

Infinity Control Gauntlet
Ashish Pabba (apabba2), Chris Schodde (schodde3) and Ramakrishna Kanungo (kanungo3)

Team 25
TA: Yifan Chen

ECE 445 Final Report Kanungo | Pabba | Schodde

 2

Abstract

This report intends to inform the reader of our senior design project, a wearable glove input
device that recognizes certain pre-configured gestures. Our glove is equipped with flex sensors
and an IMU to obtain finger flexion and orientation data streams, which are processed to
recognize and declare a gesture from our gesture set. Our final prototype satisfied all of our
defined high-level requirements and was able to achieve a high degree of accuracy in
recognizing all gestures with low latency, while having virtually zero false positive or false
negative gesture recognition instances during our testing. However, there is room for
improvement in terms of variations in accuracy between testers and overall functionality, which
is also discussed in detail.

ECE 445 Final Report Kanungo | Pabba | Schodde

 3

Table of Contents

1. Introduction .. 4

1.1 Objective ... 4
1.2 Background .. 4
1.3 High-Level Requirements ... 5

2. Block Diagram ... 5

3. Functional Overview .. 6

4. Design ... 6

4.1 Physical Design ... Error! Bookmark not defined.
4.2 Glove Subsystem .. Error! Bookmark not defined.

4.2.1 Flex Sensors & Voltage Divider PCB .. 7
4.2.2 IMU ... 7

4.3 Control Unit .. 8
4.3.1 Control Unit PCB ... 8
4.3.2 Control Loop .. 10

4.4 PC and Power Supply Unit ... 12

5. Verification ... 12

5.1 Glove Subsystem .. 12
5.1.1 Flex Sensors & Voltage Divider PCB ... 12
5.1.1 IMU .. 13

5.2 Control Unit .. 14
5.2.1 Control Unit PCB ... 14
5.2.2 Control Loop .. 15

5.3 PC and Power Supply Unit ... 16

6 Cost and Schedule .. 16
6.1 Cost Analysis .. 16
6.2 Schedule .. 17

7 Conclusion .. 18

7.1 Accomplishments ... 18
7.2 Uncertainties and Shortcomings ... 18
7.3 Future Works/ Alternatives .. 19
7.4 Discussion of Ethics and Safety .. 20

8. Works Cited .. 20

ECE 445 Final Report Kanungo | Pabba | Schodde

 4

1. Introduction

1.1 Objective

For certain applications, the issues with conventional input devices such as the mouse and
keyboard are evident. There are numerous such fields that lack a sufficiently intuitive and
natural input method, including but not limited to VR technology, video games, CAD/3D
modelling, and even basic menu navigation. For example, in the context of 3D modeling and
CAD applications, rotation, zooming, and translation are extremely inconvenient actions. Such a
lack of intuitiveness can seriously hamper workflows and negatively affect efficiency and
accuracy. Therefore, an advancement or breakthrough in this area would be analogous to the
invention of the mouse as a point and click device.

Moreover, another source of inconvenience is that most input devices are external and secondary
instruments as opposed to extensions of the body, the latter being overwhelmingly preferable.
This is evident in the complete replacement of stylus-based touch screens by capacitive touch
screens that can be used with fingers.

With these aspects of the problem space in mind, our proposed solution is to engineer a wearable
glove that can be used to recognize the hand-based gestures of the wearer to serve as an input
device. Such a solution would enable the user to translate specific and precise gestures to a
directive/input command. As previously discussed, the applications for this method of input
would be significant. Therefore, our objective is to essentially develop a glove that can serve
as an immersive and intuitive input instrument with applications in several fields.

1.2 Background

Our goal is to attempt to develop a more intuitive, immersive, and natural method of input in the
form of a glove that is capable of recognizing gestures. While there are similar products in
development from companies such as HTC and Sony, such products are either nascent, niche, or
prohibitively expensive. Furthermore, any viable glove input device is inextricably tied with
proprietary hardware such as VR headsets or consoles and is therefore difficult to use as a
general-purpose device. Consequently, our product is appealing as an open-source device for
which drivers can be written and custom gesture mapping can be made. In order to distinguish
itself, our glove solution will have to be both reliable and inexpensive. Another possible
argument against the pursuit of the development of such a glove is the alternative possibility of
using computer vision to track hand/finger movements. However, this solution can be easily
dismissed when the field-of-vision requirements, camera costs, and necessary computer vision
hardware and software are contrasted with the simplicity of the glove.

ECE 445 Final Report Kanungo | Pabba | Schodde

 5

1.3 High-Level Requirements

• Sensor data should be transmitted to the microcontroller with precision and accuracy, with
minimal noise.

• Control loop on microcontroller should be able to detect the move right, move left, zoom in,
zoom out, and thumbs-up gestures while effectively reducing false positive detection. Gestures
should be recognized every 1 seconds i.e., there is a downtime of 1 second between gestures that
will be recognized.

• Detected gestures should be transmitted to a computer using a UART transmission and printed
in a readable format.

2. Block Diagram

Figure 1:Block Diagram

Figure 1 above illustrates our final block design. In comparison to our initial block design, we
decided that all our components could be powered by the computer through our UART module.
This led to the elimination of the battery and linear regulator. This reduced the overall size and
weight of the glove and was an improvement both aesthetically and functionally. However, if it
becomes imperative to pivot to a wireless glove design in the future, we will have to reintroduce
a similar power block to be placed onboard the glove.

ECE 445 Final Report Kanungo | Pabba | Schodde

 6

3. Functional Overview

The glove subsystem encompasses the sensors mounted on the glove that are used to help detect gestures.
And since a gesture is just a combination of different motions happening in parallel the aim of the glove
subsystem is to provide the control unit, with the microcontroller, data from different types of sensor
values that aim to detect a certain motion.

The control unit consists of the microcontroller and the analog to digital converter. The ADC is used to
convert the voltage divider circuit value from the glove subsystem and send the digital output to the
microcontroller. The microcontroller is used to interface with the various sensors and detect gestures,
these include rotational motion, translational motion and hand contractions.

The PC and power supply unit is used to provide power to the various sensors and the microcontroller
through the USB port and interact with the microcontroller and report the gestures sensed.

4. Design

4.1 Physical Design

Figure 2: Physical Design

ECE 445 Final Report Kanungo | Pabba | Schodde

 7

4.2 Glove Subsystem

4.2.1 Flex Sensors & Voltage Divider PCB
The flex sensors [1] are placed to capture the contraction of each of the fingers. The flex sensors
are connected to another set of resistors in series to form voltage divider circuits. The voltage
drop is fed to a voltage follower op amp [2] circuit to avoid source impedance. Then this is
routed to the control unit. The routing to the control unit is done using 20 AWG wires that have a
low resistance of 10.5𝛺/1000	𝑓𝑒𝑒𝑡 [3]. This is done to avoid noise gained during transmission.

Figure 3: On hand PCB circuit Figure 4:Individual flex sensor circuit

4.2.2 IMU
Although we initially selected the Bosch BNO055 IMU, we later chose to use the MPU6050 for
increased simplicity and reduced power consumption. The BNO055, however, has advanced
sensor fusion and includes a magnetometer, which make it our IMU of choice in the future as we
further develop our prototype.

The MPU6050, our chosen breakout-board-mounted IMU, is used to detect rotational and
translational motion across six degrees of freedom. An onboard gyroscope and accelerometer are
used to the acquisition of the aforementioned data. The IMU relays this sensor data stream by
interfacing with the control unit’s microprocessor over an I2C line with 2.2	𝑘𝛺 resistor pullups
for the 𝑆𝐷𝐴 and 𝑆𝐶𝐿 lines. The MPU6050 is placed on the glove right below the base of the
middle finger. It lays flat along the back of the hand, relaying orientation and acceleration data
with the back of the hand as the “zero-plane”. The MPU6050 breakout board and its position on
the glove are illustrated below in Figures 5 and 6.

ECE 445 Final Report Kanungo | Pabba | Schodde

 8

 Figure 5: MPU 6050 Breakout Board Figure 6: MPU6050 Position on Glove

More specifically, the MPU6050 provides the following relevant sensor data:

• Angular velocity across 3 axes
• Linear acceleration across 3 axes

Given this sensor data profile, we were able to compute linear acceleration and current
orientation accurately recognition of our chosen gesture set.

4.3 Control Unit

4.3.1 Control Unit PCB

Figure 7: Control Unit Schematic

ECE 445 Final Report Kanungo | Pabba | Schodde

 9

Figure 8: Control Unit Board

Figures 7 and 8 above display the design for the control unit. A header is added to connect the
programmer to the microcontroller. The clear pin is directed to the 𝑀𝐶𝐿𝑅	port. And this is
coupled with a pull up resistor and diode. The 𝑀𝐶𝐿𝑅 port is an active low port; hence it is fed to
𝑉𝐶𝐶. There is also a push button that is used to reset the board at will and perform calibration for
sensors. The 𝑃𝐺𝐶 and 𝑃𝐺𝐷 pins are routed appropriately to program and write into the ROM of
the controller.

The way the schematic is set up the board can be powered by either an external power source or
by the programmer. All the power ports (𝑉𝐷𝐷	𝑉𝑆𝑆) have denoising protective 0.1uF ceramic
capacitors running in parallel with the ground and 𝑉𝐶𝐶 lines. The microcontroller has an internal
VRM and the external capacitors across 𝑉𝐷𝐷 and 𝑉𝑆𝑆 are for first degree denoising. Further, a
tantalum capacitor is added in series with the 𝑉𝐶𝐴𝑃 and 𝐺𝑁𝐷 nets. This is to assist the internal
VRM with denoising and stability which is required for the high current transients seen by the
microcontroller. Hence, we can use an unsophisticated DC power supply, and not have to worry
about the high current transients. The 𝐴𝑉𝐷𝐷 and 𝐴𝑉𝑆𝑆 pins are connected to 𝑉𝐶𝐶 and 𝐺𝑁𝐷 to
provide a reference to the ADC, without which the internal ADC cannot function. There are pull
up resistor on the 𝑆𝐷𝐴 and 𝑆𝐶𝐿 pin which are required for I2C communication. There is a test
LED, and all the analog pins are exposed as header to get analog data from the PCB on the hand.
Further, the 𝑅𝑋 and 𝑇𝑋 ports are exposed for UART communication with the PC to transmit data
when the gesture is detected.

ECE 445 Final Report Kanungo | Pabba | Schodde

 10

4.3.2 Control Loop

Figure 9: High level SW Control Loop

Figure 9 above illustrates the software flowchart for the control loop on the microcontroller. The
idle state (state 1) is reached after every successful gesture recognition. The idle state has a
condition where it checks whether it has been 50𝑚𝑠 since the previous idle state. That ensures a
total of 20 loops over 1 second. This is more than enough data to detect gestures.

A push button on the PCB with the microcontroller is used to move into the calibration state
(state 20). The flex sensors have different values in resistance and hence need to be calibrated
before use. Further, this enables custom calibration for each individual using the glove. When the
button is pushed the user is expected to keep their fingers spread out and palm flat. The voltage
value is noted. Then the push button is again clicked, and a state is entered where the flexed
voltage sensor values are noted by making the user make a fist. Then another push on the button
leads us back to the idle state where gesture detection begins again.

ECE 445 Final Report Kanungo | Pabba | Schodde

 11

Figure 10: Sensor Data Storage Structure

After waiting in idle the control loop moves into both the read for flex sensors data state. Here in
state 2, the microcontroller reads the various flex sensor voltage values through the on-chip
ADC. The data is sampled and then loaded into a queue with 20 values. One such queue (as
illustrated in Figure 10 above) exists for each of the flex sensors and since we sample every
50𝑚𝑠, the 20 values in the queues correspond to the state fingers on the hand in the last one
second. In state 3 we probe the IMU for data, and that data is stored using a similar data
structure.

State	5 makes sure to avoid constant gesture detection. If a gesture has been detected in the last
one second, we bypass the gesture detection code.

Thumbs up: This is the simplest of the gestures. If the thumb is not bent and all other fingers are
bent a thumbs up is detected.

Move left & move right: If the palm of the person wearing the device is facing the left, which
means the IMU is facing the right, and there is some translational acceleration detected towards
the left, then we detect move to the right. Vice versa for move to the left. Also, the persons
thumb needs to be kept bent at all times for this gesture to be detected. The bent thumb is
detected using the flex sensor.

Mode change: The mode variable is toggled between one and two if the mode gesture is
detected, i.e., if mode was one it is set to two when this gesture is detected. The gesture is
detected if a fist is made quickly and released. If all the fingers are spread out and one’s palm is
flat, and then in quick succession a fist is made followed by spread out fingers and flat palm.
This gesture is detected by processing the data in the history table which stores the data of all the
flex sensors. The current mode is also displayed by lighting up the LED on the glove in mode 1
and not lighting it in mode 2.

Zoom in/ Zoom out: The flick gesture is used to declare a zoom in our out. A flick is detected if
all the fingers are bent like a fist and then the pointer finger and thumb suddenly extend. It is
similar to the action when a carrom striker is hit with the index finger while playing carrom. This
is detected again by looking at the history data of all the sensors. Once a flick is detected, a zoom
in or a zoom out is declared based on the current mode.

ECE 445 Final Report Kanungo | Pabba | Schodde

 12

As seen in the control loops, states 6,8,10,12	&	14 are gesture detection states. They are function
calls that look at the sensor data to determine if a gesture can be declared. In the declare gesture
states, the data about the gesture detected is transmitted to the PC. The PC then prints the gesture
on its screen.

Figure 11:Thumbs up gesture

Figure 11 above displays an example of the simplest gesture, thumbs up. 𝑉0, 𝑉1,… . 𝑉4, are
queues with data for the five flex sensors. In this code snippet we check whether the thumb is not
flexed, and the other four fingers are flexed. If this is true, then we declare a thumbs up.

4.4 PC and Power Supply Unit

This consists of a PC that supports serial communication through UART and a USB to TTL
UART serial converter. The chip serves two purposes, it provides 3.3𝑉 power to the whole
device. And it acts as a communication channel between the microcontroller and the PC.

5. Verification

5.1 Glove Subsystem

5.1.1 Flex Sensors & Voltage Divider PCB
Requirement Verification

- Resistance needs to lie between 7𝑘𝛺 and
13	𝑘𝛺

- Needs to output voltages between
[1.1, 1.7𝑉] based on finger orientation

- Consumes ~2	𝑚𝐴 across sensors and op-
amps

• Measure resistance of each resistor
• Create resistor divider circuit on a

breadboard and measure output of flex
sensors using voltmeter and power
supply

• Recreate unity gain buffer circuit on op
amp and check if requirements are met

• Vary length of 20 AWG wire and
confirm low resistance

Table 1: Requirements & Verification: Flex sensors

First each of the individual flex sensors were tested to see whether their resistance values fall
within the expected range. Then a breakout board was used, and the op amp circuit was recreated
on breadboard. After monitoring the current draw and verifying the functionality of the voltage
divider circuit, the PCB was soldered. The PCB was tested for shorts across 𝑉𝐶𝐶 and 𝐺𝑁𝐷 on
multiple occasions. Finally, the PCB was connected to a power supply and the current limit was
set to 200𝑚𝐴. This is done to avoid destruction of components in case of a short. The integrity
of the PCB was verified and the individual 𝑉_𝑜𝑢𝑡 ports for each flex sensor were tested using a
voltmeter and bending the flex sensors.

ECE 445 Final Report Kanungo | Pabba | Schodde

 13

5.1.1 IMU

Requirement Verification

- Stationary and level IMU should
output zeros across output as
expected.

- Needs to be calibrated to ±	2𝑔 range
(or ±	4𝑔 based on actual values
obtained) for precision

- Must consumes manufacturer
specified amount of ~12.3	𝑚𝐴

- Must communicate orientation and
motion data reliably over I2C

• Verify zero output while IMU is level
and stationary

• Measure operating current draw of
sensor

• Monitor output to microprocessor
while in different positions and ranges
of motion

Table 2: Requirements & Verification: MPU6050 IMU

The IMU was rigorously tested after consideration of its importance in our project. We mounted
the IMU onto the glove and laid the glove flat on a table to measure the values in the level and
stationary state. The 𝐴𝑧 (acceleration on the z-axis) value was close to 1𝑔, which is expected as
the accelerometer would pick up acceleration due to gravity along the z axis. All the other values
were expected to zero or close to zero, but instead displayed significant constant zero-error.
Some values copied from our serial monitor are displayed below in Figure 12. The gyroscope
values were not similarly affected, with the zero error being negligible enough to ignore. This
observed zero error was unfixable, prompting us to add a calibration state in the beginning,
where the user is prompted to lay their hand flat on the table. During this period, 100 samples are
taken from the IMU to compute zero error and averaged to compute offset values, after which
any accelerometer/gyroscope value is corrected accordingly by subtracting the corresponding
average error value from it.

For orientation computation, we wrote our code to compute orientation, which uses values from
the accelerometer and gyroscope and “fuses” them based on the IMU-specific Kalman filter,
which allows for the negation of accelerometer inaccuracy and gyroscope drift. Having written
code for this computation, we put on the glove and oriented in various positions along the axes as
the roll, pitch, and yaw values at such orientations are known. After error correction, these values
also matched up with expectations. Figure 13 below illustrates the computation involved in the
“fusion” of the accelerometer and gyroscope data.

ECE 445 Final Report Kanungo | Pabba | Schodde

 14

Figure 12: Zero values on IMU. Figure 13: Orientation computation.

5.2 Control Unit

5.2.1 Control Unit PCB

Table 3:Requirements & Verification: Control Unit

The schematic circuit for the control unit was recreated on a bread board with all the necessary
components. Then a power supply with a current draw limit of 500mA was used to power the
circuit. Once the integrity of the circuit was verified, a blinking LED code was deployed to
verify the functionality. The code snippet is seen below. This helped in confirming that the
microcontroller was programmable with the given set up.

Requirement Verification

- Control unit board draws a maximum
of 24𝑚𝐴 at 3𝑉

- Able to program microcontroller with
external programmer

• Prototype the microcontroller on the
bread board with the push button and
the clock generator.

• Program board with blinking LED to
test programmer

• Program microcontroller to do
Dijkstra algorithm, which is
computationally intensive and check
current draw on breadboard.

ECE 445 Final Report Kanungo | Pabba | Schodde

 15

Figure 14: Blinking LED Code Snippet

Then the control unit board was soldered and tested for shorts. The same procedure as above was
followed thereafter to test integrity and functionality of the board. Further, the Dijkstra algorithm
was run, and the current supply was monitored on a power supply. The current draw was well
below the 24mA limit accounted for.

5.2.2 Control Loop

Table 4: Requirements & Verification: Control Loop

To verify the various components on of the control loop it was essential to print data from the
microcontroller. Hence the first step was to set up the UART communication line using the RX
and TX ports. All print statements in the code were redirected to the serial port. After the serial
communication was verified by printing random text and making sure it was displayed on the
PC, communication with the IMU and flex sensors was verified. Using I2C, the IMU was probed
and the values were displayed on the PC. The image in the IMU section (Figure 10) shows the
data received from the IMU after post processing. The ADC on chip was probed and the analog
voltage values from each on the flex sensors were read and displayed as well to verify its
functionality. Then a control loop was created with each individual gesture to verify whether
gesture detection was successful and measure the computation time for each of them. Before
integrating all the gestures into the final control loop it was vital to verify that the sum of
computation time for each individual gesture was less than 50ms so that the control loop can
function the way it was designed.

Requirement Verification
- Communicate with PC
- Interface with the IMU using I2C

protocol and store this data
- Interface with flex sensor unit, convert

data using ADC and store the data.
- Processing is fast enough to allow for

at least 20 loops per second.
- Able to detect the gestures reliably

with minimal false positives.

• Verify the UART communication
• Verify the ADC output
• Verify the I2C interface.
• Write functions for various gestures

and verify them individually.
• Then construct the control loop to

detect all the gestures

ECE 445 Final Report Kanungo | Pabba | Schodde

 16

5.3 PC and Power Supply Unit

Requirement Verification
- Output of 3.3𝑉 for microprocessor,

IMU & flex sensor PCB (current draw
of 24	𝑚𝐴)

- Communication between PC and
microcontroller enabled

• Probe output voltage to confirm 3.3𝑉
output

• Check if the communication has been
established by printing to UART
terminal.

Table 5: Requirements & Verification: PC and Power Supply Unit

We were able to verify that the output voltage is a stable 3.3𝑉 by probing the output voltage
using a multimeter. The establishment of UART communication was verified by writing code to
print to the serial monitor on the PC.

6. Cost and Schedule

6.1 Cost Analysis		
	
Description Part Number Quantity Cost (USD)
Flex Sensor FS-L-095-103-ST 2 21
Resistor 47 kΩ CF14JT47K0 2 0.1
Microcontroller dsPIC33CH64MP502

1 3.95

IMU MPU6050 1 4.99
Op Amp LM741CN/NOPB 2 0.88
Battery Holder Rechargeable 3V

battery

1 4.79

Gloves Cevapro Running
Gloves

1 14.99

Table 6: Cost breakdown
	
The total cost of the parts as listed in the parts table is $102.62. From UIUC’s own data, the
average salary of EE and CE majors is $88,000 per year [5]. Assuming 52 work weeks, 5 days a
week, 8 hours a day, we arrive at an hourly rate of $42.31. Average partner contribution can be
assumed at 10 hours per week. From the given formula for the cost of labor, we find that labor
will cost

2.5	 × 	30	ℎ𝑜𝑢𝑟𝑠/𝑤𝑒𝑒𝑘	 × 	7	𝑤𝑒𝑒𝑘𝑠	 × 42.31	$/ℎ𝑜𝑢𝑟	 = 	$22,212.75.
The total cost of both labor and parts is then:

$72.62	 + 	$22,212.75	 = 	$𝟐𝟐, 𝟐𝟖𝟓. 𝟑𝟕

ECE 445 Final Report Kanungo | Pabba | Schodde

 17

6.2 Schedule
	
Week Ashish Chris Ramakrishna

10/5 Decide on and order parts for
power unit, begin to test parts

Decide on and order parts for
control unit, begin to test
parts

Decide on and order parts for
glove, begin to test parts

10/12

Start working on
microcontroller programming
based on sensor tests, help
with PCB design

Work on PCB Eagle
Schematic, submit PCB order

Work on PCB Eagle
Schematic, submit PCB order

10/19
Program microcontroller and
test motion and flex
recognition

Program microcontroller and
test motion and flex
recognition

Program microcontroller and
test motion and flex
recognition

10/26
Test power units, explore
computer interface and how
to display recognized gesture

Test control unit in
conjunction with glove,
verify microcontroller
program and modify as
necessary.

Test glove unit, log sensor
data for gestures and identify
usable trends/patterns

11/2

Complete assembly, test
gesture recognition with
integrated prototype and
modify microcontroller
program as necessary

Complete assembly, test
gesture recognition with
integrated prototype and
modify microcontroller
program as necessary

Complete assembly, test
gesture recognition with
integrated prototype and
modify microcontroller
program as necessary

11/9
Prepare for mock/final
demos, grace time in case of
delays in earlier steps

Prepare for mock/final
demos, grace time in case of
delays in earlier steps

Prepare for mock/final
demos, grace time in case of
delays in earlier steps

Table 7: Schedule

ECE 445 Final Report Kanungo | Pabba | Schodde

 18

7. Conclusion

7.1 Accomplishments

We were able to satisfy all of our high-level requirements and consider our project a success in
its defined scope. In terms of gesture recognition, we were able to achieve a significant degree of
accuracy across all gestures and were able to do so by successfully acquiring and processing of
data streams coming from our glove-mounted sensors. Moreover, we were able to keep
variations in accuracy for recognition across different gestures to a minimum despite the varying
complexities of our chosen gesture list, with the standard deviation for recognition accuracies for
different gestures being about 3.06	%. Figure 15 below displays the recognition accuracy for
each gesture. These results were derived by averaging the number of successful gesture
recognitions for 100 repetitions of the gesture by two different testers.

Figure 15: Average Gesture Recognition Accuracy Chart

7.2 Uncertainties and Shortcomings

While we were able to eliminate almost all uncertainties relating to sensor data accuracy through
rigorous testing and troubleshooting, the primary uncertainty in our project was the source of
variation in accuracy of recognition between testers for certain gesture. For this observed
disparity, potential sources of error include:

• Variation in hand size of testers
• Variation in flex sensor alignment with fingers of different users
• Variation in the orientation of the IMU sensor with respect to different users’ hands

We were able to decrease this disparity by implementing fixes such as:

• Dynamic calibration of flex sensor threshold values for flexed/unflexed fingers
• Dynamic calibration of offset values for the accelerometer and gyroscope
• Fastening zip ties around the flex sensors at the bases of fingers, creating flexible anchor

points

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Zoom in Zoom out Change mode Move Right Move Left Thumbs-up

Average Recognition Accuracy

ECE 445 Final Report Kanungo | Pabba | Schodde

 19

The final disparities for a few gestures are illustrated below in Figure 16. There remains scope
for improvement, as will be discussed in the Improvements section.

Figure 16: Disparity in recognition accuracy across testers

7.3 Future Works/ Alternatives

While we were mostly satisfied with the results, we look forward to making several future
improvements that we have identified as possible and beneficial for our project. These
improvements include:

• Add magnetometer: Using a magnetometer in conjunction with the accelerometer and the
gyroscope on the IMU would significantly increase the accuracy of our orientation data
stream, supporting our ability to implement and recognize more complex gestures.

• Improve build quality: Improving our build quality, especially better flex sensor/IMU
anchoring to the glove, would improve accuracy and reduce accuracy disparities across
testers.

• Custom gesture configuration: Adding the ability for users to “record” their own custom
gestures and subsequently recognizing them when performed would greatly increase our
project’s perceived utility.

• Input driver: Writing a driver to allow the gestures to actually be used as an input device
with computers as a plug-and-play device would elevate our product from a proof-of-
concept/prototype to a usable product.

• Gesture granularity: Gesture granularity can be improved by further processing our
sensor data streams. For example, the zoom gesture can be improved by also recognizing
the speed at which the gesture was performed, and assigning a percentage value
accordingly (150% zoom in, 200% zoom out etc.)

ECE 445 Final Report Kanungo | Pabba | Schodde

 20

7.4 Discussion of Ethics and Safety	

The weight and positioning of the sensors and boards may over time, if care is not taken, cause
strain on the operator's hand or abrasions on the skin, potentially resulting in permanent injury.
To comply with rule #1 of the IEEE Code of Ethics [6], that we may preserve the health and
safety of our users, attention will be given to ergonomic placement of the said components on the
hand and wrist, to achieve a balanced, comfortable experience.

Additionally, because the user is intended to wear a mounted electrical system, care will be taken
to ensure proper insulation of the mounted electrical components and their associated wires, so
that no part of the operator physically encounters these components.

For the battery, there must also be a consideration regarding the temperature, as there exists the
possibility of overheating. However, since the battery is not mounted on the glove in our design,
the risk of a burn is rather low.

Finally, the design of this system is open source. This is good ethical practice because it allows
for adoption and modification of the system without additional expense by the community that
utilizes the design.

8. Works Cited

[1] Spectrasymbol, "Sparkfun," [Online]. Available:
https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLEXSENSORREVA1.pdf.

[2] T. Instruments, "Texas Instruments," [Online]. Available:
https://www.ti.com/lit/ds/symlink/lm6134.pdf?ts=1601536549483&ref_url=https%253A%2
52F%252Fwww.google.com%252F.

[3] Hyperphysics, "Hyperphysics," [Online]. Available: http://hyperphysics.phy-
astr.gsu.edu/hbase/Tables/wirega.html.

[4] MicroChip, "MicroChip," [Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/dsPIC33CH128MP508-Family-Data-
Sheet-DS70005319D.pdf.

[5] UIUC, "courses.engr.illinois.edu," 2020. [Online]. Available:
https://ece.illinois.edu/admissions/why-ece/salary-averages.

[6] IEEE, "ieee.org," 2020. [Online]. Available:
http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed 16 Sep 2020].

[7] Sparkfun. [Online]. Available:
https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLEXSENSORREVA1.pdf.

