
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



Abstract   

In   this   report,   we   discuss   the   design   of   a   hybrid   analog/digital   modular   synthesizer.   This   synthesizer   

allows   the   user   to   control   the   parameters   of   up   to   8   audio   or   control   signals   using   a   computer   interface   

implemented   in   Max/MSP.   This   interface   also   provides   a   means   for   routing   these   signals   in   a   highly   

customizable   fashion   through   4   analog   voltage-controlled   filter/amplifier   boards.   The   virtualization   of   

signal   routing   allows   for   greater   ease   of   use   and   reproducibility   for   the   consumer.   Although   the   product   

is   not   fully   functional,   individual   modules   have   been   completed   and   will   be   presented.   
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1.   Introduction   

1.1   Problem   and   Solution   Overview   
The   audio   market   was   once   dominated   by   the   use   of   bulky,   analog   modular   synthesizers.   Their   

unique   audio   quality   and   a   lack   of   an   alternative   allowed   them   to   exist   as   the   industry   standard,   with   

music   producers   and   sound   researchers   struggling   to   garner   the   necessary   funding   to   acquire   such   

expensive   instruments.   However,   over   the   past   few   decades,   technological   advancements   have   allowed   

digital   synthesizers   to   generate   a   greater   public   response.   Due   to   their   easy   upkeep   and   relatively   low   

cost,   these   synthesizers   became   heavily   sought   after   by   the   industry,   resulting   in   the   plethora   of   digital   

synthesizers   available   in   digital   audio   workstations   (DAWs)   such   as   Logic   Pro   X,   FL   Studio   and   Pro   Tools.   

Despite   the   accessibility   of   digital   synthesizers,   the   public’s   demand   for   their   analog   counterparts   

has   re-emerged   over   the   past   two   decades.   Most   consumers,   musicians   especially,   find   the   sound   quality   

of   analog   devices   to   be   superior   to   digitally   filtered   sounds [1] .   However,   these   synthesizers   aren’t   always  

digitally-compatible,   are   expensive   and   require   patching   cables   which   can   easily   clutter   as   in   figure   1.   

  

Figure   1.   Analog   Modular   Synthesizer   with   cable-based   patching.   

Our   solution   offers   a   hybrid   synthesizer,   primarily   for   use   by   musicians   and   audio   researchers,   

that   marries   the   flexibility   of   digital   signal   processing   with   the   superior   audio   quality   of   analog   hardware,   

like   voltage-controlled   filters   and   amplifiers [14] .   This   analog/digital   synthesizer   allows   for   both   digital   

inputs,   MIDI   inputs   and   analog   outputs   to   be   routed   through   a   number   of   channels   and   filters   with   

greater   ease   and   reproducibility   than   provided   by   cable-based   patching.   

1.2   Project   Summary   
Ultimately,   we   were   unable   to   get   the   synthesizer   fully   functioning.   Specific   modules   have   been   

tested   and   finalized,   but   the   main   source   of   error   has   arisen   from   our   inability   to   trigger   the   proper   

System   Exclusive   (SysEx)   and   serial   messages   to   be   sent   to   our   system   from   the   user   interface.   

Nevertheless,   our   report   will   cover   the   advancements   that   were   made;   primarily   with   regard   to   the   

rigging   of   our   analog   components   and   our   micropython   support   design.    

Once   fully   implemented,   our   synthesizer   would   allow   the   user   to   craft   and   output   audio   waves   

through   an   analog   routing   matrix   that   eliminates   cable-based   patching   and   is   more   portable   than   its   

analog   predecessors.   The   synthesizer’s   price   would   fall   somewhere   in   the   range   of   $500-700,   depending   

on   manufacturing   methods,   providing   a   highly   flexible   and   cost-effective   device   with   more   options   for   

sound   design   and   synthesis   than   the   more   expensive   options   currently   available   on   the   market.     
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2     Power   Supply   

  

Figure   2.   Core   Power   Supply   Schematic   

2.1     Design   Procedure   and   Details   
The   power   supply   was   based   around   Ken   Stone’s   CGS66   Power   Supply   which   is   intended   as   a   

linear   power   supply   for   DIY   modular   synthesizers,   and   as   such   provides   the   proper   rectification   and   

filtering   to   ensure   that   a   consistent   voltage   is   read   by   all   components [1] .   This   is   critical,   as   the   human   ear   

is   very   sensitive   to   pitch   and   any   fluctuation   in   power   delivery   would   affect   aspects   of   the   filters   (such   as   

the   cutoff   frequency)   and   could   lead   to   intermittent   power   for   the   PyBoard.   Not   pictured   in   the   

schematic   above   is   the   Hammond   167K30   transformer,   which   accepts   wall   voltage   from   the   grounded   

power   inlet   and   provides   a   30V,   1.5A   center-tapped   AC   output.   The   center-tap   is   connected   to   the   inlet   

labelled   “2”   on   the   port   to   the   far   left   of   figure   2,   with   the   other   two   wires   attached   to   “1”   and   “3.”   A   

bridge   rectifier   converts   this   to   positive   and   negative   DC   which   is   filtered   first   through   two   4700   μF   

capacitors   and   subsequently   sent   to   an   LM317   positive   voltage   regulator   and   an   LM337   negative   voltage   

regulator,   respectively.   These   are   connected   as   per   the   application   notes   in   the   datasheets   with   the   

output   voltage   set,   using   the   LM317   as   an   example,   by   adjusting   the   value   of   R2.   The   variable   resistors   

are   all   of   the   high-precision   25-turn   variety,   and   the   output   voltage   can   be   found,   as   per   the   

datasheet [2],[3] ,   through   the   formula   

 .25 V (1  )  V O ≈ 1 + 220 Ω
R2 + 1.5 kΩ  

The   +/-   12   V   outputs   serve   as   a   power   supply   for   the   various   amplifiers   at   the   

inputs   and   outputs   of   the   filters,   the   outputs   of   the   DACs,   and   the   overall   output   mixer.   While   most   

signal   outputs   will   never   exceed   a   maximum   of   approximately   3.3   V   (the   reference   voltage   for   our   DAC),   

powering   the   amplifiers   through   a   12   V   bipolar   supply   ensures   that   input   voltages   to   amplifiers   never  

come   too   close   to   their   power-rail   values   and   are   thus   never   distorted   by   the   amplifiers.   
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The   bipolar   12V   output   is   sent   to   LM7905   and   LM7805   voltage   regulators,   again   implemented   as   

per   their   respective   datasheets [4],[5]    ,   which   provide   both   the   analog   power   supply   for   the   NJM2069   filter   

chips   and   the   digital   supplies   for   the   ADG2128   switchpoint   matrices   and   the   MAX537   DAC   chips.   As   such,   

further   rectification   is   provided   at   the   power   inputs   for   each   board.   Ferrite   beads   in   series   with   the   

power   rails   prevent   high-frequency   noise,   due   to   digital   components,   from   appearing   at   the   

power-supply   inputs   for   the   NJM2069.   A   10   μF   capacitor   between   each   power   supply   rail   and   ground   

provides   the   same   protection   on   the   low-frequency   end   of   the   spectrum.   All   applicable   integrated   

circuits   are   also   equipped   with   100nF   metal   film   decoupling   capacitors   at   their   power   supply   inputs,   as   is   

typically   recommended   for   noise   suppression.   These   can   be   seen   in   the   full   schematics   provided   in   

Appendix   B.   

The   3.3   V   supply   features   most   of   the   same   filtration   and   regulation   as   is   used   in   the   12V   

regulator   circuit,   but   uses   a   highly   regulated   supply   as   its   input.   As   this   is   used   as   a   reference   voltage   for   

the   digital-to-analog   converters,   extreme   precision   is   ideal   and   was   achieved;   the   output   was   accurate   to   

the   thousandth   of   a   volt,   varying   slightly   between   3.299   V   and   3.3   V.   

Given   that   extremely   linear   power   is   critical   for   audio   applications,   it   was   determined   that   a   

linear   power   supply   similar   to   the   one   above   was   critical   to   our   needs.   Alternatives   to   the   Hammond   

transformer   were   proposed,   and   included   using   two   15VDC   wall   adapters.   However,   for   consumer   

applications,   a   power   supply   which   takes   up   two   outlets   is   somewhat   unheard-of,   and   thus   the   above   

configuration   was   adopted.   

2.2     Verification   

As   verification   for   the   power   supply,   all   four   VCA/VCF   boards   were   attached   with   the   same   signal   at   
all   four   signal   inputs   (supplied   through   an   FG-7002C   sweep-function   generator).   The   output   of   each   
power   rail   was   measured   over   the   course   of   5   minutes,   and   any   variation   greater   than   5%   of   its   
total   output   would   be   deemed   a   failure.    The   test   was   successful,   with   no   power   supply   rail   
deviating   by   more   than   0.5%.   
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3     User   Interface   

3.1     Design   Procedure   and   Details   

3.1.1     Design   Procedure   

The   user   interface   is   the   primary   way   in   which   the   user   interacts   with   the   synthesizer.   It   offers   a   

window   with   clickable   options   and   menus   where   the   output   of   each   generator   and   routing   matrix   can   be   

selected,   controlled   and   modified.   Max/MSP   was   ultimately   chosen   as   the   tool   for   constructing   this   

interface   as   it   offers   simplified   tools   to   perform   tasks   for   data   processing   and   parsing,   as   well   as   an   

object   which   allows   for   serial   messages   to   be   sent   through   the   computer’s   USB   connection.   These   

messages   are   then   processed   by   the   isolated   USB-to-UART   converter   and   subsequently   sent   to   a   UART   

input   on   the   PyBoard.     

The   initial   intention   was   for   an   independent   program   to   be   designed   from   scratch   using   a   GUI   

library   in   a   higher-level   language   such   as   Python,   Java   or   C++,   but   the   abstractions   already   available   in   

Max   streamlined   the   process   considerably.   We   wanted   to   allow   the   user   control   of   the   signal   routing   and   

generator   information   through   a   simplified   visual   mechanism,   and   Max/MSP   ultimately   offered   this   

compatibility.   

All   options   selected   by   the   user   in   the   Generator   window   are   encoded   numerically   as   a   string   of   

binary   data.   The   MIDI   channel   is   always   set   to   zero.   This   value   is   followed   by   is   the   generator   number,   

and   a   0   or   1   to   indicate   whether   it   is   currently   on   or   off.   Next   is   the   waveform   type,   encoded   as   a   3-bit   

binary   value,   followed   by   the   input   source   for   the   amplitude   and   the   frequency,   each   encoded   as   2-bit   

binary   values.   The   options   for   the   formula-input   modes   for   the   amplitude   and   the   frequency   are   given   

next,   with   the   reading   of   these   values   skipped   over   by   the   program   running   on   the   PyBoard   if   the   user   

has   not   opted   to   set   either   of   these   values   through   formula.   Finally,   the   last   segment   of   the   message   is   a   

list   of   points   that   the   user   has   selected   in   the   amplitude   window,   encoding   the   overall   volume   of   the   

selected   waveform.   

3.1.2     Design   Details   
In   figure   3   below,   the   interface   through   which   the   user   interacts   with   the   generator   is   shown,   as   

well   as   a   small   window   that   the   user   can   double-click   to   access   the   interface   for   interacting   with   the   

routing   matrices.   
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Figure   3.   Generator   Interface,   User-End   

Dropdown   menus   allow   the   user   to   choose   a   generator   number,   waveform   type,   frequency   

source   and   amplitude   source.   Selecting   “Constant   Value”   for   either   the   frequency   or   the   amplitude   

source   causes   the   display   to   change   to   feature   a   single   window   in   which   the   user   can   enter   a   

floating-point   value,   while   selecting   “Formula”   replaces   that   single   window   with   another   allowing   the   

user   to   select   between   the   various   formula   options.   Buttons   allow   the   user   to   clear   entered   points   from   

the   amplitude   envelope   window,   while   clicking   anywhere   in   the   window   will   create   a   new   point   that   will   

change   the   overall   way   in   which   the   volume   or   amplitude   of   the   output   changes   over   time.   The   “Total   

Envelope   Time”   option   selects   the   maximum   value   of   the   x-axis   for   the   amplitude   envelope,   with   the   

x-values   of   all   other   points   being   adjusted   accordingly   in   proportion   to   this   maximum   value.   This   allows   

for   the   total   duration   of   a   sound   to   be   changed   without   the   user   needing   to   adjust   each   point   

individually.   
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Figure   4.   Generator   Interface,   Control-End   showing   Hidden   Objects   

In   figure   4   above,   the   same   window   is   shown;   however,   the   objects   parsing   the   user   input   data,   

normally   hidden   to   the   user,   are   visible.   Some   values,   such   as   the   output   number,   output   type,   and   

on/off   status,   are   sent   directly   to   an   object   called   “p   parse,”   which   is   a   subpatcher   designed   to   prepare   

the   message   for   serial   output.   The   “Constant   Value”   or   “Formula   Input”   inputs   for   the   frequency   and  

amplitude   sources,   will   appear   based   on   what   source   the   user   sets   for   both   attributes.   

The   inner   workings   of   the   “p   parse”   object   and   the   “p   getSerial”   object   are   shown   in   figure   5.   

The   parse   object   simply   collects   the   values   the   user   has   selected,   modifies   them   and   only   outputs   the   

values   when   the   “ON/OFF”   button   has   been   toggled   to   “ON”.   It   achieves   this   by   using   “i”   and   “zl.reg”   

objects   to   store   integers   or   lists,   respectively,   until   a   trigger   is   received   from   a   “t   b   i”   or   a   “t   b   l”   object.   

The   “zl.group”   object   collects   these   and   only   sends   the   message   when   the   last   piece   of   data   has   been   

received.   The   “getSerial”   object   is   simply   a   Max   serial   object   with   some   debugging   features   available.     

While   messages   were   successfully   sent   from   the   serial   object   to   the   USB-to-UART   converter   and   

were   received   and   detected   at   the   UART   input   of   the   PyBoard,   difficulties   with   trivialities   such   as,   e.g.   

the   correct   way   to   process   floating-point   values   to   conform   to   the   encoding   scheme   shown   above   

ultimately   prevented   us   from   operating   the   synthesizer   as   intended   through   the   Max   interface.   However,   

given   the   successful   receipt   of   messages   by   the   PyBoard   from   Max,   these   issues   could   undoubtedly   be   

resolved   given   further   time.   
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Figure   5.   The   ‘p   parse’   and   ‘p   getSerial’   Objects   

Similar   principles   are   at   work   in   the   matrix   window   which   controls   the   routing,   the   interface   for   

which   is   shown   in   Figure   6   below.   

  

Figure   6.   Matrices   from   the   Matrix   Control   Window,   Routes   from   FIlter   Outputs   to   Other   FIlter   Inputs)    
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4     Analog/Digital   Board   
The   analog/digital   board   serves   as   the   bridge   between   the   Max-based   user   interface   and   the  

analog   voltages   expected   at   the   inputs   to   the   VCA/Filter   boards.   It   also   houses   the   PyBoard   and   the   

mixed-signal   integrated   circuits;   such   as   the   MAX537   digital-to-analog   converters   and   the   ADG2128   

switchpoint   matrices.    The   schematic   for   this   board   can   be   found   in   figure   8   of   appendix   B.   

The   primary   difficulties   with   our   project   were   caused   by   a   series   of   issues   involving   this   board:   

First,   it   was   found   that   if   the   PyBoard   is   connected   through   USB   to   the   computer   and   the   power   supply   

simultaneously,   it   will   receive   power   through   the   USB;   the   first   draft   of   this   board   had   the   PyBoard   

sharing   a   ground   with   all   other   components,   and   provided   neither   a   provision   for   an   alternative   power   

source   nor   a   way   to   receive   serial   data   from   the   computer   aside   from   the   dedicated   USB   port.   This   would   

have   resulted   in   serious   ground   issues   which   would   likely   have   completely   compromised   any   

noise-proofing   at   the   power   supply   or   by   the   ferrite   beads   and   decoupling   capacitors   on   the   boards   

themselves.   It   was   determined   that   an   isolated   USB-to-UART   converter   could   be   used   to   direct   serial   

input   to   the   UART   ports   of   the   PyBoard   while   simultaneously   isolating   the   power   supply   and   its   ground   

from   that   of   the   USB   port,   and   so   this   scheme   was   adopted   and   the   board   was   redesigned.   Second,   the   

revised   board,   shown   in   the   schematics   below   and   ordered   from   Elecrow,   never   arrived.   Last   minute   

compensatory   measures   were   taken,   such   as   using   breakout-boards   for   the   switchpoint   matrices,   but   

failures   and   mistakes   in   component   sourcing   resulted   in   delays   that   hindered   our   progress.   

Alternatives   to   the   use   of   the   ADG2128   switchpoint   matrices   included   the   use   of   a   very   large   

number   of   multiplexers,   but   the   complexity   of   controlling   these   as   well   as   the   simplicity   of   the   I 2 C   

protocol   utilized   by   the   ADG2128   chips   led   to   their   integration   into   the   project.     

4.1     Design   Procedure   and   Details   

4.1.1     Digital-to-Analog   Converters   

The   MAX537   DACs   in   figure   9   of   appendix   B   take   the   SPI   outputs   from   the   PyBoard   and   use   

them,   alongside   a   3.3   V   reference   voltage,   to   produce   a   continuous   analog   voltage   at   each   of   the   outputs   

with   a   magnitude   of   3.3   Vpp [6] .   This   is   far   higher   than   the   intended   0.5   Vpp   expected   at   the   inputs   of   the   

filter/VCA   boards,   so   four   AD8672   chips   are   used   as   inverting   attenuators   to   bring   the   output   to;   

   .3 V pp  0.495 V pp  15 kΩ
100 kΩ * 3 =    

The   intended   DAC   was   changed   numerous   times   during   the   course   of   the   design,   

beginning   with   the   24-bit   192kHz   ADAU1962A   DAC.   Unfortunately,   this   DAC   operates   through   I 2 S   

communication,   which   utilizes   both   the   SPI   and   the   I 2 C   ports   to   output   audio   signals.   In   theory,   I 2 S   is   fully   

achievable   using   an   STM32F767   chip   as   featured   on   the   PyBoard;   however,   the   firmware   

implementation   of   the   Micropython   language   on   the   PyBoard   has   yet   to   meet   the   full   potential   of   its   

main   microprocessor.   It   was   subsequently   discovered   that   I 2 S   has   yet   to   be   implemented   fully   on   any   

PyBoard,   which   has   been   an   open   issue   in   the   Micropython   community   since   around   2016.     

The   MAX537   DACs   featured   in   the   schematics   were   ultimately   chosen,   as   a   very-late-stage   

design   switch,   due   to   their   general   simplicity   and   ease   of   use.   Only   8   of   the   intended   12   generators   are   
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featured   in   the   schematics,   corresponding   to   the   two   available   (functional)   SPI   ports   on   the   PyBoard   and   

the   four   available   inputs   and   outputs   on   each   board.   These   chips   can   theoretically   be   daisy-chained,   such   

that   multiple   chips   run   on   the   same   SPI   port,   but   we   thought   it   best   to   limit   ourselves   as   the   deadline   

was   fast   approaching.   

4.1.2     Routing   Matrices   
An   excerpt   of   the   ADG2128   switchpoint   matrix   array   is   shown   in   figure   10   of   appendix   B;   The   full   

array   can   be   seen   in   the   schematics,   but   there   are   four   total   in   the   left   column   and   four   total   in   the   right,   

with   each   group   of   four   attached   to   a   separate   I 2 C   input   port.   The   2.2   kΩ   I 2 C   pullup   resistors   (four   total)   

are   only   present   on   the   topmost   ADG2128   in   each   column,   while   a   different   number   or   configuration   of   

resistors   is   attached   to   ports   A2,   A1   and   A0,   allowing   their   I 2 C   addresses   to   be   hardcoded.   Each   ADG2128   

in   the   column   on   the   left   receives   eight   inputs   (Y0   through   Y7)   from   the   outputs   of   the   four   AD8672   

operational   amplifiers   from   the   previous   section.   The   outputs   of   this   group   of   four   matrices   are   sent   to   

the   four   VCA/VCF   filter   boards   via   the   ports   labelled   TO_FILTER0   through   TO_FILTER3.   Meanwhile,   each   

ADG2128   in   the   column   on   the   right   accepts   the   outputs   of   the   VCFs   and   VCAs   as   inputs   (two   outputs   

per   board   and   four   boards   for   a   total   of   eight   inputs,   applied   to   outputs   Y0   through   Y7).   Each   chip   then   

connects   these   outputs   to   the   inputs   of   one   of   the   four   filter   boards   through   the   ports   labelled   

TO_FILTER4   through   TO_FILTER7   (connected   to   X0   through   X7),   and   allows   for   four   signals   to   be   sent   to   

the   final   four   output   jacks   on   the   front   panel,   through   the   ports   labelled   TO_OUTPUT1   through   

TO_OUTPUT4   (connected   to   X8   through   X11).   

While   multiplexers   could   have   been   substituted   for   the   switchpoint   arrays,   the   ease   of   use   of   the   

ADG2128   chips   through   I 2 C,   as   well   as   the   close   correspondence   between   the   code   used   to   turn   ADG   

connections   on   and   off   and   the   output   of   Max/MSP   ‘matrixctrl’   objects,   led   to   this   implementation.   

4.1.3     PyBoard   Interface   and   Output   Ports   
We   wanted   the   analog/digital   board   to   be   as   flexible   as   possible;   at   the   time   we   weren’t   certain   

if   all   eight   ADG2128   switchpoint   matrices   would   be   able   to   be   run   on   a   single   I 2 C   port.   This,   among   other   

software   uncertainties,   led   to   the   use   of   a   somewhat   disconnected   format,   wherein   each   subsystem   was   

furnished   with   input   and   output   headers   to   allow   the   I 2 C   channel   to   be   switched   manually   should   that   

later   prove   desirable.     

As   such,   the   system   in   figure   11   of   appendix   B   was   devised.   WBUS41-80   and   WBUS1-40   (the   

leftmost   40-input   bus)   are   Hirose   DF40-series   female   mezzanine   connectors   which   are   compatible   with  

the   PyBoard’s   male   mezzanine   outputs [7] ,   located   on   the   underside   of   the   board.   These   were   placed   

12.7mm   apart   (as   per   the   pyBoard   D-series   documentation [8] )   and   are   designed   to   house   the   board   itself.   

A   subset   of   the   GPIO   pins   as   well   as   the   pins   corresponding   to   the   SPI   and   I 2 C   ports   were   sent   to   0.1”   

male   headers.   Two   further   male   headers,   labeled   J1   and   J2   in   figure   11   of   appendix   B,   are   intended   to   

provide   stabilization   for   the   mezzanine   connectors,   which   can   be   quite   fragile   if   too   few   of   the   pins   are   

connected   to   stable,   mounted   objects   on   the   parent   board.   
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4.2   Verification   
It   was   important   for   our   analog/digital   board   to   be   able   to   sustain   output   from   all   eight   digital   inputs   at   

4186   Hz   (the   highest   note   on   a   piano)   for   20   seconds   without   audible   distortion.   We   also   intended   to   

test   to   ensure   the   board   would   be   able   to   pass   eight   simultaneous   signals   from   the   DAC   to   the   

switchpoint   matrices,   detect   these   signals   at   the   inputs   of   the   VCA/VCF   filter   board   boards,   and   toggle   

these   signals   on   and   off   once.   These   verifications   were   not   performed   as   the   board   could   not   ultimately   

be   constructed.   However,   the   switchpoint   matrices   were   tested   to   a   certain   extent   (through   the   use   of   a   

breakout   board)   and   were   able   to   route   and   toggle   on/off   one   sine   wave   at   4186   Hz,   generated   through   

a   signal   generator   in   the   lab,   from   each   input   to   each   output.   This   was   tested   not   through   the   Max/MSP   

interface   but   through   the   use   of   the   PyBoard   REPL   prompt.   
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5   Micropython   Support   

5.1   Design   Procedure   and   Details   
In   designing   our   micropython   code,   we   had   to   first   determine   how   we   would   handle   user   input   from   

Max/MSP,   as   well   as   from   MIDI.   Each   signal   would   have   to   allow   the   user   to   set   the   three   main   attributes   

of   our   audio   signals;   amplitude,   frequency,   and   output   number.   Other   audio   elements   such   as   attack,   

sustain,   and   delay   time   have   been   omitted   for   purposes   of   focusing   our   system’s   implementation.   In   

addition,   by   utilizing   amplitude   and   frequency   as   our   primary   attributes,   we   are   better   able   to   align   our   

system   for   MIDI   integration.   

5.1.1   Max/MSP   |   Generators   
Our   Max/MSP   Interface   allows   for   the   user   to   select   from   varied   waveform   parameters   as   per   table   2   in   

Appendix   D.   The   majority   of   our   micropython   code   in   this   section   is   catered   towards   the   different   

methods   of   setting   the   amplitude   and   frequency.   For   both   attributes,   they   can   be   directly   updated   as   a   

constant   value   or   by   inputting   values   for   a   formula   through   Max/MSP.   Equation   (5.1)   depicts   how   the   

user   input   is   handled   when   the   formula   option   has   been   selected.   The   integer   values   are   provided   by   the   

user   for   multipliers   1   through   3,   and   for   the   indices   of   generators   X,   Y,   and   Z.   Operation   (op)   1   and   op   2   

are   selected   via   a   drop-down   arrow   and   trigger   flags   that   properly   select   the   appropriate   equation   to   

run.   

(5.1)   
  

We   also   set   upper   and   lower   bounds   for   our   frequency   and   amplitude   values   to   ensure   they   are   kept   

within   a   specific   region   to   avoid   system   error.   Frequency   is   set   to   range   from   0   Hz   to   20   kHz,   and   

anything   outside   the   bounds   is   corrected   accordingly.   This   precautionary   measure   was   taken   to   ensure   

that   no   frequency   crosses   the   bound   set   by   the   Nyquist   Limit.   Because   our   system   has   a   sample   rate   of   

44100   Hz,   the   Nyquist   limit   is   set   at   22050   Hz.   In   order   to   avoid   any   potential   alias-ing   we   decided   to   cap   

the   system   at   20   kHz.   Given   that   humans   can   detect   frequencies   ranging   from   20   Hz   to   20   kHz   (with   the   

adult   range   dissipating   around   15-17   kHz),   cutting   off   the   system   at   20   kHz   shouldn’t   overtly   affect   the   

user’s   playing   and   listening   experience.     

For   amplitude   we   utilize   a   similar   protocol   in   that   our   amplitude   bounds   are   marked   at   values   of   0   and   

127.   We   then   divide   the   calculated   amplitude   value   by   127,   normalizing   the   entry.   Our   amplitude   value   

must   be   normalized   in   order   to   properly   interact   with   our   wavetable   synthesis   algorithm.   

5.1.2   Max/MSP   |   Routing   
In   order   to   update   the   switches   for   the   routing   matrix   we   had   to   generate   the   appropriate   hex   values   to   

be   sent   over   the   pyboard’s   I 2 C   bus.   According   to   the   datasheet   for   our   ADG2128     routing   chips,   the   value   

passed   through   to   the   system   is   an   8-bit,   one   byte,   value.   The   larger   of   the   four   bits   is   dependent   upon   

the   input   port’s   value,   whereas   the   lesser   of   the   four   bits   is   dependent   upon   whether   or   not   the   input   

port   is   even-valued.   The   code   for   calculating   this   hex   value   is   seen   in   figure   20   of   Appendix   C.   
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Once   we’ve   parsed   the   proper   values   to   be   passed   to   the   chips,   we   first   reset   all   of   each   chip’s   switches   

by   pulsing   the   reset   pin   low.   This   pin   is   connected   from   X1   on   our   pyboard   to   pin   31   on   all   of   our   

ADG2128   chips,   as   depicted   in   figure   17   of   Appendix   B.   After   resetting   all   of   the   switches,   we   create   a   

byte   array   to   which   we   then   append   the   slave   chip’s   address,   the   hex   value   of   the   switch   to   turn   on   and   

an   additional   byte   determining   whether   or   not   there   are   additional   switches   to   be   parsed.   The   byte   array   

then   gets   sent   over   the   I 2 C   bus   to   the   appropriate   chip   and   the   cycle   is   repeated   if   there   are   any   

remaining   switches   to   handle.   

5.1.3   MIDI   
Incorporating   MIDI   into   our   system   was   somewhat   easier   than   the   code   for   updating   the   generators   and   

routing   switches.   When   a   MIDI   key   is   pressed,   a   serial   message   is   generated   that   indicates   the   MIDI   

channel,   note   number   and   velocity.   As   seen   in   figure   21   of   appendix   C,   our   programming   support   makes   

use   of   numerous   arrays   to   update   the   midi   signal.   The    midi_check    array   is   used   to   see   if   a   midi   note   has   

already   been   designated   to   play   on   a   specific   output.   This   associated   output   index   of   the   array   is   set   to   1   

when   the   note   is   first   triggered,   and   then   set   to   0   upon   the   envelope’s   completion   time.   Currently,   we   

have   our   envelope   time   set   to   a   default   value   of   5   seconds.   This   was   to   ensure   that   sound   could   be   

played;   however,   proper   MIDI   implementation   would   use   the   velocity   and   the   time   the   note   is   held   to   

determine   the   note’s   attack,   sustain   and   decay   time.   

The    amplitude    array   is   important   for   wavetable   synthesis   and   contains   the   normalized   version   of   that   

output’s   velocity/amplitude.   The    frequency    array   is   the   other   primary   array   that   must   be   set.   Using   the   

note   number,   which   ranges   from   21   to   108,   we   index   into   a   table   that   contains   the   note   number’s   

associated   frequency [9] .   The   final   call   in   our   MIDI   interface,    update_wave ,   decides   which   wave   type   will   

represent   the   MIDI   note   (e.g.   sawtooth,   sine   wave,   etc.)   based   upon   the   information   that’s   already   been   

parsed   from   the   serial   message.   This   code   can   be   found   in   figure   22   of   appendix   C.   

5.2   Verification   
One   of   our   primary   concerns   with   this   section   came   with   ensuring   our   helper   functions   produced   the   

appropriate   hex   and   integer   values.   Particularly   with   the   routing   matrix,   we   ran   the   function   

independently   of   the   system   with   various   inputs   and   compared   them   to   the   values   on   our   data   sheets   

until   we   were   certain   the   function   was   properly   implemented.   Similar   methods   were   utilized   in   finalizing   

the   code   for   parsing   MIDI   information   and   generator   information   from   Max/MSP.   However,   we   were   

unable   to   stabilize   the   connection   between   the   Max/MSP   and   MIDI   interface   to   the   micropython   code   

using   SysEx   (Generator/Routing)   and   Serial   (MIDI)   messages.   Therefore,   we   were   unable   to   update   our   

system   based   on   user   input,   an   important   aspect   of   our   design.   
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6   Digital   Signal   Processing   

6.1   Wavetable   Synthesis   and   Implementation   
Our   wavetable   synthesis   algorithm   serves   as   our   actual   mechanism   for   processing   our   signals   and   

outputting   them   to   the   system.   Through   wavetable   synthesis   a   single-cycle   waveform   is   constructed   and   

then   stepped   through   at   different   intervals   depending   on   the   associated   frequency.   A   general   version   of   

the   cyclical   nature   of   wavetable   synthesis   can   be   found   in   figure   18   of   Appendix   B.     

For   the   initial   implementation   of   our   system,   all   single-cycle   waveforms   were   calculated   ahead   of   time.   

Each   waveform   consists   of   a   table   with   2048   entries.   These   entries   range   in   data   values   from   0   to   4095,   

as   our   DAC,   the   Max   536/537,   accepts   this   range   of   sample   values   and   converts   the   value   to   its   

associated   output   voltage.   As   many   audio   signals   are   oriented   with   their   maximum   value   at   1   and   

minimum   value   at   -1,   the   signals   should   be   reoriented   so   that   their   maximum   is   at   4095,   minimum   is   at   0   

and   their   mid   point   around   which   they   oscillate   is   located   at   2048.   All   of   the   waveforms   were   hardcoded   

into   a   single   table.   The   only   waveform   not   utilizing   a   single   table   from   the   aforementioned   group   was   the   

sawtooth   as   different   partials   were   introduced   in   different   tables   to   avoid   aliasing [10] .   This   resulted   in   the   

sawtooth   waveform   consisting   of   an   array   of   8   single   cycle   tables,   where   each   table   is   associated   with   a   

particular   octave.     

  

(6.1)   

  

In   order   to   step   through   this   array,   we   calculated   a   phase   interval   value   to   increment   the   location   of   the   

sample   to   read   in   the   table.   This   interval   is   depicted   by   equation   (6.1) [10] .   After   we   write   a   sample   from   

the   waveform   to   the   DAC,   we   increment   the   current   sample   by   the   phase   interval   as   depicted   in   figure   

23   of   Appendix   C.   A   brief   instance   of   this   call   is   listed   in   figure   7.   It’s   important   to   note   that   when   

calculating   the   phase_interval,   it   is   calculated   as   a   float   value.   Although   only   integers   can   be   used   to   

index   into   a   table,   by   casting   the   sample   location   only   when   actually   indexing   into   the   table,   we   can   

ensure   that   the   sample   increment   is   properly   handled,   and   not   affected   by   rounding.   

  

Figure   7.   Writing   waveform   sample   to   DAC   using   SPI   protocol   and   incrementing   the   sample   index   

In   figure   24   of   Appendix   C,   the   micropython   code   for   writing   to   each   DAC   is   listed.   One   of   the   aspects   of   

our   DACs   that   we   make   use   of   is   its   ability   to   store   each   sample   in   an   input   shift   register   before   being   

converted   to   it’s   analog   output   voltage,   as   seen   in   figure   19   of   appendix   B.   After   writing   to   each   of   the   
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eight   outputs,   we   pulse   the   LDAC   pin   low.   This   pin   is   connected   to   both   of   the   chips’   LDAC   ports   and   

loads   the   DACs   with   the   values   from   their   associated   input   shift   register   to   be   immediately   converted.   

In   our   initial   implementation   of   the   system   we   also   hardcoded   for   all   of   the   audio   signals   to   play   for   a   

duration   of   five   seconds,   defined   within   the    env_time    array.   To   update   the   sample   and   the   playing   time   

appropriately   we   utilized   a   series   of   nested   if-loops   as   depicted   in   appendix   C.   The   if   loops   checks   to   see   

if   the   wave_table   has   been   fully   stepped   through,   signalling   once   a   complete   cycle.   If   so,   then   the   cycle   

count   is   decremented   until   it   reaches   zero,   logically   representing   one   second.   For   instance   for   the   note   

A4   (440   Hz),   the   cycle   would   be   set   to   440,   and   once   it   reaches   zero   following   numerous   decrements,   

one   second   would   be   marked   by   decrementing   the    env_time    array.   Once   the    env_time    value   has   reached   

zero,   the   audio   signal   is   turned   off   as   the   envelope   duration   has   been   fulfilled.   

6.2   Verification   
One   of   our   primary   concerns   with   our   system   is   the   handling   of   our   single-cycle   waveform   tables   during   

processing.   Each   time   a   sample   is   written   to   the   DAC   port,   we   multiply   the   value   stored   in   the   table   by   

the   amplitude.   We   didn’t   expect   for   our   code   to   alter   our   wave   table,   but   we   didn’t   want   to   take   the   risk   

of   there   being   an   error   buried   in   the   syntax   that   could   ultimately   cause   such   a   side   effect.   Therefore,   we   

ran   a   test   that   cycled   through   our   table   100   times.   We   created   a   temporary   table   equal   to   the   original   

waveform   table   and   used   that   table   as   the   basis   to   our   synthesis   algorithm.   At   the   end   of   the   100   

seconds,   we   compared   the   original   waveform   table   to   the   test   table   and   found   that   there   was   no   

difference   between   the   two.   Ensuring   us   that   our   code   would   not   affect   the   single-cycle   waveforms   

embedded   in   our   microcontroller.   

Aside   from   this   success,   we   were   not   successfully   able   to   test   if   the   SPI   protocol   would   properly   send   the   

data   samples   to   the   DACs.   We   had   originally   experimented   with   I 2 S   protocols;   however,   we   found   that   

although   the   pyboard   could   handle   the   communication   method,   the   SPI   protocol   was   a   better   option   as   

it   was   built   into   our   version   of   the   pyboard.   We   were,   however,   able   to   pass   values   through   the   DAC   

embedded   on   the   pyboard   microprocessor,   which   gives   us   hope   that   the   signals   can   be   properly   passed   

from   the   pyboard   to   the   Max   536   DAC   once   the   system   is   fully   rigged.   
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7     VCA/VCF   Board   

7.1     Design   Procedure   and   Details   

7.1.1     VCA/VCF   Filter   Core   

The   VCA/VCF   board,   figure   16   in   appendix   B,   was   designed   around   the   VCA/VCF   Filter   core,   figure   15   in   

appendix   B.   As   our   system’s   VCA/VCF   filter   chip,   the   NJM2069,   was   once   a   proprietary   product   of   Korg,   

no   datasheet   exists   to   facilitate   its   use.   To   circumvent   this   issue,   measurements   of   a   working   synthesizer   

which   utilizes   the   chips   were   taken.   It   was   found   that,   at   the   inputs   of   certain   surrounding   resistors,   

maximum   and   minimum   values   of   the   control   voltages   were   of   equivalent   magnitudes.   These   

magnitudes   fell   approximately   between   either   0V   and   375mV   for   most   control   voltages,   -375mV   and   0V   

for   the   VCA   control   voltage,   and   -375mV   and   375mV   in   the   case   of   the   frequency   control   voltage,   with   

-375mV   corresponding   to   the   highest   cutoff   frequency.   The   block   including   the   filter   and   these   resistors   

was   closely   implemented   from   the   schematic   of   the   keyboard   in   question   (the   Korg   DW-8000) [11] .     

As   signal   input   and   output   voltages   fell   in   a   rather   large   range   between   ~225mVpp   (at   the   SIG1   

and   SIG2   inputs   and   amplified   VCA   output)   and   ~750mVpp   (at   the   VCF IN    input   and   at   the   -12dB   and   

-24dB   outputs   of   the   VCF),   the   control   voltages   were   used   to   devise   a   standard   for   the   amplification   of   

inputs   and   outputs.   A   500mVpp   input   voltage   was   assumed   for   all   inputs   (based   on   the   typical   output   

level   from   the   VCF);   precision   rectifiers   (shown   in   section   7.2)   were   used   wherever   the   input   voltage   was   

intended   to   stay   between   0V   and   375mV   (or   between   -375mV   and   0V),   and   amplifiers   were   used   to   raise   

or   lower   the   voltage   as   necessary.   These   values   are   detailed   in   their   respective   subsections.   

7.1.2     Control   Voltage   Processors/Amplifiers   
The   control   voltage   (CV)   input   processors,   depicted   in   figure   12   of   appendix   B,   were   designed   to   

act   as   buffers   to   negate   the   somewhat   variable   output   resistance   of   the   switchpoint   matrices,   as   

rectifiers   where   control   voltages   are   intended   to   fall   exclusively   to   one   side   of   ground,   and   as   amplifiers   

to   normalize   the   input   level   

Each   of   the   single-member   input   ports   at   the   top   of   the   schematic,   labelled   F_FREQ,   VCA_LVL,   

F_RES,   and   SIG1_LVL,   is   a   header   intended   to   be   connected   to   the   washer   of   a   potentiometer,   with   the   

assumption   that   the   potentiometers   will   be   held   between   the   appropriate   power-rail   values   (0V   and   5V   

or   -5V   and   5V   in   the   case   of   the   filter   frequency)   at   the   chassis.   The   potentiometers   are   designed   to   

provide   DC   offsets   to   time-varying   voltages,   or   to   hold   control   voltages   at   constant   levels.   

The   CTRL_IN   port   receives,   from   left   to   right,   the   filter   frequency   CV,   the   VCA   level   CV,   the   filter   

resonance   CV,   and   the   LVL1   CV   (which   controls   one   of   the   filter’s   two   internal   VCAs,   capable   of   altering   

the   level   of   SIG1).   The   filter   frequency   control   voltage   was   found   to   be   both   inverted   and   bipolar,   falling   

between   approximately   -375mV   with   the   filter   fully   open,   and   375mV   with   the   filter   fully   closed.   Hence,   

a   single   inverting   amplifier   with   an   input   resistance   R In    =   75   kΩ   and   a   feedback   resistor   R F    =   100   kΩ,  

resulting   in   an   amplification   of   an   amplification   of   ,   which   would   bring   a   500mVpp   input   to  .33  75 kΩ
100 kΩ ≈ 1  

750mVpp,   precisely   the   desired   range,   while   also   inverting   it.   A   1.5   MΩ   resistor   is   connected   from   the   

negative   input   to   the   potentiometer,   which   would   result   in   a   gain   of   ,   bringing   the  .066  100 kΩ
1.5 MΩ ≈ 0  
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maximum/minimum   +/-5   V   down   to   -/+333   mV,   not   exactly   the   full   range   but   close   enough   for   our   

purposes.  

The   precision   rectifier   is   a   circuit   which   was   borrowed   from   an   article   by   Rod   Elliot [12] .   It   acts   as   a   

rectifier   even   when   input   voltages   are   smaller   than   a   diode’s   “on”   voltage.   We   ultimately   chose   this   

rectifier   for   our   system   as   its   input   is   an   inverting   amplifier   rendering   it   capable   of   gain.   The   gain   is   

determined   by   the   ratio   of   the   internal   resistors   (e.g.   The   four   68   kΩ   resistors   R55-R58   in   the   2   op-amp   

circuit   connected   to   the   VCA_LVL   input   and   R40   in   figure   12   in   appendix   B,   which   should   be   kept   equal),  

and   the   input   resistor.     

This   also   means   that   the   rectifier   can   act   as   a   summing   amplifier,   therefore   a   similar   gain   

calculation   can   be   used   for   the   three   precision   rectifiers   as   it   was   used   for   the   filter   frequency   amplifier.   

The   gain   values   for   each   are   identical,   bringing   a   500   mV   input   to   375   mV   and   a   5   V   signal   from   the   

potentiometers   to   approximately   333   mV,   but   the   rectifier   connected   to   the   VCA   control   voltage   has   a   

unity-gain   inverter   at   the   output   to   account   for   the   expected   inverted   input.  

7.1.3     Audio   Input   Processors/Amplifiers   
A   2.2   μF   capacitor   is   included   at   each   of   the   inputs   for   the   audio   input   processors,   figure   13   of   

appendix   B,   to   account   for   any   DC   component   which   may   be   present.   Unity   gain   buffers   are   also   utilized   

at   the   VCA   and   VCF   inputs,   as   a   500   mV   input   voltage   corresponds   to   a   medium-volume   signal   for   both.   

The   SIG1   and   SIG2   inputs   expect   a   voltage   between   225   mV   and   275mV   for   an   approximately   

medium-gain   signal   at   the   VCF   output,   and   are   therefore   connected   to   amplifiers   with   a   gain   of   0.5.   

7.1.4     Output   Processors/Amplifiers   
The   output   of   the   VCA   is   connected   to   a   100   kΩ   audio-taper   potentiometer   on   the   front   of   the   

chassis   through   the   VCA_VOL   port.   A   27   kΩ   feedback   resistor   was   found   to   produce   an   output   signal   

with   a   magnitude   of   approximately   225   mVpp,   and   hence   a   100   kΩ   potentiometer   is   used   in   place   of   the   

feedback   resistor   to   allow   the   user   to   vary   the   gain   between   0   (no   output)   and   just   under   750   mVpp.   As   

the   VCAs   on   the   NJM2069   were   found   to   invert   the   signal   (including   the   VCAs   internal   to   the   VCF   which   

modulate   the   level   of   SIG1   and   SIG2,   hence   the   inverting   amplifiers   at   their   input),   a   single   inverting   

amplifier   is   all   that’s   needed.   The   schematic   for   the   processors   can   be   found   in   figure   14   of   appendix   B.   

Meanwhile,   the   -12dB   and   -24dB   outputs   of   the   VCF   are   sent   to   SPDT   switches   on   the   

front-panel   to   allow   the   user   to   vary   the   slope   of   the   filter   by   hand.   The   output   of   the   filter   was   found   to   

be   around   500mV   on   average   (with   250   mVpp   signals   applied   to   both   SIG1   and   SIG2,   typical   operation   

conditions   on   the   DW-8000),   but   an   inverting   amplifier   with   an   input   resistor   of   47   kΩ   and   a   feedback   

resistor   connected   to   a   100   kΩ   audio-taper   potentiometer   on   the   front   panel   allow   for   gain   from   0   to   

approximately   1   Vpp.   
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8.   Costs   

8.1   Parts   
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Table   1     Parts   Costs   
Part   Quantity  Manufacturer   Retail   

Cost   ($)   
Bulk   

Purchase   
Cost   ($)   

Actual   
Cost   ($)   

D-Series   Pyboard   1   George   Robotics   Limited   
/   Micropython   

84.1500  70.1300  84.15  

ADG2128   8x12   Analog   
Switch   Array   

8   Analog   Devices   12.4100  8.5600  99.18  

TLO74   Low-Noise,   
JFET-Input   op-amps   

22   Texas   Instruments   0.4400  0.1500  15.40  

MAX537BEWE+   12-bit   
Output   Voltage   DAC   

2   Maxim   Integrated   26.5800  22.3500  82.42  

AD8672   Precision   Low   
Input   Bias   op-amp   

4   Analog   Devices   2.0400  1.6200  8.16  

1/4W   1%   Through-Hole   
Resistors   

132   Stackpole   Electronics   0.06800  0.0085  8.98  

Ceramic   SMD   47pF   
Capacitor   

40   Kemet   0.1000  0.0360  4.00  

NJM2069   analog   
filter/amplifier   chips   

4   Korg   22.4900  22.4900  89.96  

1N4148   Diodes   24   Semtech   Electronics   
LTD   

0.1000  0.1000  2.40  

100   kΩ,   1/20W   Resistor  8   Yageo   0.0970  0.0034  0.78  
20   kΩ,   1/16W   Resistor   8   Yageo   0.3900  0.0450  3.12  
2.2kΩ,   1/10W   Resistor   4   Yageo   0.0970  0.0034  0.39  
10   kΩ,   1/10W   Resistor   12   Yageo   0.1700  0.0220  2.04  
50   kΩ,   1/5W   Trimmer   20   Bourns   Inc.   0.4400  0.2100  9.68  

100   kΩ,   1/4W   
potentiometers   

36   Alpha   1.5000  1.3500  54.00  

M/F   Pin   Connector   Kit   1   Glarks   (via   Amazon)   13.9900  13.9900  13.99  
SPDT   miniature   

panel-mount   toggle   
4   TAIWAY   1.9500  1.2500  7.80  

4-Pin   Extension   Strip   1   AOTOINK   (via   Amazon)   8.9900  8.9900  8.99  
LM317   Voltage   

Regulator   
4   Texas   Instruments   1.5900  0.5290  6.36  

Connector   Receptacle  2   Hirose   Electric   Co   Ltd   1.1000  0.7560  2.20  
HS350-ND   -   Heatsinks   2   Aavid   1.3200  0.9833  2.64  
ED11093-ND   -   0.4”   DIP   4   Mill-Max   Manufacturing   1.0800  0.5900  4.32  

0.1µF,   63V   capacitors   56   Kemet   0.1460  0.0790  8.18  
Total         519.14  



  

8.2   Labor   
Based   on   average   ECE   salary   

- BS   Computer   Engineering   Average   Salary:   $84.25k   
- BS   Electrical   Engineering   Average   Salary:   $67k   

40   hours   per   week   over   6   weeks   =   240   hours   
  

Per   Partner:   
($30/hour)   x   2.5   x   240   hours   =   $18,000   

  
Team   Cost:   $54,000.00   

  
Total   Cost:   $54,519.14   
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9.   Conclusion   

9.1   Accomplishments   
While   we   were   unable   to   get   a   fully   functional   prototype   of   our   synthesizer   we   were   able   to   get   multiple   

modules   implemented.   Our   micropython   support   allows   for   the   user   to   handle   the   signals   to   parse   out   

the   appropriate   information   and   update   the   waveforms   accordingly.   In   addition,   we   were   able   to   test   

some   of   our   components   and   found   that   they   were   functional   and   operating   as   expected.   These   both   

serve   as   solid   steps   towards   actualizing   the   hybrid   analog/digital   synthesizer   we   have   designed.   Our   

primary   concern   is   with   finalizing   the   connection   point   between   the   user   interface   and   the   pyboard   and   

from   the   pyboard   to   the   DAC.   Establishing   the   connection   between   the   user   interface   and   the   PyBoard   

through   SysEx   and   serial   messages   is   a   necessary   step   to   full   product   functionality.   In   addition,   once   we   

can   solidify   the   connection   between   the   micropython   code   and   the   chips   through   I 2 C   communication   

and   SPI   protocol   we   will   be   able   to   output   our   audio   signals   as   intended.   

9.2   Ethical   Considerations   

We   could   think   of   very   few   ethical   considerations   for   the   project,   largely   due   to   the   nature   of   the   

product.   The   synthesizer   is   a   specialized   tool   for   audio   creation,   a   design   that   doesn’t   carry   immediate   

implications   towards   an   individual’s   privacy   or   security.     

It   should   be   noted   that   in   the   event   of   mass   production,   NJM2069   chips   are   no   longer   produced,   which   

could   cause   potential   issues.   In   light   of   this,   it   must   be   noted   that   not   many   other   chips   are   on   the   

market,   aside   from   the   recently   re-released   Roland   80017A   VCF   /   VCA   JUNO-106   Voice   Chip   Filter   IC [14] .   

These   chips   were   originally   released   in   1984   and   were   eventually   discontinued.   Newer   versions   of   this  

chip   are   likely   to   be   of   better   quality   than   their   original   iteration   in   1984,   however,   the   unreliability   of   

the   chips   isn’t   something   we   would   want   in   our   future.   It’s   also   worth   considering   that   the   NJM2069A   

may   be   put   back   into   production   as   the   80017A   due   to   the   rise   in   demand   for   these   powerful   audio   

chips.   

This   does   bring   up   some   potential   ethical   issues   with   regard   to   the   environment.   When   companies   

decide   to   start   producing   any   component   or   device,   it   requires   factory   space,   machines   and   either   

human   or   artificial   labor.   In   a   world   where   factories   contribute   heavily   to   the   changing   of   the   climate,   the   

repercussions   of   producing   such   a   component   must   be   considered,   as   per   the   IEEE   Code   of   Ethics [13] .   

9.3   Future   Work   
This   synthesizer   design   presents   a   number   of   novel   ideas.   That   having   been   said,   there   are   plenty   of   

ideas   that   would   be   great   additions   to   the   system   that   already   exist.   For   example,   implementing   an   

attack,   sustain,   and   decay   feature   for   the   audio   signals   would   definitely   help   create   an   experience   the   

user   is   expecting.   Likewise,   MIDI   note   implementation   should   be   re-configured   to   allow   for   notes   of   

varied   lengths,   depending   on   how   the   user   plays   the   keyboard.   This   would   also   mean   that   the   note-off   

signal   needs   to   be   handled   in   the   micropython   code.   Beyond   these   factors   and   finalizing   the   connection   

points   between   the   system   modules,   it   would   also   be   interesting   to   see   the   amplitude   envelope   feature   

be   fully   implemented   so   that   users   can   also   program   the   amplitude   over   time   of   their   audio.   
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Appendix   A       Requirements   and   Verifications   Table   

Software   Interface   
  

  

Microcontroller   
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Requirement   Verification   Status   

Display   menus,   interfaces   and   user   
input   fields   appear   on   the   screen,   
without   error   and   can   be   updated   

appropriately.     
  

1. Input   values   into   each   user   input   field.   
2. Set   generators   using   these   input   values   
3. Print   out   the   generator   values   to   ensure   the   

values   are   being   properly   parsed   by   the   code   
and   stored   in   the   designated   buffer.   

Yes   

All   menus   must   be   togglable   and   
feature   each   option   allocated   by   
the   design.   

  
  
  
  

1. Click   on   each   option   in   the   drop-down   menus   
on   the   interface.   

2. Ensure   all   features   are   listed   within   the   drop   
down   function.   

3. For   drop-down   functions   that   alter   the   screen,   
select   these   functions   and   ensure   that   the   
screen   makes   the   necessary   alterations.   

4. For   each   drop   down   function,   set   the   
generator.   Include   random   sample   values   for   
other   parameters.   

5. Print   contents   of   the   updated   generator   to   
ensure   each   feature   selection   is   linked   to   the   
proper   variable   in   the   code   that   gets   stored.   

Yes   

Requirement   Verification   Status   

Produces   no   aliasing   for   any   oscillator   
waveform   and   all   notes   up   to   C8   -   
highest   note   on   a   grand   piano   -   with   
frequency   4186.01   Hz     

1. Display   waveform   with   frequency   >=   4186.01   on   
oscilloscope.   

2. Rotate   the   horizontal   scale   knob,   or   otherwise   change   
the   horizontal   scaling   of   the   oscilloscope.   If   the   
waveform   changes   drastically,   aliasing   is   present   

No   



  

Wavetable   Synthesis   

  

Digital-to-Analog   Interface   
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Requirement   Verification   Status   

The   wavetable   synthesis   program   must   
not   alter   the   single-pass   waveform   
stored   in   the   buffer.   While   not   altering   
what’s   stored   in   the   buffer,   it   also   must   
use   the   buffer   and   properly   process   the   
waveform   at   the   desired   frequency   to   
produce   the   correct   audio   signal.   

1. Store   signal   of   single   amplitude   in   the   wave_form   
buffer.   

2. Pass   through   the   wavetable   synthesis   algorithm   at   a   
single   frequency.   

3. After   passing   the   wave_form   buffer   through   the   
algorithm   1000   times,   check   the   buffer   has   not   been   
altered   

4. Ensure   that   the   output   signal   is   a   single-tone   audio   
output   of   a   single-level.   If   fluctuations   in   pitch   or   
frequency   are   detected,   there   is   an   error.   

Yes     
(not   no.4   )   

Requirement   Verification   Points   

3.3Vp-p   (+/-   0.3V   error)   digital   
waveforms   at   the   input   to   the   DAC   
during   operation.   

1. Using   an   oscilloscope,   ensure   a   digital   version   of   
the   intended   waveform   is   present   at   the   input   pin   
and   conforms   to   the   desired   standard   

Yes   

3.3Vp-p   output   (+/-   5%   error)   
continuous   Analog   Output   signal   at   
DAC   output   pins   

1. Set   to   ready/inactive   (through   the   GUI   or   
underlying   program   if   the   GUI   is   not   yet   
debugged)   a   simple   output   waveform   to   the   GPIO   
connected   to   DAC1   

2. Connect   the   I2C_SCL   (PB10)   and   I2C_SDA   (PB11)   
outputs   of   the   pyBoard   to   the   corresponding   I2C   
inputs   on   the   LMP92001   DAC   

3. Ensure,   through   LMP92001   address   bits   31:32,   
and   by   setting   the   I2C   configurations   in   the   
underlying   program   to   mirror   the   address   of   
31:32,   that   you   are   communicating   with   the   
proper   DAC   

4. Measure   output   at   the   corresponding   output   pin   
using   a   digital   oscilloscope   and   ensure   it   conforms   
to   the   given   requirement   

5. Repeat   for   all   DACs   

No   

Must   properly   convert   any   input   digital   
signals   to   audio   or   DC   envelope   signals.  

1. Pass   a   single-tone   audio   signal   into   the   DAC.  
2. Test   the   audio   it   produces   digitally   
3. Connect   the   output   of   the   DAC   to   an   analog   

speaker.   
4. The   audio   signal   produced   by   the   analog   speaker   

must   match   that   digitally   produced   during   the   
aforementioned   test.   

5. Repeat   with   varied   audio   signals.   

No   



  

Routing   Matrix   
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Requirement   Verification   Points   

Verify   that   ADG2128   Chips   
Pass   Signal   Through   All   
Connection   Points   

Test   chips   individually.     
1. Manually   verify   that   test   DC   voltages   of   

+/-3.3V   are   passed   through   each   of   the   96   
ports   when   operated   individually   on   a   +/-5V   
power   supply.   

2. Manually   verify   that   a   +/-   3.3V   sine   wave   
passes   through   all   ports   when   operated   on   a   
+/-   5V   power   supply.   

Yes   

Verify   that   signals   on   separate   
ADG2128   chips   carrying   the   
same   buffered   output   to   
different   buffered   inputs   have   
no   interaction   with   one   
another,   or   that   signal   
interaction   occurs   at   a   low   
enough   level   as   to   be   
negligible   for   the   listener/user   
(difference   in   peak-to-peak   
voltage   of   less   than   2%   from   
unconnected   waveform)   

1. View   signals   on   an   oscilloscope   individually,   
without   the   other   connected.   Measure   
peak-to-peak   voltages.   

2. View   signals   on   the   oscilloscope   while   both   
signals   are   connected.   Ensure   minimal   or   no   
change   

No   

Verify   that   user   input   into   the   
routing   matrix   via   Max/MSP   
produces   the   correct   output   
hex   and   the   correct   number   of   
output   hexes     

1. Randomize   switches   that   user   sets   in   
Max/MSP   

2. Send   serial   message   containing   number   of   
switches   to   be   set   and   the   matching   I/O   ports   
into   the   python   code   to   be   parsed   

3. Print   out   the   message   to   be   passed   over   the   
SDA   line   by   I 2 C   for   each   switch   to   be   set.   

4. Verify   that   signals   match   the   corresponding   
values   in   user   datasheet   

5. Run   test   minimum   5   times   with   varied   
number   of   switches,   ensure   100%   accuracy   

Yes   



  

Appendix   B       Schematics/Figures   

Figure   8.   Analog/Digital   Board   Schematic   

  

Figure   9.   DAC   Chips   and   Output   Amplifiers   
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Figure   10.   Routing   Matrix   Detailed   

  

Figure   11.   PyBoard   Mezzanine   Input   Ports   and   Corresponding   Output   Ports   
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Figure   12.   CV   Input   Processors   

  

Figure   13.   Audio   Input   Processors   
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Figure   14.   Output   Processors   

  

Figure   15.   VCA/VCF   Filter   Core   
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Figure   16.   VCA/VCF   Filter   Board   Schematic   

  

Figure   17.   ADG2128   Pin   Layout   
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Figure   18.   Oscillator   Schematic   

  

  

Figure   19.   MAX   536/537   (DAC)   Schematic   
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Appendix   C       Micropython   Code   

Figure   20.   Routing   Update   -    get_hex   
Function:   Returns   the   hex   value   to   activate   the   switch   between   a   particular   input   and   output.   
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Figure   21.   MIDI   Update   -    handle_midi_msg   
Function:   Parses   note   number   and   velocity   from   serial   message   and   updates   oscillators   using   arrays,   

logical   shifts   and   bit-masking   

  

Figure   22.   Waveform   Update   -    update_wave   
Function:   Sets   the    data    array   to   contain   the   single-cycle   wave-form   for   the   associated   oscillator   based   off   

input   type   and   frequency.   

  

Figure   23.   Digital   Signal   Processing   -    Updating   sample   
Function:   Moves   to   next   sample,   and   performs   necessary   checks   to   decrement   cycle   and   envelope   time.   

If   envelope   time   reaches   zero,   the   associated   oscillator   is   “turned   off.”   
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Figure   24.   Digital   Signal   Processing   -    Writing   to   the   DAC   
Function:   Write   data   value   to   the   DAC’s   input   shift   register   using   SPI   protocol.   Pulses   LDAC   low    to   

update   all   DACS   simultaneously.   
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Appendix   D       Tables   
  

Table   2   Oscillator   Configurations   and   Sources   
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Options   

Oscillator   Types   Frequency   Sources   Amplitude   Sources   Operations   

Sine   Constant   Constant   +   

Sawtooth   Formula   Formula   *   

Square   MIDI   -   NN   MIDI   -   Velocity     

Triangle         

Noise         


