

Abstract

In this report, we discuss the design of a hybrid analog/digital modular synthesizer. This synthesizer

allows the user to control the parameters of up to 8 audio or control signals using a computer interface

implemented in Max/MSP. This interface also provides a means for routing these signals in a highly

customizable fashion through 4 analog voltage-controlled filter/amplifier boards. The virtualization of

signal routing allows for greater ease of use and reproducibility for the consumer. Although the product

is not fully functional, individual modules have been completed and will be presented.

ii

Contents

1. Introduction 1

1.1 Problem and Solution Overview 1

1.2 Project Summary 1

2. Power Supply 2

2.1 Design Procedure and Details 2

2.2 Verification 3

3 . User Interface 4

3 .1 Design Procedure and Details 4

3 .1.1 Design Procedure 4

3 .1.2 Design Details 4

4. Analog/Digital Board 8

4 .1 Design Procedure and Details 8

4 .1.1 Digital-to-Analog Converters 8

4.1.2 Routing Matrices 9

4.1.3 PyBoard Interface and Output Ports 9

4 .2 Verification 10

5. Micropython Support 11

5 .1 Design Procedure and Details 11

5 .1.1 Max/MSP | Generators 11

5.1.2 Max/MSP | Routing 11

5.1.3 MIDI 12

5 .2 Verification 12

6. Digital Signal Processing 13

6 .1 Wavetable Synthesis and Implementation 13

6 .2 Verification 14

7. VCA/VCF Board 15

7 .1 Design Procedure and Details 15

7 .1.1 VCA/VCF Filter Core 15

7.1.2 Control Voltage Processors/Amplifiers 15

iii

https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.30j0zll
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.1fob9te
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.3znysh7
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.3znysh7
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.1fob9te
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.3znysh7
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.2et92p0
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.2et92p0
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.3znysh7
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.2et92p0
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.3znysh7
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.3znysh7
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.2et92p0
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.3znysh7
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.3znysh7
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.3znysh7
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.3znysh7
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.2et92p0

7.1.3 Audio Input Processors/Amplifiers 16

7.1.4 Output Processors/Amplifiers 16

8 . Costs 17

8 .1 Parts 17

8 .2 Labor 18

9 . Conclusion 19

9 .1 Accomplishments 19

9 .2 Ethical Considerations 19

9 .3 Future Work 19

References 20

Appendix A Requirement and Verification Table 22

Appendix B Schematics/Figures 25

Appendix C Micropython Code 31

Appendix D Tables 34

iv

https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.4d34og8
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.2s8eyo1
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.17dp8vu
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.26in1rg
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.35nkun2
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.44sinio
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1muG4Ere3xkWT_M5ilVnGFEjWtSXruF1n/edit#heading=h.2jxsxqh

1. Introduction

1.1 Problem and Solution Overview
The audio market was once dominated by the use of bulky, analog modular synthesizers. Their

unique audio quality and a lack of an alternative allowed them to exist as the industry standard, with

music producers and sound researchers struggling to garner the necessary funding to acquire such

expensive instruments. However, over the past few decades, technological advancements have allowed

digital synthesizers to generate a greater public response. Due to their easy upkeep and relatively low

cost, these synthesizers became heavily sought after by the industry, resulting in the plethora of digital

synthesizers available in digital audio workstations (DAWs) such as Logic Pro X, FL Studio and Pro Tools.

Despite the accessibility of digital synthesizers, the public’s demand for their analog counterparts

has re-emerged over the past two decades. Most consumers, musicians especially, find the sound quality

of analog devices to be superior to digitally filtered sounds [1] . However, these synthesizers aren’t always

digitally-compatible, are expensive and require patching cables which can easily clutter as in figure 1.

Figure 1. Analog Modular Synthesizer with cable-based patching.

Our solution offers a hybrid synthesizer, primarily for use by musicians and audio researchers,

that marries the flexibility of digital signal processing with the superior audio quality of analog hardware,

like voltage-controlled filters and amplifiers [14] . This analog/digital synthesizer allows for both digital

inputs, MIDI inputs and analog outputs to be routed through a number of channels and filters with

greater ease and reproducibility than provided by cable-based patching.

1.2 Project Summary
Ultimately, we were unable to get the synthesizer fully functioning. Specific modules have been

tested and finalized, but the main source of error has arisen from our inability to trigger the proper

System Exclusive (SysEx) and serial messages to be sent to our system from the user interface.

Nevertheless, our report will cover the advancements that were made; primarily with regard to the

rigging of our analog components and our micropython support design.

Once fully implemented, our synthesizer would allow the user to craft and output audio waves

through an analog routing matrix that eliminates cable-based patching and is more portable than its

analog predecessors. The synthesizer’s price would fall somewhere in the range of $500-700, depending

on manufacturing methods, providing a highly flexible and cost-effective device with more options for

sound design and synthesis than the more expensive options currently available on the market.

1

2 Power Supply

Figure 2. Core Power Supply Schematic

2.1 Design Procedure and Details
The power supply was based around Ken Stone’s CGS66 Power Supply which is intended as a

linear power supply for DIY modular synthesizers, and as such provides the proper rectification and

filtering to ensure that a consistent voltage is read by all components [1] . This is critical, as the human ear

is very sensitive to pitch and any fluctuation in power delivery would affect aspects of the filters (such as

the cutoff frequency) and could lead to intermittent power for the PyBoard. Not pictured in the

schematic above is the Hammond 167K30 transformer, which accepts wall voltage from the grounded

power inlet and provides a 30V, 1.5A center-tapped AC output. The center-tap is connected to the inlet

labelled “2” on the port to the far left of figure 2, with the other two wires attached to “1” and “3.” A

bridge rectifier converts this to positive and negative DC which is filtered first through two 4700 μF

capacitors and subsequently sent to an LM317 positive voltage regulator and an LM337 negative voltage

regulator, respectively. These are connected as per the application notes in the datasheets with the

output voltage set, using the LM317 as an example, by adjusting the value of R2. The variable resistors

are all of the high-precision 25-turn variety, and the output voltage can be found, as per the

datasheet [2],[3] , through the formula

 .25 V (1) V O ≈ 1 + 220 Ω
R2 + 1.5 kΩ

The +/- 12 V outputs serve as a power supply for the various amplifiers at the

inputs and outputs of the filters, the outputs of the DACs, and the overall output mixer. While most

signal outputs will never exceed a maximum of approximately 3.3 V (the reference voltage for our DAC),

powering the amplifiers through a 12 V bipolar supply ensures that input voltages to amplifiers never

come too close to their power-rail values and are thus never distorted by the amplifiers.

2

The bipolar 12V output is sent to LM7905 and LM7805 voltage regulators, again implemented as

per their respective datasheets [4],[5] , which provide both the analog power supply for the NJM2069 filter

chips and the digital supplies for the ADG2128 switchpoint matrices and the MAX537 DAC chips. As such,

further rectification is provided at the power inputs for each board. Ferrite beads in series with the

power rails prevent high-frequency noise, due to digital components, from appearing at the

power-supply inputs for the NJM2069. A 10 μF capacitor between each power supply rail and ground

provides the same protection on the low-frequency end of the spectrum. All applicable integrated

circuits are also equipped with 100nF metal film decoupling capacitors at their power supply inputs, as is

typically recommended for noise suppression. These can be seen in the full schematics provided in

Appendix B.

The 3.3 V supply features most of the same filtration and regulation as is used in the 12V

regulator circuit, but uses a highly regulated supply as its input. As this is used as a reference voltage for

the digital-to-analog converters, extreme precision is ideal and was achieved; the output was accurate to

the thousandth of a volt, varying slightly between 3.299 V and 3.3 V.

Given that extremely linear power is critical for audio applications, it was determined that a

linear power supply similar to the one above was critical to our needs. Alternatives to the Hammond

transformer were proposed, and included using two 15VDC wall adapters. However, for consumer

applications, a power supply which takes up two outlets is somewhat unheard-of, and thus the above

configuration was adopted.

2.2 Verification

As verification for the power supply, all four VCA/VCF boards were attached with the same signal at
all four signal inputs (supplied through an FG-7002C sweep-function generator). The output of each
power rail was measured over the course of 5 minutes, and any variation greater than 5% of its
total output would be deemed a failure. The test was successful, with no power supply rail
deviating by more than 0.5%.

3

3 User Interface

3.1 Design Procedure and Details

3.1.1 Design Procedure

The user interface is the primary way in which the user interacts with the synthesizer. It offers a

window with clickable options and menus where the output of each generator and routing matrix can be

selected, controlled and modified. Max/MSP was ultimately chosen as the tool for constructing this

interface as it offers simplified tools to perform tasks for data processing and parsing, as well as an

object which allows for serial messages to be sent through the computer’s USB connection. These

messages are then processed by the isolated USB-to-UART converter and subsequently sent to a UART

input on the PyBoard.

The initial intention was for an independent program to be designed from scratch using a GUI

library in a higher-level language such as Python, Java or C++, but the abstractions already available in

Max streamlined the process considerably. We wanted to allow the user control of the signal routing and

generator information through a simplified visual mechanism, and Max/MSP ultimately offered this

compatibility.

All options selected by the user in the Generator window are encoded numerically as a string of

binary data. The MIDI channel is always set to zero. This value is followed by is the generator number,

and a 0 or 1 to indicate whether it is currently on or off. Next is the waveform type, encoded as a 3-bit

binary value, followed by the input source for the amplitude and the frequency, each encoded as 2-bit

binary values. The options for the formula-input modes for the amplitude and the frequency are given

next, with the reading of these values skipped over by the program running on the PyBoard if the user

has not opted to set either of these values through formula. Finally, the last segment of the message is a

list of points that the user has selected in the amplitude window, encoding the overall volume of the

selected waveform.

3.1.2 Design Details
In figure 3 below, the interface through which the user interacts with the generator is shown, as

well as a small window that the user can double-click to access the interface for interacting with the

routing matrices.

4

Figure 3. Generator Interface, User-End

Dropdown menus allow the user to choose a generator number, waveform type, frequency

source and amplitude source. Selecting “Constant Value” for either the frequency or the amplitude

source causes the display to change to feature a single window in which the user can enter a

floating-point value, while selecting “Formula” replaces that single window with another allowing the

user to select between the various formula options. Buttons allow the user to clear entered points from

the amplitude envelope window, while clicking anywhere in the window will create a new point that will

change the overall way in which the volume or amplitude of the output changes over time. The “Total

Envelope Time” option selects the maximum value of the x-axis for the amplitude envelope, with the

x-values of all other points being adjusted accordingly in proportion to this maximum value. This allows

for the total duration of a sound to be changed without the user needing to adjust each point

individually.

5

Figure 4. Generator Interface, Control-End showing Hidden Objects

In figure 4 above, the same window is shown; however, the objects parsing the user input data,

normally hidden to the user, are visible. Some values, such as the output number, output type, and

on/off status, are sent directly to an object called “p parse,” which is a subpatcher designed to prepare

the message for serial output. The “Constant Value” or “Formula Input” inputs for the frequency and

amplitude sources, will appear based on what source the user sets for both attributes.

The inner workings of the “p parse” object and the “p getSerial” object are shown in figure 5.

The parse object simply collects the values the user has selected, modifies them and only outputs the

values when the “ON/OFF” button has been toggled to “ON”. It achieves this by using “i” and “zl.reg”

objects to store integers or lists, respectively, until a trigger is received from a “t b i” or a “t b l” object.

The “zl.group” object collects these and only sends the message when the last piece of data has been

received. The “getSerial” object is simply a Max serial object with some debugging features available.

While messages were successfully sent from the serial object to the USB-to-UART converter and

were received and detected at the UART input of the PyBoard, difficulties with trivialities such as, e.g.

the correct way to process floating-point values to conform to the encoding scheme shown above

ultimately prevented us from operating the synthesizer as intended through the Max interface. However,

given the successful receipt of messages by the PyBoard from Max, these issues could undoubtedly be

resolved given further time.

6

Figure 5. The ‘p parse’ and ‘p getSerial’ Objects

Similar principles are at work in the matrix window which controls the routing, the interface for

which is shown in Figure 6 below.

Figure 6. Matrices from the Matrix Control Window, Routes from FIlter Outputs to Other FIlter Inputs)

7

4 Analog/Digital Board
The analog/digital board serves as the bridge between the Max-based user interface and the

analog voltages expected at the inputs to the VCA/Filter boards. It also houses the PyBoard and the

mixed-signal integrated circuits; such as the MAX537 digital-to-analog converters and the ADG2128

switchpoint matrices. The schematic for this board can be found in figure 8 of appendix B.

The primary difficulties with our project were caused by a series of issues involving this board:

First, it was found that if the PyBoard is connected through USB to the computer and the power supply

simultaneously, it will receive power through the USB; the first draft of this board had the PyBoard

sharing a ground with all other components, and provided neither a provision for an alternative power

source nor a way to receive serial data from the computer aside from the dedicated USB port. This would

have resulted in serious ground issues which would likely have completely compromised any

noise-proofing at the power supply or by the ferrite beads and decoupling capacitors on the boards

themselves. It was determined that an isolated USB-to-UART converter could be used to direct serial

input to the UART ports of the PyBoard while simultaneously isolating the power supply and its ground

from that of the USB port, and so this scheme was adopted and the board was redesigned. Second, the

revised board, shown in the schematics below and ordered from Elecrow, never arrived. Last minute

compensatory measures were taken, such as using breakout-boards for the switchpoint matrices, but

failures and mistakes in component sourcing resulted in delays that hindered our progress.

Alternatives to the use of the ADG2128 switchpoint matrices included the use of a very large

number of multiplexers, but the complexity of controlling these as well as the simplicity of the I 2 C

protocol utilized by the ADG2128 chips led to their integration into the project.

4.1 Design Procedure and Details

4.1.1 Digital-to-Analog Converters

The MAX537 DACs in figure 9 of appendix B take the SPI outputs from the PyBoard and use

them, alongside a 3.3 V reference voltage, to produce a continuous analog voltage at each of the outputs

with a magnitude of 3.3 Vpp [6] . This is far higher than the intended 0.5 Vpp expected at the inputs of the

filter/VCA boards, so four AD8672 chips are used as inverting attenuators to bring the output to;

 .3 V pp 0.495 V pp 15 kΩ
100 kΩ * 3 =

The intended DAC was changed numerous times during the course of the design,

beginning with the 24-bit 192kHz ADAU1962A DAC. Unfortunately, this DAC operates through I 2 S

communication, which utilizes both the SPI and the I 2 C ports to output audio signals. In theory, I 2 S is fully

achievable using an STM32F767 chip as featured on the PyBoard; however, the firmware

implementation of the Micropython language on the PyBoard has yet to meet the full potential of its

main microprocessor. It was subsequently discovered that I 2 S has yet to be implemented fully on any

PyBoard, which has been an open issue in the Micropython community since around 2016.

The MAX537 DACs featured in the schematics were ultimately chosen, as a very-late-stage

design switch, due to their general simplicity and ease of use. Only 8 of the intended 12 generators are

8

featured in the schematics, corresponding to the two available (functional) SPI ports on the PyBoard and

the four available inputs and outputs on each board. These chips can theoretically be daisy-chained, such

that multiple chips run on the same SPI port, but we thought it best to limit ourselves as the deadline

was fast approaching.

4.1.2 Routing Matrices
An excerpt of the ADG2128 switchpoint matrix array is shown in figure 10 of appendix B; The full

array can be seen in the schematics, but there are four total in the left column and four total in the right,

with each group of four attached to a separate I 2 C input port. The 2.2 kΩ I 2 C pullup resistors (four total)

are only present on the topmost ADG2128 in each column, while a different number or configuration of

resistors is attached to ports A2, A1 and A0, allowing their I 2 C addresses to be hardcoded. Each ADG2128

in the column on the left receives eight inputs (Y0 through Y7) from the outputs of the four AD8672

operational amplifiers from the previous section. The outputs of this group of four matrices are sent to

the four VCA/VCF filter boards via the ports labelled TO_FILTER0 through TO_FILTER3. Meanwhile, each

ADG2128 in the column on the right accepts the outputs of the VCFs and VCAs as inputs (two outputs

per board and four boards for a total of eight inputs, applied to outputs Y0 through Y7). Each chip then

connects these outputs to the inputs of one of the four filter boards through the ports labelled

TO_FILTER4 through TO_FILTER7 (connected to X0 through X7), and allows for four signals to be sent to

the final four output jacks on the front panel, through the ports labelled TO_OUTPUT1 through

TO_OUTPUT4 (connected to X8 through X11).

While multiplexers could have been substituted for the switchpoint arrays, the ease of use of the

ADG2128 chips through I 2 C, as well as the close correspondence between the code used to turn ADG

connections on and off and the output of Max/MSP ‘matrixctrl’ objects, led to this implementation.

4.1.3 PyBoard Interface and Output Ports
We wanted the analog/digital board to be as flexible as possible; at the time we weren’t certain

if all eight ADG2128 switchpoint matrices would be able to be run on a single I 2 C port. This, among other

software uncertainties, led to the use of a somewhat disconnected format, wherein each subsystem was

furnished with input and output headers to allow the I 2 C channel to be switched manually should that

later prove desirable.

As such, the system in figure 11 of appendix B was devised. WBUS41-80 and WBUS1-40 (the

leftmost 40-input bus) are Hirose DF40-series female mezzanine connectors which are compatible with

the PyBoard’s male mezzanine outputs [7] , located on the underside of the board. These were placed

12.7mm apart (as per the pyBoard D-series documentation [8]) and are designed to house the board itself.

A subset of the GPIO pins as well as the pins corresponding to the SPI and I 2 C ports were sent to 0.1”

male headers. Two further male headers, labeled J1 and J2 in figure 11 of appendix B, are intended to

provide stabilization for the mezzanine connectors, which can be quite fragile if too few of the pins are

connected to stable, mounted objects on the parent board.

9

4.2 Verification
It was important for our analog/digital board to be able to sustain output from all eight digital inputs at

4186 Hz (the highest note on a piano) for 20 seconds without audible distortion. We also intended to

test to ensure the board would be able to pass eight simultaneous signals from the DAC to the

switchpoint matrices, detect these signals at the inputs of the VCA/VCF filter board boards, and toggle

these signals on and off once. These verifications were not performed as the board could not ultimately

be constructed. However, the switchpoint matrices were tested to a certain extent (through the use of a

breakout board) and were able to route and toggle on/off one sine wave at 4186 Hz, generated through

a signal generator in the lab, from each input to each output. This was tested not through the Max/MSP

interface but through the use of the PyBoard REPL prompt.

10

5 Micropython Support

5.1 Design Procedure and Details
In designing our micropython code, we had to first determine how we would handle user input from

Max/MSP, as well as from MIDI. Each signal would have to allow the user to set the three main attributes

of our audio signals; amplitude, frequency, and output number. Other audio elements such as attack,

sustain, and delay time have been omitted for purposes of focusing our system’s implementation. In

addition, by utilizing amplitude and frequency as our primary attributes, we are better able to align our

system for MIDI integration.

5.1.1 Max/MSP | Generators
Our Max/MSP Interface allows for the user to select from varied waveform parameters as per table 2 in

Appendix D. The majority of our micropython code in this section is catered towards the different

methods of setting the amplitude and frequency. For both attributes, they can be directly updated as a

constant value or by inputting values for a formula through Max/MSP. Equation (5.1) depicts how the

user input is handled when the formula option has been selected. The integer values are provided by the

user for multipliers 1 through 3, and for the indices of generators X, Y, and Z. Operation (op) 1 and op 2

are selected via a drop-down arrow and trigger flags that properly select the appropriate equation to

run.

(5.1)

We also set upper and lower bounds for our frequency and amplitude values to ensure they are kept

within a specific region to avoid system error. Frequency is set to range from 0 Hz to 20 kHz, and

anything outside the bounds is corrected accordingly. This precautionary measure was taken to ensure

that no frequency crosses the bound set by the Nyquist Limit. Because our system has a sample rate of

44100 Hz, the Nyquist limit is set at 22050 Hz. In order to avoid any potential alias-ing we decided to cap

the system at 20 kHz. Given that humans can detect frequencies ranging from 20 Hz to 20 kHz (with the

adult range dissipating around 15-17 kHz), cutting off the system at 20 kHz shouldn’t overtly affect the

user’s playing and listening experience.

For amplitude we utilize a similar protocol in that our amplitude bounds are marked at values of 0 and

127. We then divide the calculated amplitude value by 127, normalizing the entry. Our amplitude value

must be normalized in order to properly interact with our wavetable synthesis algorithm.

5.1.2 Max/MSP | Routing
In order to update the switches for the routing matrix we had to generate the appropriate hex values to

be sent over the pyboard’s I 2 C bus. According to the datasheet for our ADG2128 routing chips, the value

passed through to the system is an 8-bit, one byte, value. The larger of the four bits is dependent upon

the input port’s value, whereas the lesser of the four bits is dependent upon whether or not the input

port is even-valued. The code for calculating this hex value is seen in figure 20 of Appendix C.

11

Once we’ve parsed the proper values to be passed to the chips, we first reset all of each chip’s switches

by pulsing the reset pin low. This pin is connected from X1 on our pyboard to pin 31 on all of our

ADG2128 chips, as depicted in figure 17 of Appendix B. After resetting all of the switches, we create a

byte array to which we then append the slave chip’s address, the hex value of the switch to turn on and

an additional byte determining whether or not there are additional switches to be parsed. The byte array

then gets sent over the I 2 C bus to the appropriate chip and the cycle is repeated if there are any

remaining switches to handle.

5.1.3 MIDI
Incorporating MIDI into our system was somewhat easier than the code for updating the generators and

routing switches. When a MIDI key is pressed, a serial message is generated that indicates the MIDI

channel, note number and velocity. As seen in figure 21 of appendix C, our programming support makes

use of numerous arrays to update the midi signal. The midi_check array is used to see if a midi note has

already been designated to play on a specific output. This associated output index of the array is set to 1

when the note is first triggered, and then set to 0 upon the envelope’s completion time. Currently, we

have our envelope time set to a default value of 5 seconds. This was to ensure that sound could be

played; however, proper MIDI implementation would use the velocity and the time the note is held to

determine the note’s attack, sustain and decay time.

The amplitude array is important for wavetable synthesis and contains the normalized version of that

output’s velocity/amplitude. The frequency array is the other primary array that must be set. Using the

note number, which ranges from 21 to 108, we index into a table that contains the note number’s

associated frequency [9] . The final call in our MIDI interface, update_wave , decides which wave type will

represent the MIDI note (e.g. sawtooth, sine wave, etc.) based upon the information that’s already been

parsed from the serial message. This code can be found in figure 22 of appendix C.

5.2 Verification
One of our primary concerns with this section came with ensuring our helper functions produced the

appropriate hex and integer values. Particularly with the routing matrix, we ran the function

independently of the system with various inputs and compared them to the values on our data sheets

until we were certain the function was properly implemented. Similar methods were utilized in finalizing

the code for parsing MIDI information and generator information from Max/MSP. However, we were

unable to stabilize the connection between the Max/MSP and MIDI interface to the micropython code

using SysEx (Generator/Routing) and Serial (MIDI) messages. Therefore, we were unable to update our

system based on user input, an important aspect of our design.

12

6 Digital Signal Processing

6.1 Wavetable Synthesis and Implementation
Our wavetable synthesis algorithm serves as our actual mechanism for processing our signals and

outputting them to the system. Through wavetable synthesis a single-cycle waveform is constructed and

then stepped through at different intervals depending on the associated frequency. A general version of

the cyclical nature of wavetable synthesis can be found in figure 18 of Appendix B.

For the initial implementation of our system, all single-cycle waveforms were calculated ahead of time.

Each waveform consists of a table with 2048 entries. These entries range in data values from 0 to 4095,

as our DAC, the Max 536/537, accepts this range of sample values and converts the value to its

associated output voltage. As many audio signals are oriented with their maximum value at 1 and

minimum value at -1, the signals should be reoriented so that their maximum is at 4095, minimum is at 0

and their mid point around which they oscillate is located at 2048. All of the waveforms were hardcoded

into a single table. The only waveform not utilizing a single table from the aforementioned group was the

sawtooth as different partials were introduced in different tables to avoid aliasing [10] . This resulted in the

sawtooth waveform consisting of an array of 8 single cycle tables, where each table is associated with a

particular octave.

(6.1)

In order to step through this array, we calculated a phase interval value to increment the location of the

sample to read in the table. This interval is depicted by equation (6.1) [10] . After we write a sample from

the waveform to the DAC, we increment the current sample by the phase interval as depicted in figure

23 of Appendix C. A brief instance of this call is listed in figure 7. It’s important to note that when

calculating the phase_interval, it is calculated as a float value. Although only integers can be used to

index into a table, by casting the sample location only when actually indexing into the table, we can

ensure that the sample increment is properly handled, and not affected by rounding.

Figure 7. Writing waveform sample to DAC using SPI protocol and incrementing the sample index

In figure 24 of Appendix C, the micropython code for writing to each DAC is listed. One of the aspects of

our DACs that we make use of is its ability to store each sample in an input shift register before being

converted to it’s analog output voltage, as seen in figure 19 of appendix B. After writing to each of the

13

eight outputs, we pulse the LDAC pin low. This pin is connected to both of the chips’ LDAC ports and

loads the DACs with the values from their associated input shift register to be immediately converted.

In our initial implementation of the system we also hardcoded for all of the audio signals to play for a

duration of five seconds, defined within the env_time array. To update the sample and the playing time

appropriately we utilized a series of nested if-loops as depicted in appendix C. The if loops checks to see

if the wave_table has been fully stepped through, signalling once a complete cycle. If so, then the cycle

count is decremented until it reaches zero, logically representing one second. For instance for the note

A4 (440 Hz), the cycle would be set to 440, and once it reaches zero following numerous decrements,

one second would be marked by decrementing the env_time array. Once the env_time value has reached

zero, the audio signal is turned off as the envelope duration has been fulfilled.

6.2 Verification
One of our primary concerns with our system is the handling of our single-cycle waveform tables during

processing. Each time a sample is written to the DAC port, we multiply the value stored in the table by

the amplitude. We didn’t expect for our code to alter our wave table, but we didn’t want to take the risk

of there being an error buried in the syntax that could ultimately cause such a side effect. Therefore, we

ran a test that cycled through our table 100 times. We created a temporary table equal to the original

waveform table and used that table as the basis to our synthesis algorithm. At the end of the 100

seconds, we compared the original waveform table to the test table and found that there was no

difference between the two. Ensuring us that our code would not affect the single-cycle waveforms

embedded in our microcontroller.

Aside from this success, we were not successfully able to test if the SPI protocol would properly send the

data samples to the DACs. We had originally experimented with I 2 S protocols; however, we found that

although the pyboard could handle the communication method, the SPI protocol was a better option as

it was built into our version of the pyboard. We were, however, able to pass values through the DAC

embedded on the pyboard microprocessor, which gives us hope that the signals can be properly passed

from the pyboard to the Max 536 DAC once the system is fully rigged.

14

7 VCA/VCF Board

7.1 Design Procedure and Details

7.1.1 VCA/VCF Filter Core

The VCA/VCF board, figure 16 in appendix B, was designed around the VCA/VCF Filter core, figure 15 in

appendix B. As our system’s VCA/VCF filter chip, the NJM2069, was once a proprietary product of Korg,

no datasheet exists to facilitate its use. To circumvent this issue, measurements of a working synthesizer

which utilizes the chips were taken. It was found that, at the inputs of certain surrounding resistors,

maximum and minimum values of the control voltages were of equivalent magnitudes. These

magnitudes fell approximately between either 0V and 375mV for most control voltages, -375mV and 0V

for the VCA control voltage, and -375mV and 375mV in the case of the frequency control voltage, with

-375mV corresponding to the highest cutoff frequency. The block including the filter and these resistors

was closely implemented from the schematic of the keyboard in question (the Korg DW-8000) [11] .

As signal input and output voltages fell in a rather large range between ~225mVpp (at the SIG1

and SIG2 inputs and amplified VCA output) and ~750mVpp (at the VCF IN input and at the -12dB and

-24dB outputs of the VCF), the control voltages were used to devise a standard for the amplification of

inputs and outputs. A 500mVpp input voltage was assumed for all inputs (based on the typical output

level from the VCF); precision rectifiers (shown in section 7.2) were used wherever the input voltage was

intended to stay between 0V and 375mV (or between -375mV and 0V), and amplifiers were used to raise

or lower the voltage as necessary. These values are detailed in their respective subsections.

7.1.2 Control Voltage Processors/Amplifiers
The control voltage (CV) input processors, depicted in figure 12 of appendix B, were designed to

act as buffers to negate the somewhat variable output resistance of the switchpoint matrices, as

rectifiers where control voltages are intended to fall exclusively to one side of ground, and as amplifiers

to normalize the input level

Each of the single-member input ports at the top of the schematic, labelled F_FREQ, VCA_LVL,

F_RES, and SIG1_LVL, is a header intended to be connected to the washer of a potentiometer, with the

assumption that the potentiometers will be held between the appropriate power-rail values (0V and 5V

or -5V and 5V in the case of the filter frequency) at the chassis. The potentiometers are designed to

provide DC offsets to time-varying voltages, or to hold control voltages at constant levels.

The CTRL_IN port receives, from left to right, the filter frequency CV, the VCA level CV, the filter

resonance CV, and the LVL1 CV (which controls one of the filter’s two internal VCAs, capable of altering

the level of SIG1). The filter frequency control voltage was found to be both inverted and bipolar, falling

between approximately -375mV with the filter fully open, and 375mV with the filter fully closed. Hence,

a single inverting amplifier with an input resistance R In = 75 kΩ and a feedback resistor R F = 100 kΩ,

resulting in an amplification of an amplification of , which would bring a 500mVpp input to .33 75 kΩ
100 kΩ ≈ 1

750mVpp, precisely the desired range, while also inverting it. A 1.5 MΩ resistor is connected from the

negative input to the potentiometer, which would result in a gain of , bringing the .066 100 kΩ
1.5 MΩ ≈ 0

15

maximum/minimum +/-5 V down to -/+333 mV, not exactly the full range but close enough for our

purposes.

The precision rectifier is a circuit which was borrowed from an article by Rod Elliot [12] . It acts as a

rectifier even when input voltages are smaller than a diode’s “on” voltage. We ultimately chose this

rectifier for our system as its input is an inverting amplifier rendering it capable of gain. The gain is

determined by the ratio of the internal resistors (e.g. The four 68 kΩ resistors R55-R58 in the 2 op-amp

circuit connected to the VCA_LVL input and R40 in figure 12 in appendix B, which should be kept equal),

and the input resistor.

This also means that the rectifier can act as a summing amplifier, therefore a similar gain

calculation can be used for the three precision rectifiers as it was used for the filter frequency amplifier.

The gain values for each are identical, bringing a 500 mV input to 375 mV and a 5 V signal from the

potentiometers to approximately 333 mV, but the rectifier connected to the VCA control voltage has a

unity-gain inverter at the output to account for the expected inverted input.

7.1.3 Audio Input Processors/Amplifiers
A 2.2 μF capacitor is included at each of the inputs for the audio input processors, figure 13 of

appendix B, to account for any DC component which may be present. Unity gain buffers are also utilized

at the VCA and VCF inputs, as a 500 mV input voltage corresponds to a medium-volume signal for both.

The SIG1 and SIG2 inputs expect a voltage between 225 mV and 275mV for an approximately

medium-gain signal at the VCF output, and are therefore connected to amplifiers with a gain of 0.5.

7.1.4 Output Processors/Amplifiers
The output of the VCA is connected to a 100 kΩ audio-taper potentiometer on the front of the

chassis through the VCA_VOL port. A 27 kΩ feedback resistor was found to produce an output signal

with a magnitude of approximately 225 mVpp, and hence a 100 kΩ potentiometer is used in place of the

feedback resistor to allow the user to vary the gain between 0 (no output) and just under 750 mVpp. As

the VCAs on the NJM2069 were found to invert the signal (including the VCAs internal to the VCF which

modulate the level of SIG1 and SIG2, hence the inverting amplifiers at their input), a single inverting

amplifier is all that’s needed. The schematic for the processors can be found in figure 14 of appendix B.

Meanwhile, the -12dB and -24dB outputs of the VCF are sent to SPDT switches on the

front-panel to allow the user to vary the slope of the filter by hand. The output of the filter was found to

be around 500mV on average (with 250 mVpp signals applied to both SIG1 and SIG2, typical operation

conditions on the DW-8000), but an inverting amplifier with an input resistor of 47 kΩ and a feedback

resistor connected to a 100 kΩ audio-taper potentiometer on the front panel allow for gain from 0 to

approximately 1 Vpp.

16

8. Costs

8.1 Parts

17

Table 1 Parts Costs
Part Quantity Manufacturer Retail

Cost ($)
Bulk

Purchase
Cost ($)

Actual
Cost ($)

D-Series Pyboard 1 George Robotics Limited
/ Micropython

84.1500 70.1300 84.15

ADG2128 8x12 Analog
Switch Array

8 Analog Devices 12.4100 8.5600 99.18

TLO74 Low-Noise,
JFET-Input op-amps

22 Texas Instruments 0.4400 0.1500 15.40

MAX537BEWE+ 12-bit
Output Voltage DAC

2 Maxim Integrated 26.5800 22.3500 82.42

AD8672 Precision Low
Input Bias op-amp

4 Analog Devices 2.0400 1.6200 8.16

1/4W 1% Through-Hole
Resistors

132 Stackpole Electronics 0.06800 0.0085 8.98

Ceramic SMD 47pF
Capacitor

40 Kemet 0.1000 0.0360 4.00

NJM2069 analog
filter/amplifier chips

4 Korg 22.4900 22.4900 89.96

1N4148 Diodes 24 Semtech Electronics
LTD

0.1000 0.1000 2.40

100 kΩ, 1/20W Resistor 8 Yageo 0.0970 0.0034 0.78
20 kΩ, 1/16W Resistor 8 Yageo 0.3900 0.0450 3.12
2.2kΩ, 1/10W Resistor 4 Yageo 0.0970 0.0034 0.39
10 kΩ, 1/10W Resistor 12 Yageo 0.1700 0.0220 2.04
50 kΩ, 1/5W Trimmer 20 Bourns Inc. 0.4400 0.2100 9.68

100 kΩ, 1/4W
potentiometers

36 Alpha 1.5000 1.3500 54.00

M/F Pin Connector Kit 1 Glarks (via Amazon) 13.9900 13.9900 13.99
SPDT miniature

panel-mount toggle
4 TAIWAY 1.9500 1.2500 7.80

4-Pin Extension Strip 1 AOTOINK (via Amazon) 8.9900 8.9900 8.99
LM317 Voltage

Regulator
4 Texas Instruments 1.5900 0.5290 6.36

Connector Receptacle 2 Hirose Electric Co Ltd 1.1000 0.7560 2.20
HS350-ND - Heatsinks 2 Aavid 1.3200 0.9833 2.64
ED11093-ND - 0.4” DIP 4 Mill-Max Manufacturing 1.0800 0.5900 4.32

0.1µF, 63V capacitors 56 Kemet 0.1460 0.0790 8.18
Total 519.14

8.2 Labor
Based on average ECE salary

- BS Computer Engineering Average Salary: $84.25k
- BS Electrical Engineering Average Salary: $67k

40 hours per week over 6 weeks = 240 hours

Per Partner:
($30/hour) x 2.5 x 240 hours = $18,000

Team Cost: $54,000.00

Total Cost: $54,519.14

18

9. Conclusion

9.1 Accomplishments
While we were unable to get a fully functional prototype of our synthesizer we were able to get multiple

modules implemented. Our micropython support allows for the user to handle the signals to parse out

the appropriate information and update the waveforms accordingly. In addition, we were able to test

some of our components and found that they were functional and operating as expected. These both

serve as solid steps towards actualizing the hybrid analog/digital synthesizer we have designed. Our

primary concern is with finalizing the connection point between the user interface and the pyboard and

from the pyboard to the DAC. Establishing the connection between the user interface and the PyBoard

through SysEx and serial messages is a necessary step to full product functionality. In addition, once we

can solidify the connection between the micropython code and the chips through I 2 C communication

and SPI protocol we will be able to output our audio signals as intended.

9.2 Ethical Considerations

We could think of very few ethical considerations for the project, largely due to the nature of the

product. The synthesizer is a specialized tool for audio creation, a design that doesn’t carry immediate

implications towards an individual’s privacy or security.

It should be noted that in the event of mass production, NJM2069 chips are no longer produced, which

could cause potential issues. In light of this, it must be noted that not many other chips are on the

market, aside from the recently re-released Roland 80017A VCF / VCA JUNO-106 Voice Chip Filter IC [14] .

These chips were originally released in 1984 and were eventually discontinued. Newer versions of this

chip are likely to be of better quality than their original iteration in 1984, however, the unreliability of

the chips isn’t something we would want in our future. It’s also worth considering that the NJM2069A

may be put back into production as the 80017A due to the rise in demand for these powerful audio

chips.

This does bring up some potential ethical issues with regard to the environment. When companies

decide to start producing any component or device, it requires factory space, machines and either

human or artificial labor. In a world where factories contribute heavily to the changing of the climate, the

repercussions of producing such a component must be considered, as per the IEEE Code of Ethics [13] .

9.3 Future Work
This synthesizer design presents a number of novel ideas. That having been said, there are plenty of

ideas that would be great additions to the system that already exist. For example, implementing an

attack, sustain, and decay feature for the audio signals would definitely help create an experience the

user is expecting. Likewise, MIDI note implementation should be re-configured to allow for notes of

varied lengths, depending on how the user plays the keyboard. This would also mean that the note-off

signal needs to be handled in the micropython code. Beyond these factors and finalizing the connection

points between the system modules, it would also be interesting to see the amplitude envelope feature

be fully implemented so that users can also program the amplitude over time of their audio.

19

References

[1] Ken Stone, ‘ Power Supply for Music Synthesizers ’, CGS Synthesizers. Accessed on: Oct. 2, 2020.

[Online]. Available: http://www.synthpanel.com/modules/cgs66_psu.html

[2] ‘ LMx37 3-Terminal Adjustable Regulators (Rev. L)’, Texas Instruments. Accessed on: Dec. 8, 2020.

[Online]. Available: https://www.ti.com/document-viewer/LM337/datasheet

[3] ‘ LMx17 3-Terminal Adjustable Regulators (Rev. Y)’, Texas Instruments. Accessed on: Dec. 8, 2020.

[Online]. Available: https://www.ti.com/document-viewer/LM317/datasheet

[4] ‘ LM78XX/LM78XXA 3-Terminal 1A Positive Voltage Regulator’, Mouser. Accessed on: Dec 8, 2020.

[Online]. Available: https://www.mouser.com/datasheet/2/308/LM7805-1301244.pdf

[5] ‘LM79XX 3-Terminal Negative Regulators (Rev C)’ , Texas Instruments. Accessed on: Dec. 8, 2020.

[Online]. Available: https://www.ti.com/product/LM79

[6] ‘MAX537 Calibrated, Quad, 12-Bit Voltage-Output DACs with Serial Interface’, Maxim Integrated.

Accessed on: Nov. 22, 2020. [Online]. Available:

https://www.maximintegrated.com/en/products/analog/data-converters/digital-to-analog

-converters/MAX537.html

[7] User ‘alustig3’, ‘ PYBD WBUS Connector’, Micropython.org, Jun. 5, 2018. Accessed on: Dec 8, 2020.

[Online Forum Comment]. Available: https://forum.micropython.org/viewtopic.php?t=6164

[8] ‘ Pyboard D-Series Reference’, pybd.io. May 11, 2020. Accessed on: Dec 8, 2020. [Online].

Available: https://pybd.io/hw/pybd_sfxw.html

[9] Joe Wolfe, ‘ Note Names, MIDI Numbers and Frequencies’ , UNSW. Accessed on: Dec. 8, 2020.

[Online]. Available: https://newt.phys.unsw.edu.au/jw/notes.html

[10] Phil Burk, "Bandlimited Oscillators Using Wave Table Synthesis," in Audio Anecdotes: Tools, Tips

and Techniques for Digital Audio, vol. 2. R Barzel and K. Greenbaum, Eds. Wellesley, MA: A. K.

Peters, 2004, ch. 7, pp. 37–52.

[11] ‘ Korg DW-8000 Service Manual’, manualslib. Accessed on: Sept. 28, 2020. [Online]. Available:

https://www.manualslib.com/manual/997976/Korg-Dw-8000.htm l

[12] Rod Elliot, “Precision Rectifiers”, ESP. Accessed on Oct. 4, 2020. [Online]. Available:

https://sound-au.com/appnotes/an001.ht m

20

http://www.synthpanel.com/modules/cgs66_psu.html
https://www.ti.com/document-viewer/LM337/datasheet
https://www.ti.com/document-viewer/LM337/datasheet
https://www.mouser.com/datasheet/2/308/LM7805-1301244.pdf
https://pybd.io/hw/pybd_sfxw.html
https://www.manualslib.com/manual/997976/Korg-Dw-8000.html
https://sound-au.com/appnotes/an001.htm

[13] ‘ IEEE Code of Ethics’, IEEE. Accessed on: Dec. 8, 2020. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html

[14] “Roland 80017A”, Polynomial.com, n.d. Accessed on: Oct. 30, 2020. [Online]. Available:

https://www.polynominal.com/roland-80017a/

21

https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.polynominal.com/roland-80017a/

Appendix A Requirements and Verifications Table

Software Interface

Microcontroller

22

Requirement Verification Status

Display menus, interfaces and user
input fields appear on the screen,
without error and can be updated

appropriately.

1. Input values into each user input field.
2. Set generators using these input values
3. Print out the generator values to ensure the

values are being properly parsed by the code
and stored in the designated buffer.

Yes

All menus must be togglable and
feature each option allocated by
the design.

1. Click on each option in the drop-down menus
on the interface.

2. Ensure all features are listed within the drop
down function.

3. For drop-down functions that alter the screen,
select these functions and ensure that the
screen makes the necessary alterations.

4. For each drop down function, set the
generator. Include random sample values for
other parameters.

5. Print contents of the updated generator to
ensure each feature selection is linked to the
proper variable in the code that gets stored.

Yes

Requirement Verification Status

Produces no aliasing for any oscillator
waveform and all notes up to C8 -
highest note on a grand piano - with
frequency 4186.01 Hz

1. Display waveform with frequency >= 4186.01 on
oscilloscope.

2. Rotate the horizontal scale knob, or otherwise change
the horizontal scaling of the oscilloscope. If the
waveform changes drastically, aliasing is present

No

Wavetable Synthesis

Digital-to-Analog Interface

23

Requirement Verification Status

The wavetable synthesis program must
not alter the single-pass waveform
stored in the buffer. While not altering
what’s stored in the buffer, it also must
use the buffer and properly process the
waveform at the desired frequency to
produce the correct audio signal.

1. Store signal of single amplitude in the wave_form
buffer.

2. Pass through the wavetable synthesis algorithm at a
single frequency.

3. After passing the wave_form buffer through the
algorithm 1000 times, check the buffer has not been
altered

4. Ensure that the output signal is a single-tone audio
output of a single-level. If fluctuations in pitch or
frequency are detected, there is an error.

Yes
(not no.4)

Requirement Verification Points

3.3Vp-p (+/- 0.3V error) digital
waveforms at the input to the DAC
during operation.

1. Using an oscilloscope, ensure a digital version of
the intended waveform is present at the input pin
and conforms to the desired standard

Yes

3.3Vp-p output (+/- 5% error)
continuous Analog Output signal at
DAC output pins

1. Set to ready/inactive (through the GUI or
underlying program if the GUI is not yet
debugged) a simple output waveform to the GPIO
connected to DAC1

2. Connect the I2C_SCL (PB10) and I2C_SDA (PB11)
outputs of the pyBoard to the corresponding I2C
inputs on the LMP92001 DAC

3. Ensure, through LMP92001 address bits 31:32,
and by setting the I2C configurations in the
underlying program to mirror the address of
31:32, that you are communicating with the
proper DAC

4. Measure output at the corresponding output pin
using a digital oscilloscope and ensure it conforms
to the given requirement

5. Repeat for all DACs

No

Must properly convert any input digital
signals to audio or DC envelope signals.

1. Pass a single-tone audio signal into the DAC.
2. Test the audio it produces digitally
3. Connect the output of the DAC to an analog

speaker.
4. The audio signal produced by the analog speaker

must match that digitally produced during the
aforementioned test.

5. Repeat with varied audio signals.

No

Routing Matrix

24

Requirement Verification Points

Verify that ADG2128 Chips
Pass Signal Through All
Connection Points

Test chips individually.
1. Manually verify that test DC voltages of

+/-3.3V are passed through each of the 96
ports when operated individually on a +/-5V
power supply.

2. Manually verify that a +/- 3.3V sine wave
passes through all ports when operated on a
+/- 5V power supply.

Yes

Verify that signals on separate
ADG2128 chips carrying the
same buffered output to
different buffered inputs have
no interaction with one
another, or that signal
interaction occurs at a low
enough level as to be
negligible for the listener/user
(difference in peak-to-peak
voltage of less than 2% from
unconnected waveform)

1. View signals on an oscilloscope individually,
without the other connected. Measure
peak-to-peak voltages.

2. View signals on the oscilloscope while both
signals are connected. Ensure minimal or no
change

No

Verify that user input into the
routing matrix via Max/MSP
produces the correct output
hex and the correct number of
output hexes

1. Randomize switches that user sets in
Max/MSP

2. Send serial message containing number of
switches to be set and the matching I/O ports
into the python code to be parsed

3. Print out the message to be passed over the
SDA line by I 2 C for each switch to be set.

4. Verify that signals match the corresponding
values in user datasheet

5. Run test minimum 5 times with varied
number of switches, ensure 100% accuracy

Yes

Appendix B Schematics/Figures

Figure 8. Analog/Digital Board Schematic

Figure 9. DAC Chips and Output Amplifiers

25

Figure 10. Routing Matrix Detailed

Figure 11. PyBoard Mezzanine Input Ports and Corresponding Output Ports

26

Figure 12. CV Input Processors

Figure 13. Audio Input Processors

27

Figure 14. Output Processors

Figure 15. VCA/VCF Filter Core

28

Figure 16. VCA/VCF Filter Board Schematic

Figure 17. ADG2128 Pin Layout

29

Figure 18. Oscillator Schematic

Figure 19. MAX 536/537 (DAC) Schematic

30

Appendix C Micropython Code

Figure 20. Routing Update - get_hex
Function: Returns the hex value to activate the switch between a particular input and output.

31

Figure 21. MIDI Update - handle_midi_msg
Function: Parses note number and velocity from serial message and updates oscillators using arrays,

logical shifts and bit-masking

Figure 22. Waveform Update - update_wave
Function: Sets the data array to contain the single-cycle wave-form for the associated oscillator based off

input type and frequency.

Figure 23. Digital Signal Processing - Updating sample
Function: Moves to next sample, and performs necessary checks to decrement cycle and envelope time.

If envelope time reaches zero, the associated oscillator is “turned off.”

32

Figure 24. Digital Signal Processing - Writing to the DAC
Function: Write data value to the DAC’s input shift register using SPI protocol. Pulses LDAC low to

update all DACS simultaneously.

33

Appendix D Tables

Table 2 Oscillator Configurations and Sources

34

Options

Oscillator Types Frequency Sources Amplitude Sources Operations

Sine Constant Constant +

Sawtooth Formula Formula *

Square MIDI - NN MIDI - Velocity

Triangle

Noise

