

Marching Band Assistant

Final Report

Team Number 6

Wynter Chen (wynterc2)

Alyssa Licudine (alyssal3)

Prashant Shankar (shankar7)

ECE 445

TA: Dhruv Mathur

December 9, 2020

ii

ABSTRACT

The Marching Band Assistant (MBA) is a wearable device that is used to calculate a user’s

conducting tempo via motion detection. The MBA is turned on using a switch within a plastic

encasing. When on, the MBA continuously performs calculations based on the user’s arm

motions. The MBA can be connected to a host computer via Bluetooth. The user can run an

executable program that displays the device’s latest output in real-time. The user display contains

an option to record the data received over time and save it to a CSV file.

iii

TABLE OF CONTENTS
1. Introduction 1

 1.1 Objective 1

 1.2 Background 1

 1.3 High-Level Requirements 2

2. Design 3

 2.1 Block Diagram 3

 2.2 Physical Design 4

 2.3 Block Descriptions 5

3. Verification 13

4. Cost Analysis and Schedule 18

 4.1 Final Costs of Labor 18

 4.2 Final Costs of Parts 18

 4.3 Total Costs 18

4.4 Schedule 18

5. Conclusion 19

 5.1 Accomplishments 19

 5.2 Uncertainties 19

 5.3 Ethical Considerations 19

5.4 Future Work 20

References 21

Appendix A: MBA Schematic 23

Appendix B: MBA PCB Layout 24

Appendix C: Requirement and Verification Tables 25

Appendix D: Current and Supply Voltage Requirements 36

Appendix E: Parts Cost Table 38

Appendix F: HC-05.ino Program 39

1

1. INTRODUCTION

1.1 Objective

One of the primary responsibilities of a drum major is to conduct a consistent tempo during

marching band practices and live performances. However, most high school drum majors are

tasked with this responsibility with no prior training. While some high schools and colleges have

access to drum major camps to train and practice fundamentals, drum majors often do not have

practice tools readily available to receive feedback on their conducting.

The Marching Band Assistant (MBA) aims to create a method for drum majors to practice and

analyze the consistency and tempo of their conducting. An arm attachment with an inertial

measurement unit on it would be used to record acceleration from the conducting arm. The

derived acceleration data processed via a microcontroller would calculate the user’s average

tempo after a short period of recording, as well as the standard deviation of time between

conducting motions. The calculations would be transmitted via Bluetooth to a GUI on a laptop,

where the user could both have data displayed in real time and view data afterwards to observe

any inconsistencies in his or her conducting.

1.2 Background

A drum major is the leader of a marching band, a common entertainment organization that plays

musical numbers at the sporting events of most high schools and colleges. A drum major’s

responsibilities include relaying vocal commands, communicating with band members, and

conducting effectively [1]. Conducting establishes the tempo of a musical number, and the drum

major is the only visual source of tempo during performances.

Thus, metronome devices such as the Dr. Beat are used in personal or full-band practices to

commit tempos to memory [2]. However, there are issues with using an audio source due to the

spaced-out nature of marching bands combined with the relatively slow speed of sound.

Additionally, there is currently no way to tell if one’s conducting motions are on time without

the use of a metronome. Software such as SmartMusic serve a similar purpose to our solution; it

receives input via microphone and provides correctional feedback to musicians, but this only

extends to singing or playing an instrument [3].

To our knowledge, there is no commercial device that records the movements of a conductor’s

arms to determine the tempo or consistency of conducting. Personal interviews with Metea

Valley High School Band Director Glen Schneider, Marching Illini member Daniel Dresser, and

University of South Carolina Drum Major Kelley Powell indicate that the tool would be a

valuable asset in high school marching bands and practice environments.

2

Having a tool where drum majors can record their motions would help them verify if they truly

committed a tempo to memory, and if they can keep a consistent tempo over a long period of

time. Our tool intends to graphically display conducting data both during and after the recording

session ends, so that drum majors can analyze their behavioral patterns and catch inconsistencies.

Our expectation is to deliver real-time data with a delay of less than 500 ms. We believe this is

an appropriate limit because while the user does not need instant feedback since the long-term

behavior of conducting is more useful information than a single beat, the user should be capable

of identifying within approximately two measures of music if his or her tempo has changed.

1.3 High-Level Requirements

● The MBA must correctly identify conducting tempos of 80 BPM-160 BPM, with an error

margin of +/- 10% BPM.

● The MBA should transmit the tempo calculations wirelessly to a receiving computer and

display the latest data with a delay of less than 500 ms.

● The MBA should be capable of wireless usage without charging for at least four hours.

3

2. DESIGN

2.1 Block Diagram

Fig 1. A comprehensive block diagram of the Marching Band Assistant.

The MBA consists of five main subsystems: A power supply, the inertial measurement unit

(IMU), the control unit (CU), communication, and the user display. The power supply drives the

steady operation of the sleeve, powering all its components for up to four hours, which is the

high-end typical length of a band rehearsal. The IMU contains the accelerometer, which captures

the acceleration of the user’s arm motions. This data is then passed onto the microcontroller

(MCU) in the control unit subsystem. The MCU parses and processes the data received from the

IMU to calculate the user’s average tempo. The processed data is transmitted to a receiving

computer via the Bluetooth module. A Java program collects and displays the data on the user’s

computer via a Processing GUI.

4

2.2 Physical Design

(a) Outside view. (b) Inside view with top opened.

Fig. 2. The physical design of the Marching Band Assistant.

Our design allows the user to slip the one-size-fits-most device on his or her arm, even if thick

clothing such as a marching band uniform is worn. The MBA device is enclosed in a plastic box

(Fig. 2a). A plastic box was chosen because it created less Bluetooth interference and was more

comfortable than a metal box. A velcro strap is attached to the top of the box, and wraps around

the bottom of the upper arm. The strap is required to form a tight fit around the arm for the MBA

to work properly.

The PCB is placed inside the box (Fig. 2b). Plastic material and a mounting hole is used to fix

the PCB in place within the box. The top of the PCB contains the LED and switch, while the

bottom contains most of the MBA’s subsystem components. The PCB positioning of the IMU

(located on the right side of Fig. 2b) further up the arm is crucial for recording accurate data. The

battery is connected to the battery board underneath the PCB, and is safely taped to the bottom of

the box. Appendices A and B respectively refer to the schematic and PCB design of the MBA.

The MBA device contains a Bluetooth module which sends data to the computer feedback

system. An executable program serves as the feedback system on the computer, with options to

view data in real-time or observe past data sets. As long as the device is powered on, it will

continue to record data and be eligible to connect to Bluetooth-compatible devices.

5

2.3 Block Descriptions

Subsystem 1: Inertial Measurement Unit

Before explaining the specifications of our inertial measurement unit, we will explain why we

are collecting acceleration data in the first place. A fundamental requirement of the MBA is to

determine when the user has conducted a beat. A “beat” is conducted when the user stops their

arm in a certain place in between motions in order to establish a certain tempo. Regardless of

where the arm stops, the common trend is that a beat is observed when there is a sudden decrease

in velocity of the arm.

Acceleration data can help determine these sudden shifts in velocity. When an object in motion

comes to a sudden stop, the magnitude of acceleration drastically increases, then drastically

decreases shortly afterwards since the object is at rest for a non-zero period of time. Therefore,

we needed to detect anomalies in acceleration data to determine when a beat is conducted.

The inertial measurement unit (IMU) extracts acceleration information from the user’s arm

motions. Acceleration along one axis causes displacement on the corresponding proof mass, and

the capacitive sensors in the IMU detect the differential displacement. Consumer IMUs such as

the ICM-20948 use proof masses for each of its three angular rate axes [4]. The ICM-20948’s

three sensors are an accelerometer, a gyroscope, and a magnetometer, but we used only the

accelerometer functionality of the ICM-20948. We found that the accelerometer collected

enough data to detect tempos, and disabling the gyroscope and magnetometer saved power.

Each sensor has a sigma-delta analog-to-digital converter (ADC) that produces digital outputs,

with an adjustable sensitivity of ±2g, ±4g, ±8g, or our selection of ±16g for the accelerometer.

The data outputted from the IMU specifies the acceleration in each axis [4]. A Digital Motion

Processor (DMP) computes the data it acquires from the IMU using motion processing

algorithms. The data is sent in digital form, utilizing I2C protocol after sampling, digitizing, and

packeting the data. The packeted data is 16 bits long. Power is supplied to this module via the

analog VDD pin, and its data is transferred to the MCU through its data line pins.

Instead of using the ICM-20948 on its own, we opted to use the SparkFun 9DoF IMU Breakout

board (Fig. 3). It contains the ICM-20948, level shifters to regulate and supply voltage to the

chip, and two Qwicc connectors which remained unused in our design [5]. The breakout board

was usable on both initial breadboard designs and our final PCB design because male header

pins could be soldered onto the through holes. The most significant through holes used were

“DA” and “CL,” which were necessary pins for transmitting IMU data at an appropriate

frequency to the ATMega328P.

6

Fig. 3. The SparkFun 9DoF breakout board. The ICM-20948 can be found at the center of the

board.

Since the maximum output data rate is 1.125 kHz, the maximum baud rate of the IMU is 1125

kBd. Given that the ATMega328P MCU can run with a baud rate of at least 1 MBd without

issue, we had no issues running the IMU at the maximum output data rate [6].

Subsystem 2: Control Unit

The control unit is driven by a microcontroller and interacts with the user through its IMU

inputs, Bluetooth output, and an LED light that indicates whether the sleeve is off or on. The

microcontroller executes all the interpretation and processing of the raw data from the data

registers of the IMU. Its flash storage contains the data forwarded to the Bluetooth module via a

Universal Asynchronous Receiver/Transmitter (UART). The computer then receives the final

values for the beats per minute to be outputted to the GUI via Bluetooth.

Microcontroller

The microcontroller is calibrated to receive and parse raw data from the IMU’s digital motion

processor (DMP) in real-time. It is programmed with calculations that filter out noise, perform

moving averages of the tempo derived from acceleration spikes, and output the results to Serial.

The ATMega328P (Fig. 4) was chosen due to its flexibility in usage. The chip is able to run on

an 8 MHz clock when powered at 3.3V. It is capable of receiving data from sensors via its

SDA/SCL pins, communicating with serial ports via its TX/RX pins, and can drive voltage

through numerous digital pins. Additionally, its range of baud rates accommodate for the data

rate our application needs, which is at least 1.125 kbps. The potential rates of the ATMega328P

range from 2400 bps to 230.4 kbps. The ATMega328P has considerable documentation and

7

application to electronics projects, which proved to be useful for reference when designing and

constructing the overall circuit for the device.

Fig. 4. The ATMega328/P Pinout [7].

In order to use the ATMega328P as a standalone chip on the PCB, we had to bootload the chip

so that it was capable of running a program without the help of an Arduino. The process of

bootloading involves first wiring a second ATMega328P and clock to pins on an Arduino and

running code that makes the chip capable of running independently. Once completed, the first

ATMega328P chip is taken out from the Arduino and code can be uploaded to the standalone

chip [8].

The ATMega328P runs on an 8 MHz clock as opposed to a typical 16 MHz clock. This is

because the ATMega328P on our PCB is only supplied 3.3V, and 8 MHz is a standard clock

speed to run at that voltage level since we would need a 5V supply for a 16 MHz clock.

The program for the microcontroller was written using the Arduino IDE. The purpose of the

program was to continuously collect data from the IMU, perform calculations that determine

whether a beat is conducted, and output the average rolling tempo to the serial port immediately

after a new beat was detected. The tempo is calculated by saving a timestamp when the beat was

detected, storing that timestamp in an array containing the last 10 timestamps, taking the average

difference between timestamps, and using the equation 60000/(avg. difference) to convert from

milliseconds to BPM. Storing every timestamp entry from when the device was turned on would

result in a tempo averaged throughout the entire session of use, which is not very helpful.

However, storing only the latest two timestamps would result in volatile tempo results, when the

reality is that conducting a tempo isn’t a process that is established in only two motions. We

8

found through trial and error that storing the latest 10 timestamps painted a reasonable picture of

the user’s recent conducting tempo.

The PeakDetection library by Github user leandcesar was essential for the code to work. The

library uses the principle of dispersion, detecting peaks in rolling data by checking if the newest

data is a specified amount of standard deviations away from the rolling average [9]. The

algorithm is modifiable, including variables such as amount of rolling samples stored and z-

score, which determines how influenced the algorithm is by data anomalies. Finding the correct

parameters that suited our needs was largely a subjective process, as when a conducting beat

“starts” varies from person to person. Fig. 5 shows an example of how the PeakDetection

algorithm is able to detect anomalies in acceleration by outputting a positive value when peaks

are detected. For our purposes, we ended up settling on having a 72 sample window, a standard

deviation threshold of 1, and a z-score of 0.1, meaning the algorithm is not heavily influenced by

data spikes. The rising edge of the peaks is used as the reference of when a beat is conducted.

Fig. 5. A serial plotter example of the peak detection algorithm in its early stages. Blue line:

magnitude of acceleration, Green line: rolling average of acceleration, Red line: +1000 when a

peak is detected, otherwise 0.

9

Additional measures were taken to ensure that peak detection was not erroneous. We only tested

for peaks if the magnitude of acceleration was greater than 1.1g, because it can be safely

assumed that any values below that are noise if the device is at rest. Even though the magnitude

of acceleration can dip below 1.1g, this only happens well after a beat is conducted, so we found

through testing that it is not our concern. Additionally, we did not poll for peaks if another peak

occurred less than 150 ms prior. This is because to have the rising edges of peaks 150 ms apart

would be equivalent to conducting at 400 BPM. It is extremely uncommon to find pieces of

music with a tempo of faster than 180 BPM, so it is safe to assume that new peaks detected in

such a short period of time can be attributed to noise [10]. This filtering method significantly

improved the accuracy of the tempo algorithm.

Status LED

The green LED turns on or off according to the operation mode of the microcontroller. When the

switch is pushed into the “ON” mode with a charged battery, the light will turn on. When the

switch is pushed into the “OFF” mode, the LED will not light up because there will be no current

supplied to the LED or the microcontroller.

Subsystem 3: Communication

The communication subsystem includes one Bluetooth module inside the MBA attachment. The

Bluetooth module allows for wireless data collection and transmission to the computer,

eliminating the need for wires that may limit the user’s movement. The module communicates

with the ATMega microcontroller via UART. Once the Bluetooth module has been connected to

the user’s PC, the data from the module’s TX pin will continuously be displayed on the GUI

[11].

The HC-05 Bluetooth Transceiver Module was chosen because its default baud rate (9.6 kBd) is

greater than that of the ICM-20948’s maximum output data rate, 1.125 kBd. Compared to other

Bluetooth modules, it has an expansive collection of documentation on interfacing with Python

and its integration with the ATMega328P. These resources proved to be very useful while

configuring and debugging the module.

Such resources were used to determine the connections that needed to be made between the HC-

05 Bluetooth module and the ATMega328P for stable communication (Fig. 6) [12].

10

Fig. 6. HC-05 Bluetooth Module interfacing with the ATMega.

The schematic above creates a voltage divider for the TX pin because it assumes 5V will be used

to supply the module. Because of our device’s voltage regulator, these resistors were not

included in our circuit. Every other aspect from this schematic was adopted into our final design.

Subsystem 4: User Display

The user display is our means of displaying the Bluetooth data in a clear and digestible format

(Fig. 7). The user display is created using Processing, an IDE specialized in developing GUIs by

utilizing Java. Processing enabled us to create an interface that displays the latest data obtained

in a specified serial port, updating a meter that displays those values, and providing options to

record data as it is received. The GUI is stored in an executable file that can be used without

setup.

Fig. 7. The GUI display for the MBA.

11

It is important to note that the “Record” and “Stop” options do not turn the MBA on or off, nor

does it stop the MBA from recording tempo data. Tempo data is always recorded while the MBA

is powered on; the “Record” and “Stop” options are used to toggle saving incoming values to a

CSV file. Once recording is complete, the user can open up a program of his or her choice to plot

the data recorded over time (Fig. 8).

Fig. 8. An example of MBA data recorded over time. The user consistently conducted at 120

BPM, sped up, then slowed down to approximately 80 BPM in the span of 30 seconds.

The user display program polls for new serial port data every 20 ms. If it receives a new

numerical value, it updates the meter with that value. Otherwise, the last valid value is pushed to

the meter. If no data is received via serial port for 5 seconds, the program briefly disconnects and

reconnects to the port to ensure that there are no long-term connectivity issues. This was

implemented to fix bugs with serial communication, and it is worth noting that once the device

reconnects, every value that was recorded while the device was disconnected is still recorded.

Subsystem 5: Power Supply Unit

The power supply provides the power necessary for steady operation of the IMU, the control

unit, and the communication subsystems on the attachment. With the convenience of the user in

mind, a lightweight Li-Poly battery that can be recharged via mini-USB on a battery charging

board was used. Primary lithium batteries are lighter than other primary chemistries and are

suitable for low current applications. An on and off DIP switch was placed between the battery

and the voltage regulator to ensure that there is no excess charge on any other components.

On/Off Switch

The on/off switch is the user-control that is used to activate and deactivate the circuit. When the

user switches the MBA sleeve attachment on, the whole circuit is activated and the IMU starts

collecting data. When the user switches the sleeve attachment off, the battery stops supplying

power to the components in the circuit, meaning the MCU, IMU, and Bluetooth module turn off

as well.

12

Power Requirements

The battery must supply enough power to ensure full functionality of the three subsystems

simultaneously for at least four hours. The operating voltage and the current drawn by each

component were used to calculate the voltage and current delivery requirements of the power

supply. The power requirements for all the components on the attachment are calculated in

Appendix D. Each component on the sleeve requires +3.3V. The battery at full charge provides

at least +3.7V, a voltage higher than what is needed for each module, so a linear voltage

regulator is used to scale the voltage down to +3.3V. Because the circuit draws about 300 mA of

current at full operation, the battery is estimated to last about 8 hours on one full charge.

Voltage Regulator

Because the IMU breakout board, the Bluetooth module, and the microcontroller require the

same voltage inputs of 3.3V, only one voltage regulator is used to satisfy the voltage needs of

each component. The LP2985 low-dropout (LDO) and low-noise regulator is used because it has

stable behavior despite the output voltage being close to the input voltage value, improving its

power efficiency. It is able to output our desired voltage quantity of 3.3V, and its low-noise

output ensures that the incoming power supply or transients in the load will not affect the

stability of the voltage being supplied to the subsystems [13].

13

3. VERIFICATION
Subsystem 1: Inertial Measurement Unit

We were able to successfully connect the IMU to our MCU via I2C protocol. Fig. 9 shows an

example of retrieving acceleration data in 3 axes through I2C protocol and Serial commands.

Our verification process for observing if we retrieved usable accelerometer data in the x, y and z

axes proved to be a success. While the accelerometer data is not perfectly free of noise, the

amount of noise we were observing while the IMU was at rest indicated that it would not cause

significant problems for our magnitude of acceleration or tempo calculations. Fig. 10.a

demonstrates the x-axis acceleration while at rest via the Arduino IDE’s serial plotter, while Fig.

10.b. demonstrates the x-axis acceleration while the IMU is in motion.

Fig. 9. The MCU displaying three-axis IMU data via serial monitor.

(a) X-axis acceleration data at rest. (b) X-axis acceleration data in motion.

Fig. 10. X-axis acceleration data observed on a serial plotter.

Similar data that passed our requirements were observed in the Y and Z axes as well. An altered

requirement/verification process was required for the Z axis due to +1g biasing as a result of

gravity.

Subsystem 2: Control Unit

We were able to achieve the core requirement of calculating the correct tempo with a less than

ten percent margin of error. Out of ten trials of the process explained in Appendix C.2 performed

at each tempo, every single trial concluded within a five percent margin of error. Fig. 11

demonstrates a pair of successful trials demonstrating a perfect end result. Fig. 11.a shows the

14

serial monitor output when conducting at 80 BPM, Fig. 11.b is at 120 BPM, and Fig. 11.c is at

160 BPM. The final 16 samples of every trial were also all within a 5 percent margin of error as

shown in the figures below, although this was not explicitly a requirement.

(a) 80 BPM. (b) 120 BPM. (c) 160 BPM.

Fig. 11. Calculated tempo at various speeds. Last 16 samples for each trial is shown.

The LED was proven to have a current flow and turn on when the device is powered on.

However, we did not have the lab access required to verify the lux of the LED. Professors and

teaching assistants have verified with the eye test that the LED is visible from a distance of two

feet, but we failed to obtain quantitative results on the LED’s brightness.

Subsystem 3: Communication

To verify the HC-05 can transfer data at AT least the output data rate of the MCU, we

programmed the HC-05 to have a baud rate of 115200 baud and requested the baud rate from the

module. We set the module to operate at 115200 baud because it is the fastest baud rate that is

compatible with laptop devices and avoids data corruption that can occur with faster

transmission rates.

After typing in the AT command that requests the set baud rate, the Arduino terminal shows that

it is the desired 115200 baud (Fig. 12). The serial monitor must be set to “NL+CR”; otherwise no

AT commands will be received (Fig. 13).

15

Fig. 12. Arduino serial monitor exhibiting the baud rate of the HC-05.

Fig. 13. Settings needed for Arduino serial monitor on HC-05 module program.

To ensure our module was successfully transmitting data to our Processing program, we

connected the MBA to the user's PC and ran the program to confirm that data was being updated

corresponding to the MBA’s movement. This meant that the HC-05 was not only connected to

the user device, but was also sending readable data from the MCU to the serial port on the PC

through its TX pin.

Transmission time tests performed according to the Bluetooth module section of Appendix C.3

were successful. Fig. 14a references the local timestamps for the HC-05 serial output, while Fig.

14b references the serial monitor timestamps on the receiving computer. The serial monitors

display a maximum delay of 475 ms between any two inputs to the serial port. Even accounting

for the fact that the GUI program polls data received from the serial port at minimum every 20

ms, the entire process from the processing of MCU data to displaying the data on the GUI

remains under 500 ms.

(a) Timestamps for HC-05. (b) Timestamps for receiving computer.

Fig. 14. Timestamps on origin and receiving computer. Note the difference between computers

never exceeds 500 ms in real time.

16

Subsystem 4: User Display

We have confirmed that the user display program is both capable of communicating with the

HC-05 and displaying the transmitted data on a GUI. This was demonstrated extensively during

our final demonstration, although Fig. 7 and 8 showcase other examples. We also verified that

the GUI is able to update at least twice a second. We referred to our CSV files and found that the

GUI updated as frequently as 5 times a second, and in theory could update 50 times a second due

to its update rate since it could fetch serial port values every 20 ms.

Subsystem 5: Power Supply Unit

There were three important requirements for the power supply that we verified through multiple

trials. To ensure our device is able to run in full operation for each of these requirements, the

MBA was turned on, connected to the user's computer over Bluetooth, and the GUI was run.

Data must be actively sent over Bluetooth when testing because the TX pin draws approximately

250 mA of current when transmitting data, compared to the 30 mA that is drawn when no data is

being sent to the computer.

The first verification confirmed that the power supply unit was able to supply enough power to

the circuit for at least four hours on a full charge. To do so, the voltage of the battery was

recorded for 4 hours at 30-minute intervals. Through multiple trials, we see that the battery

reliably powered our circuit for four hours (Fig. 15). A similar test on the output of the regulator

was executed to ensure it was consistently held at approximately 3.3 V, which was the voltage

needed for the IMU, MCU, and Bluetooth module. It was verified that this was the case through

our trials (Fig. 16).

To ensure the temperature of the battery did not exceed the operating temperature that can

damage the user’s skin (44℃), a thermistor that was connected to a DMM was held flush against

the battery for 4 hours at 30-minute intervals (Fig. 17).

Fig. 15. 3 Trials of Battery Voltage from 0 to 4 Hours at 30-minute intervals.

17

Fig. 16. 3 Trials of Voltage Regulator Output from 0 to 4 Hours at 30-minute intervals.

Fig. 17. Temperature of the Battery from 0 to 4 Hours at 30-minute intervals.

The switch successfully turns the circuit on and off, but we were not able to test if it requires

1000 grams of force. However, it appears to need at least this amount of force and is unlikely to

be accidentally toggled, which is the basis of our verification test.

18

4. COST ANALYSIS AND SCHEDULE
4.1 Final Costs of Labor
Our research shows that the average salary nationwide for a Consumer Electronics Engineer is

$75,591 as of September 24, 2020 [14]. Assuming an engineer worked 40 hours a week for 52

weeks, their hourly wage would be $36.34. On average, we each worked on 1 device for 10

hours a week for 10 weeks. Additionally, we will need to account for 2.5 times the amount of

cost as originally expected to account for overhead. Therefore, we estimate the total labor costs

to be 3 people * 36.34 dollars an hour * 10 hours * 10 weeks * 2.5 = $27,255.

4.2 Final Costs of Parts

The final costs of all parts necessary in our project can be found in Appendix E. Our total cost to

build one device was $68.31. It is worth noting that the amount we personally spent was greater,

due to ordering extra parts and currently unnecessary components.

4.3 Total Costs

Table 1: Total costs of project, including labor and parts.

Section Cost

Labor $27,225.00

Parts $68.31

Total $27,293.31

4.4 Schedule

Our first mission after completing the design document was to conduct further research into

methods that would help our project succeed. Wynter did research on the optimal way to package

the device, Alyssa studied how to interface the ATMega328P and the HC-05, and Prashant

researched peak detection. We all contributed to constructing the first and all further PCB

designs. Once the team obtained parts one week later, Prashant worked extensively on the

microcontroller program and created the core functionality of the GUI. Alyssa configured the

HC-05 module to work at the specified baud rate and collaborated with the Machine Shop in

fabricating an enclosure, and Wynter continued to develop the attachment’s physical design.

The final two weeks of the project were the most time-consuming. Alyssa and Prashant worked

on soldering all the components onto the PCB and spent multiple days debugging the circuit.

Once the circuit was complete, Alyssa conducted verification tests on the power supply while

Wynter completed the GUI. All three of us ensured that we met as many verifications processes

as we could before the final demonstration.

19

5. CONCLUSION

5.1 Accomplishments

We were successful in meeting our original objective of creating a device that was capable of

detecting conducting motions and giving the user feedback on his or her tempo. The device

meets all of our high-level requirements, resulting in a robust and user-friendly marching band

assistant that correctly identifies conducting tempos between 80 BPM and 160 BPM and

transmits the data wirelessly to the user’s personal computer, on which an executable program

displays and records the tempo they are conducting at. Some requirements and verification

processes had to be altered, but we have demonstrable proof that most of our requirements were

met. The device has no electrical components exposed and is enclosed in a compact plastic

casing that fits any arm with the help of a velcro strap.

5.2 Uncertainties

The range reached by the Bluetooth module was not tested exhaustively because it was not a

requirement, but the MBA was tested within a range an average user would be able to still see

the feedback display; the distance between the MBA and the computer was at most about 5 feet

away during testing.

The MBA packaging was larger than intended because a plastic enclosure that fit the dimensions

of our system could not be found. The excess space at the top of the box may cause the PCB to

experience additional vibrations from movement and consequently interfere with the IMU’s

acceleration readings. Although this has not been an issue during testing, a smaller casing would

be ideal for user comfort and mechanical integrity.

There are potential bugs with the user display that have not been extensively tested. The behavior

of the executable program when selecting a non-available serial port is unknown. Additionally,

the program could face potential issues when pressing “Record” or “Stop” while the program is

establishing reconnection.

5.3 Ethical Considerations

This device incorporates technology into musical training in a new and innovative way, in order

to “contribute to society,” as stated in the ACM Code of Ethics [15]. The goal of this device is to

assist drum majors by providing a learning tool; both drum majors and marching band members

would benefit from it. The IEEE Code of Ethics states that members have a responsibility “to

improve the understanding by individuals and society of the capabilities and societal implications

of conventional and emerging technologies” [16]. If this product were to be commercialized, an

instruction manual would be provided to help users understand the capabilities of this new

technology and how it is used.

20

The project utilizes a Bluetooth module to transmit data. Data theft is a potential security risk

associated with this Bluetooth [17]. While the attachment does not transmit sensitive or personal

data, the recieving computer could have personal data vulnerable to a Bluetooth security breach.

Therefore, it would be recommended that the device be used in a trusted place without

significant wireless interference. Additionally, the device (and with it, the Bluetooth module)

should be powered off when not in use.

The safety of the user is the top priority of this device, as the IEEE Code of Ethics clarifies that it

“holds paramount the safety, health, and welfare of the public” [16]. Since the device is placed

directly on the user’s arm, it is important that the electrical components do not overheat or shock

the user. The Li-Poly battery is flammable, so additional precautions were taken; regulators were

implemented to prevent the battery voltage from decaying below 3.0 V/cell or exceeding 4.2

V/cell [18]. The whole system, including the battery, were secured in a plastic enclosure as an

added layer of protection for the user. Nylon was used for the attachment because it is a

relatively heat-resistant and insulating fabric.

5.4 Future Work

There are quite a few improvements we would still like to make to improve the performance of

the MBA and enhance the user’s experience with the device. The microcontroller program may

be capable of more refined peak detection, so additional testing, calibration, and improvements

to the algorithm can be made to better model signals specific to conducting motions.

A basic utility that would be beneficial for the GUI is built-in metronome so that the user would

not need an external device to practice conducting to a specific tempo. An option for increasing

and decreasing the sensitivity of peak detection on the GUI is also desirable, as it would allow

MBA to adjust for more sharp or more fluid conducting. Furthermore, a feature that allows the

user to conduct along with pieces of music (similar to SmartMusic) would expand the versatility

of the device.

A practical feature we would like to implement is an LED on the PCB that blinks or changes

color when the battery is low. We currently only have an LED that would turn off if the battery is

no longer able to supply the power necessary for full operation of the circuit. Finally,

miniaturization of the device through the elimination of unused components (such as JST ports),

the use of the smaller surface-mount variant of the ATMega328P, and installation of the circuitry

in a smaller customized box would lead the device to be more compact and comfortable for the

user.

21

REFERENCES

[1] R. Raymond and C. Aliga. Today’s Drum Major | Central Iowa Color Guard and Drum

Major Camp 2016. (2016). Accessed: Dec. 9, 2020. [Online]. Available:

http://www.centraliowacolorguard.com/upload/398755/documents/Drum%20Major%20Handbo

ok%202016.pdf

[2] DB-90: Dr. Beat. BOSS. Accessed: Dec. 9, 2020. [Online]. Available:

https://www.boss.info/us/products/db-90/.

[3] Smartmusic. MakeMusic. Accessed: Dec. 9, 2020. [Online]. Available:

https://www.smartmusic.com/.

[4] ICM-20948. TDK. (2017). Accessed: Dec. 9, 2020. [Online]. Available:

https://product.tdk.com/info/en/documents/catalog_datasheet/imu/DS-000189-ICM-20948-

v1.3.pdf

[5] SparkFun 9DoF IMU (ICM-20948) Breakout Hookup Guide. Sparkfun. (2019). Accessed:

Dec. 9, 2020. [Online]. Available: https://learn.sparkfun.com/tutorials/sparkfun-9dof-imu-icm-

20948-breakout-hookup-guide

[6] AtMega328P Microcontroller. Components101. (2018). Accessed: Dec. 9, 2020. [Online].

Available: https://components101.com/microcontrollers/atmega328p-pinout-features-datasheet

[7] ATmega48A/PA/88A/PA/168A/PA/328/P megaAVR Data Sheet. Microchip. (2020).

Accessed: Dec. 9, 2020. [Online]. Available:

https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-

P-DS-DS40002061B.pdf

[8] From Arduino to a Microcontroller on a Breadboard. Arduino. (2018). Accessed: Dec. 9,

2020. [Online]. Available:

https://www.arduino.cc/en/Tutorial/BuiltInExamples/ArduinoToBreadboard

[9] leandcesar. PeakDetection. Github. (2020). Accessed: Dec. 9, 2020. [Online]. Available:

https://github.com/leandcesar/PeakDetection

[10] J. Kopstein. Marching Speeds. Altissimo! Recordings. Accessed: Dec. 9, 2020. [Online].

Available: https://militarymusic.com/blogs/military-music/13516233-marching-speeds

22

[11] HC-05 Bluetooth Module. Components101. (2018). Accessed: Dec. 9, 2020. [Online].

Available: https://components101.com/wireless/hc-05-bluetooth-module

[12] HC-05 Bluetooth Module Interfacing with AVR ATmega16/ATmega32: A….

ElectronicWings. Accessed: Dec. 9, 2020. [Online]. Available:

https://www.electronicwings.com/avr-atmega/hc-05-bluetooth-module-interfacing-with-

atmega1632.

[13] A. Veeravalli, S.M. Nolan. Introduction to Low Dropout (LDO) Linear Voltage Regulators.

Design & Reuse. Accessed: Dec. 9, 2020. [Online]. Available: https://www.design-

reuse.com/articles/42191/low-dropout-ldo-linear-voltage-regulators.html

[14] Consumer Electronics Engineer Salary. Ziprecruiter. (2020). Accessed: Dec. 9, 2020.

[Online]. Available: https://www.ziprecruiter.com/Salaries/Consumer-Electronics-Engineer-

Salary

[15] D. Gotterbarn. ACM Code Of Ethics And Professional Conduct. (2020). Accessed: Dec. 9,

2020. [Online]. Available: https://www.acm.org/code-of-ethics

[16] IEEE Code Of Ethics. IEEE. (2020). Accessed: Dec. 9, 2020. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html

[17] Wireless Connections and Bluetooth Security Tips. Federal Communications Commission.

Accessed: Dec, 9, 2020. [Online]. Available: https://www.fcc.gov/consumers/guides/how-

protect-yourself-online

[18] Spring 2016 Course Staff, Champaign, IL, USA. Safe Practice For Lead Acid And Lithium

Batteries. 2016. Accessed: Dec. 9, 2020. [Online]. Available:

https://courses.engr.illinois.edu/ece445/documents/GeneralBatterySafety.pdf

[19] Modify the HC-05 Bluetooth Module Defaults Using AT Commands. Instructables Circuits.

(2013). Accessed: Dec. 9, 2020. [Online]. Available: https://www.instructables.com/Modify-

The-HC-05-Bluetooth-Module-Defaults-Using-A/

23

APPENDIX A: MBA SCHEMATIC

24

APPENDIX B: MBA PCB LAYOUT

25

APPENDIX C: Requirement and Verification Tables

C.1. Inertial Measurement Unit

Requirement Verification Verified?

Inertial Measurement Unit

1) IMU must be capable

of sending

acceleration data to

the MCU via I2C.

2) IMU must record

correct acceleration

data in the x and y

axes.

Inertial Measurement Unit

1) Check that the MCU receives any packet of data from

the IMU.

 Verification Process:

1) Load program that pings the ICM-20948

IMU via I2C onto the ATMega328P

MCU.

2) Connect the MCU to the IMU.

3) Power on both devices with any

appropriate power supply and run the

microcontroller script. If any data packet

from the IMU is returned through the

MCU via serial, the test was successful.

2) The IMU must read 0 mg ± 100 mg when resting,

and must read at least 800 mg when moving for the x

and y axes.

 Verification Process:

1) Load program that samples x-direction

acceleration data onto the ATMega328P

MCU.

2) Connect the ICM-20948 IMU to the

MCU.

3) Lay the IMU on a flat, stationary surface.

4) Collect data over three seconds.

5) Check that the x-acceleration data does

not ever exceed ±100 mg while stationary.

6) Hold IMU in the palm of hand.

7) Move hand back and forth to a metronome

set at 160 BPM at least 2 feet along the

IMU’s x-axis. Continue the process for at

least 10 seconds.

8) Check that the x-acceleration exceeds |800

mg| at least once.

9) Repeat steps 7 and 8 along the y-axis,

loading in a y-sampling program instead

and performing tests in the IMU’s y-axis.

(Continued on next page)

Y

Y

26

3) IMU must record

correct acceleration

data in the z axis.

3) The IMU must read 1000 mg ± 10% when at rest,

and must read at least 1800 mg for the z-axis.

 Verification Process:

1) Load program that sample z-direction

acceleration data onto the ATMega328P

MCU.

2) Connect the ICM-20948 IMU to the

MCU.

3) Lay the IMU on a flat, stationary surface.

4) Collect data over 3 seconds.

5) Check that the z-axis acceleration data

reads 1000 mg ± 100mg while stationary.

6) Hold IMU in palm of hand.

7) Move hand back and forth to a metronome

set at 160 BPM at least 2 feet along the

IMU’s z-axis. Continue process for at

least 10 seconds.

8) Check that the z acceleration exceeds

1800 mg at least once.

Y

27

C.2. Control Unit

Requirement Verification Verified?

Microcontroller

1) MCU program must

correctly identify

tempo of 80 BPM.

2) MCU program must

correctly identify

tempo of 120 BPM.

Microcontroller

1) Check that Serial Monitor displays accurate tempo when

attempting to conduct at 80 BPM.

 Verification Process:

1) Upload program that calculates the rolling

tempo average using IMU peak detection

onto the ATMega328P MCU.

2) Connect the MCU to the ICM-20948 IMU.

3) Hold MCU/IMU (either on sleeve or in

hand) and bring it up to the air. Keep

arm/hand completely still until Step 5.

4) Power on both devices with any appropriate

power supply and upload the microcontroller

script.

5) Every 0.75 seconds, alternate between

moving arm at least 1 ft down as fast as

possible and moving arm at least 1 ft up as

fast as possible. Arm must be stopped at each

position for at least 0.25 seconds, so the

motion can take no longer than 0.5 seconds.

This process simulates conducting at 80

BPM in 2/4 time. If necessary, keep a

metronome for 240 BPM to ensure results

are valid. Perform Step 5 for 20 seconds

starting from the first movement.

6) Read the Serial display of the MCU. If the

latest output line displayed on the Serial

display reads between 72 and 88 inclusive,

the test was a success.

2) Check that Serial Monitor displays accurate tempo when

attempting to conduct at 120 BPM.

 Verification Process:

1) Upload program that calculates the rolling

tempo average using IMU peak detection

onto the ATMega328P MCU.

2) Connect the MCU to the ICM-20948 IMU.

(Continued on next page)

Y

Y

28

3) MCU program must

correctly identify

tempo of 160 BPM.

3) Hold MCU/IMU (either on sleeve or in

hand) and bring it up to the air. Keep

arm/hand completely still until Step 5.

4) Power on both devices with any appropriate

power supply and upload the microcontroller

script.

5) Every 0.5 seconds, alternate between moving

arm at least 1 ft down as fast as possible and

moving arm at least 1 ft up as fast as

possible. Arm must be stopped at each

position for at least 0.25 seconds, so the

motion can take no longer than 0.25 seconds.

This process simulates conducting at 120

BPM in 2/4 time. If necessary, keep a

metronome for 240 BPM to ensure results

are valid. Perform Step 5 for 20 seconds

starting from the first movement.

6) Read the Serial display of the MCU. If the

latest output line displayed on the Serial

display reads between 108 and 132 inclusive,

the test was a success.

3) Check that Serial Monitor displays accurate tempo when

attempting to conduct at 160 BPM.

 Verification Process:

1) Upload program that calculates the rolling

tempo average using IMU peak detection

onto the ATMega328P MCU.

2) Connect the MCU to the ICM-20948 IMU.

3) Hold MCU/IMU (either on sleeve or in

hand) and bring it up to the air. Keep

arm/hand completely still until Step 5.

4) Power on both devices with any appropriate

power supply and upload the microcontroller

script.

(Continued on next page)

Y

29

5) Every 0.375 seconds, alternate between

moving arm at least 1 ft down and up as fast

as possible. Arm must be stopped at each

position for at least 0.1875 seconds, so the

motion can take no longer than 0.5 seconds.

This process simulates conducting at 160

BPM in 2/4 time. If necessary, keep a

metronome for 320 BPM to ensure results

are valid. Perform Step 5 for 20 seconds

starting from the first movement.

6) Read the Serial display of the MCU. If the

latest output line displayed on the Serial

display reads between 144 and 176 inclusive,

the test was a success.

Status LED

1) LED must be able to

turn on.

2) LED must be visible

from two feet away.

Status LED

1) Ensure that the LED is able to turn on.

 Verification Process:

1) Attach DMM probes to respective leads.

2) Turn switch “OFF”.

3) Measure current going through the LED

while the switch is off.

4) Turn switch “ON”.

5) Measure current going through LED while

switch is on.

6) Verify that the currents measured are in the

correct operating regions on the LED.

2) The lux of the LED will be measured for >= 30 lux

while in a room with under 15 lux.

 Verification Process:

1) Connect the two ends of a 1% tolerance

photoresistor to the DMM probes.

2) Turn off lights in verification lab.

3) Measure lux of the lab when lights are off,

by placing the photoresistor two feet away

from the LED and measuring the resistance.

4) Turn switch “ON” to turn on the LED.

5) Measure lux of the lab while LED is on and

lights are off, by placing the photoresistor

two feet away from the LED and measuring

the resistance.

6) Subtract the lux of the lab when lights are off

from the lux of the lab when LED is on and

Y

N

30

lights are off to obtain the lux of the LED.

7) Check that the lux measured is above 30.

C.3. Communication

Requirement Verification Verified?

Bluetooth Module

1) The Bluetooth

module must

have a baud

rate greater

than 1.125

kBd, the output

data rate of the

MCU.

Bluetooth Module

1) The Bluetooth module’s baud rate will be obtained

from and displayed by the Arduino IDE.

Verification Process:

1) Insert Bluetooth module header pins into

breadboard. Make the following connections

from the module to an Arduino Uno with

jumper wires (connect wire in same row as

respective pin on the breadboard):

HC-05 GND ---> Arduino GND Pin

HC-05 VCC (5V) ---> Arduino 5V

HC-05 TX ---> Arduino Pin 10 (soft RX)

HC-05 RX ---> Arduino Pin11 (soft TX)

HC-05 Key (PIN 34) ---> Arduino Pin 9

2) Load and compile the Arduino program HC-

05.ino (Appendix F) in the IDE by clicking

“Verify” [19].

3) Before connecting the Arduino to the USB,

remove the VCC wire from the HC-05 so it

is not getting any power from the Arduino.

4) Connect the Arduino Uno to the USB cable

extended from a PC. Upload the HC-05.ino

program to the board by clicking “Upload”

in the IDE.

5) Reconnect the Arduino Uno 5V wire to the

HC-05’s VCC pin. The HC-05 LED will

blink on and off at about 2 second intervals,

indicating that the HC-05 is in AT command

mode and ready to accept commands.

6) Open the Serial Monitor from the Arduino

IDE, type "AT", and click SEND. “OK”

should appear on the terminal to confirm the

HC-05 is properly connected to the PC via

Bluetooth.

7) Type “AT+UART” in the Serial Monitor to

see the baud rate the module is operating at.

(Continued on next page)

Y

31

2) The Bluetooth

module must

transmit data

between the

MBA and a

host machine

with a delay of

less than 500

ms.

8) Confirm the baud rate is greater than 1125

Bd. If not, type “"AT+UART=9600,1,0" to

explicitly set the baud rate (9600 is the

default). Upload the program to the Arduino

again and repeat steps 6 and 7.

9) Confirm the baud rate is >= 1125 Bd.

2) The transmission time will be calculated by taking

the timestamp differences on two computers.

 Verification Process:

1) Upload [ping.ino] onto MCU that writes an

incrementing number to the Serial Monitor

every 100 ms.

2) Power on MCU using a host computer. Host

computer must be running on Windows 7+.

3) Connect the Bluetooth module to the MCU.

4) Connect to Bluetooth module wirelessly

using a second host computer. Host

computer must be running on Windows 7+.

5) Open up the Arduino IDE Serial Monitor on

the computer that the MCU is hooked up to.

Enable “Show timestamp” feature.

6) Open up Arduino IDE Serial Monitor on first

host computer. Enable “Show timestamp”

feature.

7) Disable auto-scrolling and observe any ten

consecutive samples of the same data on

both monitors, then calculate the difference

of timestamp. If every difference is less than

500 ms, the test was successful.

Y

32

C.4. User Display

Requirement Verification Verified?

User Display

1) The user display

can verify that a

connection to the

Bluetooth module

was made.

2) IMU data sent by

the MCU is visible

on the user display

in any numerical

form. (This

includes

calculations

performed on IMU

data.)

3) User Display screen

updates with new

data at least two

times a second.

User Display

1) Check if the backend of the user display recognizes

connection to device via Bluetooth.

 Verification Process:

1) Load Processing script that attempts to

connect to a specified Bluetooth module and

returns a print message (e.g. “Success”)

when connection is successful.

2) Load script onto computer that supports

Bluetooth capability.

3) Power on HC-05 Bluetooth module within 5

m of the host computer.

4) Connect to HC-05 on computer via

Bluetooth.

5) Run the Processing script. If the specified

print message is outputted, the test was

successful.

2) Check if raw MCU data is displayable by GUI.

 Verification Process:

1) Load Processing script that prints the raw

output data of the ATMega328P MCU onto

a GUI as soon as data is received on

recieiving computer.

2) Connect MCU to ICM-20948 IMU, and

connect MCU/HC-05 to host computer via

Bluetooth. The ATMega328P must have

script that loaded onto it.

3) Run the Processing script for at least 10

seconds. If the raw data received from the

MCU is displayed on the GUI in any

numerical form (e.g. int, float, etc.), the test

was successful.

3) Check using a counter if GUI is updating at an

acceptable rate.

 Verification Process:

(Continued on next page)

Y

Y

Y

33

1) Repeat Step 1 of Requirement 2 of the User

Display, and add a counter that keeps track

of how many times the GUI has updated

each second (counter does not have to be

visible on GUI).

2) Connect MCU to ICM-20948 IMU, and

connect MCU to host computer via

Bluetooth.

3) Run the Processing script for at least 10

seconds while performing Step 4.

4) Simulate conducting at 160 BPM as

described in the IMU subsystem

requirements, Req 4, Step 5. If the counter is

at least equal to 2 for every second the script

was run, the test was successful.

C.5. Power Supply

Requirement Verification Verified?

Li-Poly Battery

1) Supply +3.7V ± 5%

power and stores

2500 mAh ± 5% of

charge.

2) Lifetime per charge

of the sleeve should

be at least 4 hours of

usage.

Li-Poly Battery

1) The current output will be confirmed to be within the

acceptable range with a digital multimeter.

 Verification Process:

1) Ensure the battery has been fully charged

(reads +3.7V ± 5%).

2) Attach a 11 Ohm resistor to the battery,

the equivalent resistance of the entire

circuit.

3) Attach DMM probes to respective JST

connector pins of the battery.

4) Measure and record current at 5 minute

intervals for 60 minutes.

5) Confirm that less than 2375 mA was

extracted.

2) The lifetime of the sleeve will be measured while it is

turned on.

 Verification Process:

1) Ensure the battery has been fully charged

(reads +3.7V ± 5%).

2) Attach an 11 Ohm resistor to the battery,

the equivalent resistance of the entire

circuit.

3) Attach DMM probes to respective JST

connector pins of the battery.

Y

Y

34

3) Must not exceed an

operating temperature

that can damage the

user’s skin (44℃)

[17].

4) Measure and record I and V at half hour

intervals for 4 hours.

5) Confirm the voltage of the battery is at

least 3.7 V.

3) The temperature of the battery will be measured with

a thermistor.

 Verification Process:

1) Ensure the battery has been fully charged

(reads +3.7 V ± 5%).

2) Attach a 11 Ohm resistor to the battery,

the equivalent resistance of the entire

circuit.

3) Attach the thermistor to DMM probes and

hold against battery.

4) Measure and record the temperature at 30

minute intervals.

5) Terminate verification process when the

fourth hour is reached.

Y

Linear Voltage Regulator

1) Voltage must be

regulated to

+3.3V ± 5% for

the Bluetooth

module,

microcontroller,

and the VDD pin

on the IMU

Linear Voltage Regulator

1) Stable voltage outputs at the desired values will be

measured and observed through oscilloscope

waveforms.

 Verification Process:

1) Attach the oscilloscope GND probe to

GND of the PCB and the signal probe to

the VDD input pin of the Bluetooth

module.

2) Supply regulator with 3.7V DC from a

power supply.

3) Ensure output voltage remains 3.3V.

4) Repeat steps 1-3 for the microcontroller

and the VDD pins on the IMU.

Y

On/Off Switch

1) Switch must have

an operating force

above 1000 grams

[8, 9].

On/Off Switch

1) Check that the operating force of the switch is above

1000 grams.

 Verification Process

1) Connect switch in series with a resistor

and battery.

1) Attach DMM probes parallel to the

resistor.

2) Ensure the switch is initially in the “OFF”

position by checking that the voltage of

N

35

the resistor is 0V.

3) Stack weights on top of the switch, until

the switch is turned on and a non-zero

voltage is measured across the resistor.

4) Check the size of the weights to ensure

that it is over 1000 grams.

36

APPENDIX D: Current and Supply Voltage Requirements

Component Current Requirements Voltage Requirements

(Typical Operating Voltage)

 ICM-20948 9DoF IMU

Breakout Board

Max: 3.11 mA 3.3 V

Bluetooth Module (HC-05) 250 mA in full operation

(transmitting data).

30 mA when in standby.

3.3 V

ATMega328P Microcontroller 1.5 mA 3.3 V

1-position DIP Switch Max: 25 mA Max: 24 V

Status RGB LED R: 30 mA (max)

G: 25 mA (max)

B: 30 mA (max)

R: 2.2 V

G: 3.3 V

B: 3.3 V

LP2985 Low-Noise Low-

Dropout Voltage Regulator

Output: 150 mA Supply Input Voltage:

Min: 2.2 V

Max: 16 V

Relevant Fixed Output

Options: +3.3V

Lithium Ion Polymer

Rechargeable Battery

Typical: 2500 mAh Nominal: 3.7 V

To calculate the battery capacity in mA-hours needed for the subsystems on the sleeve, we add

the maximum currents drawn by each subsystem:

3.11 𝑚𝐴 + 250 𝑚𝐴 + 1.5 𝑚𝐴 + 25 𝑚𝐴 + 30 𝑚𝐴 = 309.61 𝑚𝐴

If we want the fully charged MBA sleeve to last 4 hours, we utilize the following equation:

It is good practice to assume our battery will have less than ideal battery life. This can be

compensated with the assumption that a real-world battery life will be 75% of its theoretical

value. The parameters used for calculating the battery capacity on the sleeve are 309.61 mA for

the current draw and 5.5 hours (approximately 1.5 hours more than we would expect) for battery

life. This results in a battery capacity requirement of at least 1702.86 mAh. Because the largest

37

voltage needed for these components is 3.3 V, we needed a battery that can supply at least this

amount as well. We chose a Li-Poly battery with a nominal voltage supply of 3.7 V and a typical

supply current of 2500 mAh to extend the lifetime of the sleeve to approximately 8 hours before

charging is needed.

38

APPENDIX E: Parts Cost Table

Name Manufacturer Part Number Quantity Unit Price ($)

Rechargeable Li-Poly

Battery 3.7V

Adafruit LIPO785060

1 11.49

USB Li-Ion/Li-Poly

Charger v1.2

Adafruit MCP73833/4 1 19.42

Mini B to USB Adapter

Cable

Amazon N/A 1 6.28

LDO Voltage

Regulator

Texas

Instruments

LP2985-33DBVR 1 0.51

IMU Breakout Board Invensense ICM-20948 1 5.91

HC-05 Bluetooth

Module

DSD TECH HC-05 1 8.99

ATMega328P MCU Microchip ATMega328P-PU 1 2.08

DIP Switch CUI Devices DS04-254-SMT 1 0.70

Green LED SparkFun COM-10633 ROHS 1 0.55

Velcro Fastener Strips VELCRO N/A 1 5.79

JST Connector Elechawk JJRC H36 H67 1 0.80

.01 uF Capacitor KEMET C0805X103K5RAC3316 1 0.33

.1 uF Capacitor KEMET C0805C104K5RAC7411 1 0.25

2.2 uF Capacitor KEMET C0805C225K4REC7210 1 0.30

20 pF Capacitor KEMET C0805X200J5GACTU 2 0.38

750 Ohm Resistor TT Electronics PFCW0805LF037500B 1 0.99

10 Kohm Resistor Vishay MCU0805PD1002DP500 1 0.66

Plastic Project Box Zulkit B07WCKF6P4 1 2.00

PCB PCBWay N/A 1 0.50

Total $68.31

39

APPENDIX F: HC-05.ino Program
/*

AUTHOR: Hazim Bitar (techbitar)

DATE: Aug 29, 2013

LICENSE: Public domain (use at your own risk)

CONTACT: techbitar at gmail dot com (techbitar.com)

*/

#include <SoftwareSerial.h>

SoftwareSerial BTSerial(10, 11); // RX | TX

void setup()

{

 pinMode(9, OUTPUT); // this pin will pull the HC-05 pin 34 (key pin) HIGH to switch module

to AT mode

 digitalWrite(9, HIGH);

 Serial.begin(9600);

 Serial.println("Enter AT commands:");

 BTSerial.begin(38400); // HC-05 default speed in AT command more

}

void loop()

{

 // Keep reading from HC-05 and send to Arduino Serial Monitor

 if (BTSerial.available())

 Serial.write(BTSerial.read());

 // Keep reading from Arduino Serial Monitor and send to HC-05

 if (Serial.available())

 BTSerial.write(Serial.read());

}

