have a total system
latency of less than 10 ms.

2. The audio codec must be able to sample
the audio data at a rate of at least 40,000
Hz.

1. Check that the total system latency of the
audio codec is less than 10 ms in the fol-
lowing manner.

(a) Create a Python script using a lap-
top that allows timestamping when
playing sound through the head-
phones port and recording sound
from an in-built microphone.

(b) Subtract the timestamp of incoming
audio chunks from the correspond-
ing outgoing chunks on the micro-
controller to determine the average
latency of filtering over 100 chunks.

(c) Use the script to play a sound to
the PIAE, with the external listen-
ing device being some sort of speaker
such as headphones that are placed
near the in-built microphone.

(d) Correlate the sound that was played
with the recording of the micro-
phone and find the time delay of the
microphone recording.

(e) Subtract the microcontroller filter-
ing latency from this time delay, and
check that the resulting number is
less than 10 ms.

2. Check that the audio codec sends at least
40,000 samples a second to the microcon-
troller.

14

(a) Create a program in the MCU that
timestamps data incoming from the au-
dio codec.

(b) Connect the MCU and the audio codec,
and connect some form of audio output
to the audio codec.

(c) Increment a counter for each sample re-
ceived by the MCU.

(d) Once the number of samples reaches
40,000, subtract the timestamp corre-
sponding to the first of the 40,000 from
the last and check that it’s less than
one second.

(e) This experiment should be repeated 10
times, and if all 10 experiments are suc-
cessful, then verification is complete.

15

3.5 Tolerance Analysis

The microcontroller poses the greatest challenge to implement in our project, both from a hard-
ware and a software perspective. However, from a quantitative perspective, we concern ourselves
with the latency the microcontroller operations introduce, the amount of memory needed for these
operations, and finally the trade-offs involved in designing the equalization filters.

We intend to execute equalization in the frequency range [100, 20000] Hz, and use the Fast Fourier
Transform (FFT) to transform and then filter the input sound in the frequency domain. We use
eight frequency bands for the equalization and our FFT bin size will be 512. However, using all
512 bins will not be necessary, because the latter half of the FFT is merely the complex conjugate
of the first half, as the input data is real [8]. Therefore, we only use 257 bins, in accordance with
the below equation [9].

FFT Len = (N/2) + 1 if N is even else. ((N + 1)/2) (4)

Where N is the FFT bin size. The FFT of N=512 requires a number of operations as specified
below

Nlog2N additions and (N/2)log2N multiplications (5)

Therefore, the latency of the FFT operation scales accordingly

t add ∗Nlog2N + t mult ∗ (N/2)log2N (6)

where t add refers to the amount of time the microprocessor needs for a single complex addition,
and t mult refers to the amount of time for a single complex multiplication [10]. The total latency
of our PIAE must not exceed 100 milliseconds, so it is critical that the FFT does not take up a
significant part of that.
Next, the number of operations required for the sum and multiplication of the filters with the
original audio signal is shown below.

8 ∗ 257 = 2056 multiplications and additions (7)

where 8 is the number of frequency bands and therefore equalization filters, and 257 is the number of
FFT bins that the audio signal and equalization filters contain in the frequency domain. Therefore,
the total latency expected by the microcontroller processing is

t add ∗ (Nlog2N + 8 ∗ (N/2 + 1)) + t mult ∗ ((N/2)log2N + 8 ∗ (N/2 + 1)) (8)

= t add ∗ 6664 + t mult ∗ 4360

If we assume that addition and multiplications are operations of the same speed, then t add and
t multiply need to be 0.0045 ms each in order to ensure a total filtering time of 50 ms. This will
ensure the rest of the circuit has plenty of time to conduct its operations.

Now we proceed to analyze the memory constraints imposed by these calculations. The PIAE
contains all 8 filters in memory, each of which is

8 ∗ (
N

2
+ 1) ∗ (16 bytes per complex number) = 33 kB (9)

16

Furthermore, the PIAE contains several frames or chunks of audio data, both for input and output.
This number will need to be determined, but will accordingly increase the amount of memory used
by the microcontroller in the following manner.

#chunks ∗ 2 ∗N ∗ (8 bytes per float) (10)

The number of chunks is multiplied by two because the input buffer (receiving ADC data) and
the output buffer (sending data to the DAC) should be equally large. Overall, we are certain that
our chosen microcontroller can handle the amount of memory required for the project, as with 10
chunks, the total memory in RAM would then be 80 kB + 30 kB = 110 kB, and the model of
STM32 we are likely going to choose has a RAM of 1024 kB.

Finally, we must address the trade-offs involved in designing the equalization filters, specifically
with regards to the bandwidth of each filter. With a narrower bandwidth, we ensure that no un-
wanted frequencies are boosted, but may also exclude or dampen frequencies that are desired. In
contrast, a wider bandwidth reduces the chances of that exclusion happening, but increases the
chance of unwanted inclusion happening. For illustrative purposes, a filter centered at 8000 Hz
with a bandwidth of 1000 Hz, a gain of 10 dB, and at a sampling frequency of 44100 Hz is shown
below.

Figure 7: EQ filter with a Bandwidth of 1000 Hz

On the other hand, the same filter with a bandwidth of 4000 Hz would be

17

Figure 8: EQ filter with a Bandwidth of 4000 Hz

The filter with a bandwidth of 1000 Hz does an excellent job of not boosting frequencies that are
close to adjacent filter center frequencies - in this case 4000 Hz and 16000 Hz. However, it also
fails to significantly boost frequencies that are approximately less than 7000 Hz and greater than
9000 Hz, boosting frequencies in this region by less than 2 dB, which are unlikely in turn to be
boosted by adjacent filters. This may be undesirable behavior, as customers may wish for these
frequencies to be boosted as well. Meanwhile, the filter with a wider bandwidth does a much
better job in these regions, only declining to less than 2 dB at a frequency less than 6000 Hz and
greater than 10000 Hz. A filter with a wider bandwidth would only increase this range, but may
run into issues where undesirable frequencies are boosted as well. Overall, the bandwidth of the
filters will need to be decided on a per filter basis, with filters centered on higher frequencies being
wider than filters centered on lower frequencies due to their non-linear spacing on the frequency
spectrum. We will not determine specific frequency cutoffs entirely through math, but supplement
the selection through trial and error by listening to their effect on the incoming audio. Therefore,
we will visualize the effect that filters of different bandwidths may have on the incoming audio in
order to reduce the amount of trials necessary for us to determine these cutoffs. For instance, we
may start with a filter centered on 8000 Hz and with a bandwidth of 4000 Hz like in this example,
and increase or decrease the bandwidth during trials.

18

4 Cost and Schedule

4.1 Cost Analysis

Total Labor Cost = 3 people * $35/hour * 10 hours/week * 9 weeks = $9450

Table 9: Cost of Parts

Name Manufacturer Part Number Quantity Unit Price ($)
USB LiIon/LiPoly

Charger
Adafruit 259 1 12.50

USB 2.0 Cable
A-Male to Mini-B

3 Feet
AmazonBasics B00NH13S44 1 2.00

3.5 mm Jack Connector
SMD

CUI Devices SJ-43514-SMT-TR 2 1.05

Audio Codec Texas Instruments TLV320AIC3204 1 5.07

Male to Male 3.5mm
Cable 4 Conductor

YCS 4330104966 1 5.97

Microcontroller STMicroelectronics STM32H743VIT6 1 12.29

DIP Switch CUI Devices DS04-254-2-01BK-SMT 1 0.70

Voltage Regulator
3.3V

STMicroelectronics LD1117V33 1 0.55

Li-Ion Batteries Adafruit 328 1 14.95

Mini 2-Axis Analog
Thumbstick

Adafruit 2765 1 2.50

Tactile Button
SMD (6mm)

SparkFun
Electronics

COM-12992 1 0.55

SerLCD 20x4
SparkFun

Electronics
LCD-16398 1 25.00

Miscellaneous
Components

(resistors, capacitors,
etc.)

— — — 5.00

Total — — — 89.18

19

4.2 Schedule

Table 10: Schedule for Each Person

Week Ankit Jayant Avinash Subramaniam Ji Yeon In

March 8 - Work on PCB
- Design the compartment
- Work on the audio codec

and MCU interface
- Work on PCB

March 15 - Work on PCB
- Work on the audio codec

and MCU interface
- Work on MCU filter code

- Work on PCB
- Work on breadboard to

prototype

March 22

- Integrate screen
interface into MCU

- Test and verify screen
quad protocols

- Work on MCU filter code
- Work on breadboard to

prototype

March 29

- Code review with
Avinash

- Unit test frequency
bands

- Finalize MCU code and
audio codec interface

- Finalize prototype

April 5
- Finalize MCU code
- Verify audio codec
- Help solder

- Test MCU filtering
and audio codec interface

- Help solder
- Solder

April 12 - Finalize system testing - Finalize system testing - Finalize system testing

April 19
- Finalize changes
- Mock demo

- Finalize changes
- Mock demo

- Finalize changes
- Mock demo

April 26
- Demo
- Mock presentation
- Begin final paper

- Demo
- Mock presentation
- Begin final paper

- Demo
- Mock presentation
- Begin final paper

May 3 - Finish final paper - Finish final paper - Finish final paper

20

5 Ethics and Safety

5.1 Development Issues

Our ethical considerations extend primarily to issues that could arise during the development of
our project. Because the PIAE filters audio that is designed for listening through headphones and
speakers, we need to ensure that our product does not make the audio too loud. Audio at extremely
loud volumes damages human hearing over time [11]. The IEEE Code of Ethics requires us “to
hold paramount the... health and welfare of the public” [12], and therefore, the PIAE should not
damage our user base’s hearing without their knowledge. To this effect, the volume of the PIAE’s
output audio must be clipped at 100 decibels and it must warn users that listening to sound louder
than 75 decibels could damage their hearing [11].

We may also encounter issues relating to the power unit. Lithium batteries, which are used for
the power unit, may produce fire or explode when they are used incorrectly or damaged [14]. To
mitigate this, the batteries we are using come with protection circuitry that prevent over-charging,
under-charging, and output shorts [15]. Furthermore, we intend to build a housing compartment
for the power unit that allows enough temperature dissipation so that there is no threat of the
batteries overheating. Finally, the housing compartment should be designed to minimize damage
to the user should the batteries malfunction.

As per the advice of the battery manufacturer [15], we will never charge or use the batteries
unattended, and only charge it at a rate of 1200 mA or less. When working with or around the
battery, we will ensure that the testbench is clear of any unnecessary materials, and that a fire
extinguisher is always close by. We will always monitor the current of the battery output at the
beginning of a testing session, in order to ensure it is not discharging at an unsafe rate.

5.2 Accidental or Intentional Misuse

The concern with accidental or intentional misuse is the scenario where a user increases the volume
of the audio they are listening to by unsafe amounts using the PIAE. As stated before, we intend
to mitigate this by clipping the volume of the PIAE’s output, and by warning users if the audio
output of the PIAE is greater than 75 decibels.

21

References

[1] ”Vital Signs: Noise-Induced Hearing Loss Among Adults — United States 2011–2012”. CDC,
https://www.cdc.gov/mmwr/volumes/66/wr/mm6605e3.htm. Accessed 14 Feb. 2021.

[2] Large commercial equalizer. https://www.cheapham.com/8-band-eq-by-w2ihy-special/. Ac-
cessed 14 Feb. 2021.

[3] Small Portable equalizer.https://www.amazon.com/Syba-SD-DAC63106-Control-
Headphone-Amplifier/dp/B00TYYMHQS. Accessed 14 Feb. 2021.

[4] “How Latency Affects User Engagement.” Pusher, 18 Feb. 2020, blog.pusher.com/how-
latency-affects-user-engagement/.

[5] “Understand Low-Dropout Regulator (LDO) Concepts to Achieve Optimal Designs.” Analog
Devices, www.analog.com/en/analog-dialogue/articles/understand-ldo-concepts.html.

[6] ”TLV320AIC3204 Very-Low-Power Stereo Audio CODEC With PowerTune™ Technology.”
Texas Instruments, https://www.ti.com/product/TLV320AIC3204?qgpn=tlv320aic3204. Ac-
cessed 5 Mar. 2021.

[7] ”Nyquist Rate.” COSMOS, https://astronomy.swin.edu.au/cosmos/n/Nyquist+Rate. Ac-
cessed 5 Mar. 2021.

[8] Scipy.Fftpack.Fft — SciPy v1.6.1 Reference Guide.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft.html.
Accessed 1 Mar. 2021.

[9] Scipy.Fft.Rfft — SciPy v1.6.1 Reference Guide.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft.html#scipy.fft.rfft.
Accessed 1 Mar. 2021.

[10] Fast Fourier Transform (FFT).
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html.
Accessed 1 Mar. 2021.

[11] “Hearing Loss - Symptoms and Causes.” Mayo Clinic, https://www.mayoclinic.org/diseases-
conditions/hearing-loss/symptoms-causes/syc-20373072. Accessed 14 Feb. 2021.

[12] IEEE Code of Ethics. https://www.ieee.org/about/corporate/governance/p7-8.html. Ac-
cessed 14 Feb. 2021.

[13] ”How latency affects user engagement”, https://blog.pusher.com/how-latency-affects-user-
engagement/, February 18, 2020.

[14] “Preventing Fire and/or Explosion Injury from Small and Wearable Lithium Bat-
tery Powered Devices.” Occupational Safety and Health Administration, 20 June 2019,
www.osha.gov/dts/shib/shib011819.html.

[15] Industries, Adafruit. Lithium Ion Polymer Battery - 3.7v 2500mAh.
https://www.adafruit.com/product/328. Accessed 3 Mar. 2021.

22

