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ABSTRACT 

The Marching Band Assistant (MBA) is a wearable device that is used to calculate a user’s 

conducting tempo via motion detection. The MBA is turned on using a switch within a plastic 

encasing. When on, the MBA continuously performs calculations based on the user’s arm 

motions. The MBA can be connected to a host computer via Bluetooth. The user can run an 

executable program that displays the device’s latest output in real-time. The user display contains 

an option to record the data received over time and save it to a CSV file. 
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1. INTRODUCTION 

1.1 Objective 

One of the primary responsibilities of a drum major is to conduct a consistent tempo during 

marching band practices and live performances. However, most high school drum majors are 

tasked with this responsibility with no prior training. While some high schools and colleges have 

access to drum major camps to train and practice fundamentals, drum majors often do not have 

practice tools readily available to receive feedback on their conducting.  

 

The Marching Band Assistant (MBA) aims to create a method for drum majors to practice and 

analyze the consistency and tempo of their conducting. An arm attachment with an inertial 

measurement unit on it would be used to record acceleration from the conducting arm. The 

derived acceleration data processed via a microcontroller would calculate the user’s average 

tempo after a short period of recording, as well as the standard deviation of time between 

conducting motions. The calculations would be transmitted via Bluetooth to a GUI on a laptop, 

where the user could both have data displayed in real time and view data afterwards to observe 

any inconsistencies in his or her conducting. 

 

1.2 Background 

A drum major is the leader of a marching band, a common entertainment organization that plays 

musical numbers at the sporting events of most high schools and colleges. A drum major’s 

responsibilities include relaying vocal commands, communicating with band members, and 

conducting effectively [1]. Conducting establishes the tempo of a musical number, and the drum 

major is the only visual source of tempo during performances. 

 

Thus, metronome devices such as the Dr. Beat are used in personal or full-band practices to 

commit tempos to memory [2]. However, there are issues with using an audio source due to the 

spaced-out nature of marching bands combined with the relatively slow speed of sound. 

Additionally, there is currently no way to tell if one’s conducting motions are on time without 

the use of a metronome. Software such as SmartMusic serve a similar purpose to our solution; it 

receives input via microphone and provides correctional feedback to musicians, but this only 

extends to singing or playing an instrument [3].  

 

To our knowledge, there is no commercial device that records the movements of a conductor’s 

arms to determine the tempo or consistency of conducting. Personal interviews with Metea 

Valley High School Band Director Glen Schneider, Marching Illini member Daniel Dresser, and 

University of South Carolina Drum Major Kelley Powell indicate that the tool would be a 

valuable asset in high school marching bands and practice environments.  
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Having a tool where drum majors can record their motions would help them verify if they truly 

committed a tempo to memory, and if they can keep a consistent tempo over a long period of 

time. Our tool intends to graphically display conducting data both during and after the recording 

session ends, so that drum majors can analyze their behavioral patterns and catch inconsistencies. 

Our expectation is to deliver real-time data with a delay of less than 500 ms. We believe this is 

an appropriate limit because while the user does not need instant feedback since the long-term 

behavior of conducting is more useful information than a single beat, the user should be capable 

of identifying within approximately two measures of music if his or her tempo has changed. 

 

1.3 High-Level Requirements 

● The MBA must correctly identify conducting tempos of 80 BPM-160 BPM, with an error 

margin of +/- 10% BPM. 

● The MBA should transmit the tempo calculations wirelessly to a receiving computer and 

display the latest data with a delay of less than 500 ms. 

● The MBA should be capable of wireless usage without charging for at least four hours. 
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2. DESIGN 

2.1 Block Diagram 

 
Fig 1. A comprehensive block diagram of the Marching Band Assistant. 

 

The MBA consists of five main subsystems: A power supply, the inertial measurement unit 

(IMU), the control unit (CU), communication, and the user display. The power supply drives the 

steady operation of the sleeve, powering all its components for up to four hours, which is the 

high-end typical length of a band rehearsal. The IMU contains the accelerometer, which captures 

the acceleration of the user’s arm motions. This data is then passed onto the microcontroller 

(MCU) in the control unit subsystem. The MCU parses and processes the data received from the 

IMU to calculate the user’s average tempo. The processed data is transmitted to a receiving 

computer via the Bluetooth module. A Java program collects and displays the data on the user’s 

computer via a Processing GUI. 
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2.2 Physical Design 

 

 
(a) Outside view.                            (b) Inside view with top opened. 

Fig. 2. The physical design of the Marching Band Assistant. 

 

 

Our design allows the user to slip the one-size-fits-most device on his or her arm, even if thick 

clothing such as a marching band uniform is worn. The MBA device is enclosed in a plastic box 

(Fig. 2a). A plastic box was chosen because it created less Bluetooth interference and was more 

comfortable than a metal box. A velcro strap is attached to the top of the box, and wraps around 

the bottom of the upper arm. The strap is required to form a tight fit around the arm for the MBA 

to work properly. 

 

The PCB is placed inside the box (Fig. 2b). Plastic material and a mounting hole is used to fix 

the PCB in place within the box. The top of the PCB contains the LED and switch, while the 

bottom contains most of the MBA’s subsystem components. The PCB positioning of the IMU 

(located on the right side of Fig. 2b) further up the arm is crucial for recording accurate data. The 

battery is connected to the battery board underneath the PCB, and is safely taped to the bottom of 

the box. Appendices A and B respectively refer to the schematic and PCB design of the MBA. 

 

The MBA device contains a Bluetooth module which sends data to the computer feedback 

system. An executable program serves as the feedback system on the computer, with options to 

view data in real-time or observe past data sets. As long as the device is powered on, it will 

continue to record data and be eligible to connect to Bluetooth-compatible devices. 
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2.3 Block Descriptions 

Subsystem 1: Inertial Measurement Unit 

Before explaining the specifications of our inertial measurement unit, we will explain why we 

are collecting acceleration data in the first place. A fundamental requirement of the MBA is to 

determine when the user has conducted a beat. A “beat” is conducted when the user stops their 

arm in a certain place in between motions in order to establish a certain tempo. Regardless of 

where the arm stops, the common trend is that a beat is observed when there is a sudden decrease 

in velocity of the arm. 

 

Acceleration data can help determine these sudden shifts in velocity. When an object in motion 

comes to a sudden stop, the magnitude of acceleration drastically increases, then drastically 

decreases shortly afterwards since the object is at rest for a non-zero period of time. Therefore, 

we needed to detect anomalies in acceleration data to determine when a beat is conducted. 

 

The inertial measurement unit (IMU) extracts acceleration information from the user’s arm 

motions. Acceleration along one axis causes displacement on the corresponding proof mass, and 

the capacitive sensors in the IMU detect the differential displacement. Consumer IMUs such as 

the ICM-20948 use proof masses for each of its three angular rate axes [4]. The ICM-20948’s 

three sensors are an accelerometer, a gyroscope, and a magnetometer, but we used only the 

accelerometer functionality of the ICM-20948. We found that the accelerometer collected 

enough data to detect tempos, and disabling the gyroscope and magnetometer saved power. 

 

Each sensor has a sigma-delta analog-to-digital converter (ADC) that produces digital outputs, 

with an adjustable sensitivity of ±2g, ±4g, ±8g, or our selection of ±16g for the accelerometer. 

The data outputted from the IMU specifies the acceleration in each axis [4]. A Digital Motion 

Processor (DMP) computes the data it acquires from the IMU using motion processing 

algorithms. The data is sent in digital form, utilizing I2C protocol after sampling, digitizing, and 

packeting the data. The packeted data is 16 bits long. Power is supplied to this module via the 

analog VDD pin, and its data is transferred to the MCU through its data line pins.  

 

Instead of using the ICM-20948 on its own, we opted to use the SparkFun 9DoF IMU Breakout 

board (Fig. 3). It contains the ICM-20948, level shifters to regulate and supply voltage to the 

chip, and two Qwicc connectors which remained unused in our design [5]. The breakout board 

was usable on both initial breadboard designs and our final PCB design because male header 

pins could be soldered onto the through holes. The most significant through holes used were 

“DA” and “CL,” which were necessary pins for transmitting IMU data at an appropriate 

frequency to the ATMega328P. 
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Fig. 3. The SparkFun 9DoF breakout board. The ICM-20948 can be found at the center of the 

board. 

 

Since the maximum output data rate is 1.125 kHz, the maximum baud rate of the IMU is 1125 

kBd. Given that the ATMega328P MCU can run with a baud rate of at least 1 MBd without 

issue, we had no issues running the IMU at the maximum output data rate [6]. 

 

Subsystem 2: Control Unit 

The control unit is driven by a microcontroller and interacts with the user through its IMU 

inputs, Bluetooth output, and an LED light that indicates whether the sleeve is off or on. The 

microcontroller executes all the interpretation and processing of the raw data from the data 

registers of the IMU. Its flash storage contains the data forwarded to the Bluetooth module via a 

Universal Asynchronous Receiver/Transmitter (UART). The computer then receives the final 

values for the beats per minute to be outputted to the GUI via Bluetooth.  

 

Microcontroller 

The microcontroller is calibrated to receive and parse raw data from the IMU’s digital motion 

processor (DMP) in real-time. It is programmed with calculations that filter out noise, perform 

moving averages of the tempo derived from acceleration spikes, and output the results to Serial. 

 

The ATMega328P (Fig. 4) was chosen due to its flexibility in usage. The chip is able to run on 

an 8 MHz clock when powered at 3.3V. It is capable of receiving data from sensors via its 

SDA/SCL pins, communicating with serial ports via its TX/RX pins, and can drive voltage 

through numerous digital pins. Additionally, its range of baud rates accommodate for the data 

rate our application needs, which is at least 1.125 kbps. The potential rates of the ATMega328P 

range from 2400 bps to 230.4 kbps. The ATMega328P has considerable documentation and 
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application to electronics projects, which proved to be useful for reference when designing and 

constructing the overall circuit for the device.  

 
Fig. 4. The ATMega328/P Pinout [7].  

 

In order to use the ATMega328P as a standalone chip on the PCB, we had to bootload the chip 

so that it was capable of running a program without the help of an Arduino. The process of 

bootloading involves first wiring a second ATMega328P and clock to pins on an Arduino and 

running code that makes the chip capable of running independently. Once completed, the first 

ATMega328P chip is taken out from the Arduino and code can be uploaded to the standalone 

chip [8]. 

 

The ATMega328P runs on an 8 MHz clock as opposed to a typical 16 MHz clock. This is 

because the ATMega328P on our PCB is only supplied 3.3V, and 8 MHz is a standard clock 

speed to run at that voltage level since we would need a 5V supply for a 16 MHz clock.  

 

The program for the microcontroller was written using the Arduino IDE. The purpose of the 

program was to continuously collect data from the IMU, perform calculations that determine 

whether a beat is conducted, and output the average rolling tempo to the serial port immediately 

after a new beat was detected. The tempo is calculated by saving a timestamp when the beat was 

detected, storing that timestamp in an array containing the last 10 timestamps, taking the average 

difference between timestamps, and using the equation 60000/(avg. difference) to convert from 

milliseconds to BPM. Storing every timestamp entry from when the device was turned on would 

result in a tempo averaged throughout the entire session of use, which is not very helpful. 

However, storing only the latest two timestamps would result in volatile tempo results, when the 

reality is that conducting a tempo isn’t a process that is established in only two motions. We 



8 

 

found through trial and error that storing the latest 10 timestamps painted a reasonable picture of 

the user’s recent conducting tempo. 

 

The PeakDetection library by Github user leandcesar was essential for the code to work. The 

library uses the principle of dispersion, detecting peaks in rolling data by checking if the newest 

data is a specified amount of standard deviations away from the rolling average [9]. The 

algorithm is modifiable, including variables such as amount of rolling samples stored and z-

score, which determines how influenced the algorithm is by data anomalies. Finding the correct 

parameters that suited our needs was largely a subjective process, as when a conducting beat 

“starts” varies from person to person. Fig. 5 shows an example of how the PeakDetection 

algorithm is able to detect anomalies in acceleration by outputting a positive value when peaks 

are detected. For our purposes, we ended up settling on having a 72 sample window, a standard 

deviation threshold of 1, and a z-score of 0.1, meaning the algorithm is not heavily influenced by 

data spikes. The rising edge of the peaks is used as the reference of when a beat is conducted. 

 

 
Fig. 5. A serial plotter example of the peak detection algorithm in its early stages. Blue line: 

magnitude of acceleration, Green line: rolling average of acceleration, Red line: +1000 when a 

peak is detected, otherwise 0. 
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Additional measures were taken to ensure that peak detection was not erroneous. We only tested 

for peaks if the magnitude of acceleration was greater than 1.1g, because it can be safely 

assumed that any values below that are noise if the device is at rest. Even though the magnitude 

of acceleration can dip below 1.1g, this only happens well after a beat is conducted, so we found 

through testing that it is not our concern. Additionally, we did not poll for peaks if another peak 

occurred less than 150 ms prior. This is because to have the rising edges of peaks 150 ms apart 

would be equivalent to conducting at 400 BPM. It is extremely uncommon to find pieces of 

music with a tempo of faster than 180 BPM, so it is safe to assume that new peaks detected in 

such a short period of time can be attributed to noise [10]. This filtering method significantly 

improved the accuracy of the tempo algorithm. 

 

Status LED 

The green LED turns on or off according to the operation mode of the microcontroller. When the 

switch is pushed into the “ON” mode with a charged battery, the light will turn on. When the 

switch is pushed into the “OFF” mode, the LED will not light up because there will be no current 

supplied to the LED or the microcontroller. 

 

Subsystem 3: Communication 

The communication subsystem includes one Bluetooth module inside the MBA attachment. The 

Bluetooth module allows for wireless data collection and transmission to the computer, 

eliminating the need for wires that may limit the user’s movement. The module communicates 

with the ATMega microcontroller via UART. Once the Bluetooth module has been connected to 

the user’s PC, the data from the module’s TX pin will continuously be displayed on the GUI 

[11]. 

 

The HC-05 Bluetooth Transceiver Module was chosen because its default baud rate (9.6 kBd) is 

greater than that of the ICM-20948’s maximum output data rate, 1.125 kBd. Compared to other 

Bluetooth modules, it has an expansive collection of documentation on interfacing with Python 

and its integration with the ATMega328P. These resources proved to be very useful while 

configuring and debugging the module. 

 

Such resources were used to determine the connections that needed to be made between the HC-

05 Bluetooth module and the ATMega328P for stable communication (Fig. 6) [12]. 
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Fig. 6. HC-05 Bluetooth Module interfacing with the ATMega.  

The schematic above creates a voltage divider for the TX pin because it assumes 5V will be used 

to supply the module. Because of our device’s voltage regulator, these resistors were not 

included in our circuit. Every other aspect from this schematic was adopted into our final design.  

 

Subsystem 4: User Display 

The user display is our means of displaying the Bluetooth data in a clear and digestible format 

(Fig. 7). The user display is created using Processing, an IDE specialized in developing GUIs by 

utilizing Java. Processing enabled us to create an interface that displays the latest data obtained 

in a specified serial port, updating a meter that displays those values, and providing options to 

record data as it is received. The GUI is stored in an executable file that can be used without 

setup. 

 

 
Fig. 7. The GUI display for the MBA. 
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It is important to note that the “Record” and “Stop” options do not turn the MBA on or off, nor 

does it stop the MBA from recording tempo data. Tempo data is always recorded while the MBA 

is powered on; the “Record” and “Stop” options are used to toggle saving incoming values to a 

CSV file. Once recording is complete, the user can open up a program of his or her choice to plot 

the data recorded over time (Fig. 8). 

 

Fig. 8. An example of MBA data recorded over time. The user consistently conducted at 120 

BPM, sped up, then slowed down to approximately 80 BPM in the span of 30 seconds. 

 

The user display program polls for new serial port data every 20 ms. If it receives a new 

numerical value, it updates the meter with that value. Otherwise, the last valid value is pushed to 

the meter. If no data is received via serial port for 5 seconds, the program briefly disconnects and 

reconnects to the port to ensure that there are no long-term connectivity issues. This was 

implemented to fix bugs with serial communication, and it is worth noting that once the device 

reconnects, every value that was recorded while the device was disconnected is still recorded. 

 

Subsystem 5: Power Supply Unit 

The power supply provides the power necessary for steady operation of the IMU, the control 

unit, and the communication subsystems on the attachment. With the convenience of the user in 

mind, a lightweight Li-Poly battery that can be recharged via mini-USB on a battery charging 

board was used. Primary lithium batteries are lighter than other primary chemistries and are 

suitable for low current applications. An on and off DIP switch was placed between the battery 

and the voltage regulator to ensure that there is no excess charge on any other components.  

 

On/Off Switch 

The on/off switch is the user-control that is used to activate and deactivate the circuit. When the 

user switches the MBA sleeve attachment on, the whole circuit is activated and the IMU starts 

collecting data. When the user switches the sleeve attachment off, the battery stops supplying 

power to the components in the circuit, meaning the MCU, IMU, and Bluetooth module turn off 

as well. 
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Power Requirements 

The battery must supply enough power to ensure full functionality of the three subsystems 

simultaneously for at least four hours. The operating voltage and the current drawn by each 

component were used to calculate the voltage and current delivery requirements of the power 

supply. The power requirements for all the components on the attachment are calculated in 

Appendix D. Each component on the sleeve requires +3.3V. The battery at full charge provides 

at least +3.7V, a voltage higher than what is needed for each module, so a linear voltage 

regulator is used to scale the voltage down to +3.3V. Because the circuit draws about 300 mA of 

current at full operation, the battery is estimated to last about 8 hours on one full charge.  

 

Voltage Regulator 

Because the IMU breakout board, the Bluetooth module, and the microcontroller require the 

same voltage inputs of 3.3V, only one voltage regulator is used to satisfy the voltage needs of 

each component. The LP2985 low-dropout (LDO) and low-noise regulator is used because it has 

stable behavior despite the output voltage being close to the input voltage value, improving its 

power efficiency. It is able to output our desired voltage quantity of 3.3V, and its low-noise 

output ensures that the incoming power supply or transients in the load  will not affect the 

stability of the voltage being supplied to the subsystems [13]. 
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3. VERIFICATION 
Subsystem 1: Inertial Measurement Unit 

We were able to successfully connect the IMU to our MCU via I2C protocol. Fig. 9 shows an 

example of retrieving acceleration data in 3 axes through I2C protocol and Serial commands. 

Our verification process for observing if we retrieved usable accelerometer data in the x, y and z 

axes proved to be a success. While the accelerometer data is not perfectly free of noise, the 

amount of noise we were observing while the IMU was at rest indicated that it would not cause 

significant problems for our magnitude of acceleration or tempo calculations. Fig. 10.a 

demonstrates the x-axis acceleration while at rest via the Arduino IDE’s serial plotter, while Fig. 

10.b. demonstrates the x-axis acceleration while the IMU is in motion. 

 

 
Fig. 9. The MCU displaying three-axis IMU data via serial monitor. 

 
(a) X-axis acceleration data at rest.   (b) X-axis acceleration data in motion. 

Fig. 10. X-axis acceleration data observed on a serial plotter. 

 

Similar data that passed our requirements were observed in the Y and Z axes as well. An altered 

requirement/verification process was required for the Z axis due to +1g biasing as a result of 

gravity. 

 

Subsystem 2: Control Unit 

We were able to achieve the core requirement of calculating the correct tempo with a less than 

ten percent margin of error. Out of ten trials of the process explained in Appendix C.2 performed 

at each tempo, every single trial concluded within a five percent margin of error. Fig. 11 

demonstrates a pair of successful trials demonstrating a perfect end result. Fig. 11.a shows the 
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serial monitor output when conducting at 80 BPM, Fig. 11.b is at 120 BPM, and Fig. 11.c is at 

160 BPM. The final 16 samples of every trial were also all within a 5 percent margin of error as 

shown in the figures below, although this was not explicitly a requirement. 

 

 
(a) 80 BPM.    (b) 120 BPM.    (c) 160 BPM. 

Fig. 11. Calculated tempo at various speeds. Last 16 samples for each trial is shown. 

 

The LED was proven to have a current flow and turn on when the device is powered on. 

However, we did not have the lab access required to verify the lux of the LED. Professors and 

teaching assistants have verified with the eye test that the LED is visible from a distance of two 

feet, but we failed to obtain quantitative results on the LED’s brightness. 

 

Subsystem 3: Communication 

To verify the HC-05 can transfer data at AT least the output data rate of the MCU, we 

programmed the HC-05 to have a baud rate of 115200 baud and requested the baud rate from the 

module. We set the module to operate at 115200 baud because it is the fastest baud rate that is 

compatible with laptop devices and avoids data corruption that can occur with faster 

transmission rates. 

  

After typing in the AT command that requests the set baud rate, the Arduino terminal shows that 

it is the desired 115200 baud (Fig. 12). The serial monitor must be set to “NL+CR”; otherwise no 

AT commands will be received (Fig. 13).  
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Fig. 12. Arduino serial monitor exhibiting the baud rate of the HC-05.  

 

 
Fig. 13. Settings needed for Arduino serial monitor on HC-05 module program.  

 

To ensure our module was successfully transmitting data to our Processing program, we 

connected the MBA to the user's PC and ran the program to confirm that data was being updated 

corresponding to the MBA’s movement. This meant that the HC-05 was not only connected to 

the user device, but was also sending readable data from the MCU to the serial port on the PC 

through its TX pin.  

 

Transmission time tests performed according to the Bluetooth module section of Appendix C.3 

were successful. Fig. 14a references the local timestamps for the HC-05 serial output, while Fig. 

14b references the serial monitor timestamps on the receiving computer. The serial monitors 

display a maximum delay of 475 ms between any two inputs to the serial port. Even accounting 

for the fact that the GUI program polls data received from the serial port at minimum every 20 

ms, the entire process from the processing of MCU data to displaying the data on the GUI 

remains under 500 ms. 

 
(a) Timestamps for HC-05.          (b) Timestamps for receiving computer. 

Fig. 14. Timestamps on origin and receiving computer. Note the difference between computers 

never exceeds 500 ms in real time. 
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Subsystem 4: User Display 

We have confirmed that the user display program is both capable of communicating with the 

HC-05 and displaying the transmitted data on a GUI. This was demonstrated extensively during 

our final demonstration, although Fig. 7 and 8 showcase other examples. We also verified that 

the GUI is able to update at least twice a second. We referred to our CSV files and found that the 

GUI updated as frequently as 5 times a second, and in theory could update 50 times a second due 

to its update rate since it could fetch serial port values every 20 ms. 

 

Subsystem 5: Power Supply Unit 

There were three important requirements for the power supply that we verified through multiple 

trials. To ensure our device is able to run in full operation for each of these requirements, the 

MBA was turned on, connected to the user's computer over Bluetooth, and the GUI was run. 

Data must be actively sent over Bluetooth when testing because the TX pin draws approximately 

250 mA of current when transmitting data, compared to the 30 mA that is drawn when no data is 

being sent to the computer.  

  

The first verification confirmed that the power supply unit was able to supply enough power to 

the circuit for at least four hours on a full charge. To do so, the voltage of the battery was 

recorded for 4 hours at 30-minute intervals. Through multiple trials, we see that the battery 

reliably powered our circuit for four hours (Fig. 15). A similar test on the output of the regulator 

was executed to ensure it was consistently held at approximately 3.3 V, which was the voltage 

needed for the IMU, MCU, and Bluetooth module. It was verified that this was the case through 

our trials (Fig. 16).  

 

To ensure the temperature of the battery did not exceed the operating temperature that can 

damage the user’s skin (44℃), a thermistor that was connected to a DMM was held flush against 

the battery for 4 hours at 30-minute intervals (Fig. 17).  

 
Fig. 15. 3 Trials of Battery Voltage from 0 to 4 Hours at 30-minute intervals.  
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Fig. 16. 3 Trials of Voltage Regulator Output from 0 to 4 Hours at 30-minute intervals. 

 

 
Fig. 17. Temperature of the Battery from 0 to 4 Hours at 30-minute intervals. 

 

The switch successfully turns the circuit on and off, but we were not able to test if it requires 

1000 grams of force. However, it appears to need at least this amount of force and is unlikely to 

be accidentally toggled, which is the basis of our verification test.  
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4. COST ANALYSIS AND SCHEDULE 
4.1 Final Costs of Labor 
Our research shows that the average salary nationwide for a Consumer Electronics Engineer is 

$75,591 as of September 24, 2020 [14]. Assuming an engineer worked 40 hours a week for 52 

weeks, their hourly wage would be $36.34. On average, we each worked on 1 device for 10 

hours a week for 10 weeks. Additionally, we will need to account for 2.5 times the amount of 

cost as originally expected to account for overhead. Therefore, we estimate the total labor costs 

to be 3 people * 36.34 dollars an hour * 10 hours * 10 weeks * 2.5 = $27,255. 

 

4.2 Final Costs of Parts 

The final costs of all parts necessary in our project can be found in Appendix E. Our total cost to 

build one device was $68.31. It is worth noting that the amount we personally spent was greater, 

due to ordering extra parts and currently unnecessary components. 

 

4.3 Total Costs 

Table 1: Total costs of project, including labor and parts. 

Section Cost 

Labor $27,225.00 

Parts $68.31 

Total $27,293.31 

 

4.4 Schedule 

Our first mission after completing the design document was to conduct further research into 

methods that would help our project succeed. Wynter did research on the optimal way to package 

the device, Alyssa studied how to interface the ATMega328P and the HC-05, and Prashant 

researched peak detection. We all contributed to constructing the first and all further PCB 

designs. Once the team obtained parts one week later, Prashant worked extensively on the 

microcontroller program and created the core functionality of the GUI. Alyssa configured the 

HC-05 module to work at the specified baud rate and collaborated with the Machine Shop in 

fabricating an enclosure, and Wynter continued to develop the attachment’s physical design. 

 

The final two weeks of the project were the most time-consuming. Alyssa and Prashant worked 

on soldering all the components onto the PCB and spent multiple days debugging the circuit. 

Once the circuit was complete, Alyssa conducted verification tests on the power supply while 

Wynter completed the GUI. All three of us ensured that we met as many verifications processes 

as we could before the final demonstration. 
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5. CONCLUSION 

5.1 Accomplishments 

We were successful in meeting our original objective of creating a device that was capable of 

detecting conducting motions and giving the user feedback on his or her tempo. The device 

meets all of our high-level requirements, resulting in a robust and user-friendly marching band 

assistant that correctly identifies conducting tempos between 80 BPM and 160 BPM and 

transmits the data wirelessly to the user’s personal computer, on which an executable program 

displays and records the tempo they are conducting at. Some requirements and verification 

processes had to be altered, but we have demonstrable proof that most of our requirements were 

met. The device has no electrical components exposed and is enclosed in a compact plastic 

casing that fits any arm with the help of a velcro strap. 

 

5.2 Uncertainties 

The range reached by the Bluetooth module was not tested exhaustively because it was not a 

requirement, but the MBA was tested within a range an average user would be able to still see 

the feedback display; the distance between the MBA and the computer was at most about 5 feet 

away during testing.  

 

The MBA packaging was larger than intended because a plastic enclosure that fit the dimensions 

of our system could not be found. The excess space at the top of the box may cause the PCB to 

experience additional vibrations from movement and consequently interfere with the IMU’s 

acceleration readings. Although this has not been an issue during testing, a smaller casing would 

be ideal for user comfort and mechanical integrity.  

 

There are potential bugs with the user display that have not been extensively tested. The behavior 

of the executable program when selecting a non-available serial port is unknown. Additionally, 

the program could face potential issues when pressing “Record” or “Stop” while the program is 

establishing reconnection. 

 

5.3 Ethical Considerations 

This device incorporates technology into musical training in a new and innovative way, in order 

to “contribute to society,” as stated in the ACM Code of Ethics [15]. The goal of this device is to 

assist drum majors by providing a learning tool; both drum majors and marching band members 

would benefit from it. The IEEE Code of Ethics states that members have a responsibility “to 

improve the understanding by individuals and society of the capabilities and societal implications 

of conventional and emerging technologies” [16]. If this product were to be commercialized, an 

instruction manual would be provided to help users understand the capabilities of this new 

technology and how it is used. 
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The project utilizes a Bluetooth module to transmit data. Data theft is a potential security risk 

associated with this Bluetooth [17]. While the attachment does not transmit sensitive or personal 

data, the recieving computer could have personal data vulnerable to a Bluetooth security breach. 

Therefore, it would be recommended that the device be used in a trusted place without 

significant wireless interference. Additionally, the device (and with it, the Bluetooth module) 

should be powered off when not in use. 

 

The safety of the user is the top priority of this device, as the IEEE Code of Ethics clarifies that it 

“holds paramount the safety, health, and welfare of the public” [16]. Since the device is placed 

directly on the user’s arm, it is important that the electrical components do not overheat or shock 

the user. The Li-Poly battery is flammable, so additional precautions were taken; regulators were 

implemented to prevent the battery voltage from decaying below 3.0 V/cell or exceeding 4.2 

V/cell [18]. The whole system, including the battery, were secured in a plastic enclosure as an 

added layer of protection for the user. Nylon was used for the attachment because it is a 

relatively heat-resistant and insulating fabric.  

 

5.4 Future Work 

There are quite a few improvements we would still like to make to improve the performance of 

the MBA and enhance the user’s experience with the device. The microcontroller program may 

be capable of more refined peak detection, so additional testing, calibration, and improvements 

to the algorithm can be made to better model signals specific to conducting motions.  

 

A basic utility that would be beneficial for the GUI is built-in metronome so that the user would 

not need an external device to practice conducting to a specific tempo. An option for increasing 

and decreasing the sensitivity of peak detection on the GUI is also desirable, as it would allow 

MBA to adjust for more sharp or more fluid conducting. Furthermore, a feature that allows the 

user to conduct along with pieces of music (similar to SmartMusic) would expand the versatility 

of the device.  

 

A practical feature we would like to implement is an LED on the PCB that blinks or changes 

color when the battery is low. We currently only have an LED that would turn off if the battery is 

no longer able to supply the power necessary for full operation of the circuit. Finally, 

miniaturization of the device through the elimination of unused components (such as JST ports), 

the use of the smaller surface-mount variant of the ATMega328P, and installation of the circuitry 

in a smaller customized box would lead the device to be more compact and comfortable for the 

user.  
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APPENDIX A: MBA SCHEMATIC 
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APPENDIX B: MBA PCB LAYOUT 
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APPENDIX C: Requirement and Verification Tables 

C.1. Inertial Measurement Unit 

Requirement Verification Verified? 

Inertial Measurement Unit 

1) IMU must be capable 

of sending 

acceleration data to 

the MCU via I2C. 

 

 

 

 

 

 

 

 

 

2) IMU must record 

correct acceleration 

data in the x and y 

axes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inertial Measurement Unit 

1) Check that the MCU receives any packet of data from 

the IMU. 

      Verification Process: 

1) Load program that pings the ICM-20948 

IMU via I2C onto the ATMega328P 

MCU. 

2) Connect the MCU to the IMU. 

3) Power on both devices with any 

appropriate power supply and run the 

microcontroller script. If any data packet 

from the IMU is returned through the 

MCU via serial, the test was successful. 

 

2)  The IMU must read 0 mg ± 100 mg when resting, 

and must read at least 800 mg when moving for the x 

and y axes. 

      Verification Process: 

1) Load program that samples x-direction 

acceleration data onto the ATMega328P 

MCU. 

2) Connect the ICM-20948 IMU to the 

MCU. 

3) Lay the IMU on a flat, stationary surface. 

4) Collect data over three seconds. 

5) Check that the x-acceleration data does 

not ever exceed ±100 mg while stationary. 

6) Hold IMU in the palm of hand. 

7) Move hand back and forth to a metronome 

set at 160 BPM at least 2 feet along the 

IMU’s x-axis. Continue the process for at 

least 10 seconds. 

8) Check that the x-acceleration exceeds |800 

mg| at least once. 

9) Repeat steps 7 and 8 along the y-axis, 

loading in a y-sampling program instead 

and performing tests in the IMU’s y-axis. 

(Continued on next page) 
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3) IMU must record 

correct acceleration 

data in the z axis. 

 

3)  The IMU must read 1000 mg ± 10% when at rest, 

and must read at least 1800 mg for the z-axis. 

      Verification Process:  

1) Load program that sample z-direction 

acceleration data onto the ATMega328P 

MCU. 

2) Connect the ICM-20948 IMU to the 

MCU. 

3) Lay the IMU on a flat, stationary surface. 

4) Collect data over 3 seconds. 

5) Check that the z-axis acceleration data 

reads 1000 mg ± 100mg while stationary. 

6) Hold IMU in palm of hand. 

7) Move hand back and forth to a metronome 

set at 160 BPM at least 2 feet along the 

IMU’s z-axis. Continue process for at 

least 10 seconds. 

8) Check that the z acceleration exceeds 

1800 mg at least once. 
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C.2. Control Unit 

Requirement Verification Verified? 

Microcontroller 

1) MCU program must 

correctly identify 

tempo of 80 BPM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) MCU program must 

correctly identify 

tempo of 120 BPM. 

 

 

 

 

 

 

 

 

Microcontroller 

1) Check that Serial Monitor displays accurate tempo when 

attempting to conduct at 80 BPM. 

      Verification Process: 

1) Upload program that calculates the rolling 

tempo average using IMU peak detection 

onto the ATMega328P MCU. 

2) Connect the MCU to the ICM-20948 IMU. 

3) Hold MCU/IMU (either on sleeve or in 

hand) and bring it up to the air. Keep 

arm/hand completely still until Step 5. 

4) Power on both devices with any appropriate 

power supply and upload the microcontroller 

script. 

5) Every 0.75 seconds, alternate between 

moving arm at least 1 ft down as fast as 

possible and moving arm at least 1 ft up as 

fast as possible. Arm must be stopped at each 

position for at least 0.25 seconds, so the 

motion can take no longer than 0.5 seconds. 

This process simulates conducting at 80 

BPM in 2/4 time. If necessary, keep a 

metronome for 240 BPM to ensure results 

are valid. Perform Step 5 for 20 seconds 

starting from the first movement. 

6) Read the Serial display of the MCU. If the 

latest output line displayed on the Serial 

display reads between 72 and 88 inclusive, 

the test was a success. 

 

2) Check that Serial Monitor displays accurate tempo when 

attempting to conduct at 120 BPM. 

      Verification Process: 

1) Upload program that calculates the rolling 

tempo average using IMU peak detection 

onto the ATMega328P MCU. 

2) Connect the MCU to the ICM-20948 IMU. 

(Continued on next page) 
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3) MCU program must 

correctly identify 

tempo of 160 BPM. 

 

 

 

 

3) Hold MCU/IMU (either on sleeve or in 

hand) and bring it up to the air. Keep 

arm/hand completely still until Step 5. 

4) Power on both devices with any appropriate 

power supply and upload the microcontroller 

script. 

5) Every 0.5 seconds, alternate between moving 

arm at least 1 ft down as fast as possible and 

moving arm at least 1 ft up as fast as 

possible. Arm must be stopped at each 

position for at least 0.25 seconds, so the 

motion can take no longer than 0.25 seconds. 

This process simulates conducting at 120 

BPM in 2/4 time. If necessary, keep a 

metronome for 240 BPM to ensure results 

are valid. Perform Step 5 for 20 seconds 

starting from the first movement. 

6) Read the Serial display of the MCU. If the 

latest output line displayed on the Serial 

display reads between 108 and 132 inclusive, 

the test was a success. 

 

3) Check that Serial Monitor displays accurate tempo when 

attempting to conduct at 160 BPM. 

      Verification Process: 

1) Upload program that calculates the rolling 

tempo average using IMU peak detection 

onto the ATMega328P MCU. 

2) Connect the MCU to the ICM-20948 IMU. 

3) Hold MCU/IMU (either on sleeve or in 

hand) and bring it up to the air. Keep 

arm/hand completely still until Step 5. 

4) Power on both devices with any appropriate 

power supply and upload the microcontroller 

script. 

(Continued on next page) 
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5) Every 0.375 seconds, alternate between 

moving arm at least 1 ft down and up as fast 

as possible. Arm must be stopped at each 

position for at least 0.1875 seconds, so the 

motion can take no longer than 0.5 seconds. 

This process simulates conducting at 160 

BPM in 2/4 time. If necessary, keep a 

metronome for 320 BPM to ensure results 

are valid. Perform Step 5 for 20 seconds 

starting from the first movement. 

6) Read the Serial display of the MCU. If the 

latest output line displayed on the Serial 

display reads between 144 and 176 inclusive, 

the test was a success. 

Status LED 

1) LED must be able to 

turn on. 

 

 

 

 

 

 

 

 

 

 

2) LED must be visible 

from two feet away.  

Status LED 

1) Ensure that the LED is able to turn on. 

      Verification Process: 

1) Attach DMM probes to respective leads. 

2) Turn switch “OFF”. 

3) Measure current going through the LED 

while the switch is off. 

4) Turn switch “ON”. 

5) Measure current going through LED while 

switch is on. 

6) Verify that the currents measured are in the 

correct operating regions on the LED. 

  

2) The lux of the LED will be measured for >= 30 lux 

while in a room with under 15 lux. 

      Verification Process: 

1) Connect the two ends of a 1% tolerance 

photoresistor to the DMM probes. 

2) Turn off lights in verification lab. 

3) Measure lux of the lab when lights are off, 

by placing the photoresistor two feet away 

from the LED and measuring the resistance. 

4) Turn switch “ON” to turn on the LED. 

5) Measure lux of the lab while LED is on and 

lights are off, by placing the photoresistor 

two feet away from the LED and measuring 

the resistance. 

6) Subtract the lux of the lab when lights are off 

from the lux of the lab when LED is on and 
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lights are off to obtain the lux of the LED.  

7) Check that the lux measured is above 30. 

 

C.3. Communication 

Requirement Verification Verified? 

Bluetooth Module 

1) The Bluetooth 

module must 

have a baud 

rate greater 

than 1.125 

kBd, the output 

data rate of the 

MCU.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bluetooth Module 

1) The Bluetooth module’s baud rate will be obtained 

from and displayed by the Arduino IDE. 

Verification Process: 

1) Insert Bluetooth module header pins into 

breadboard. Make the following connections 

from the module to an Arduino Uno  with 

jumper wires (connect wire in same row as 

respective pin on the breadboard):  

HC-05 GND ---> Arduino GND Pin 

HC-05 VCC (5V) ---> Arduino 5V 

HC-05 TX ---> Arduino Pin 10 (soft RX) 

HC-05 RX ---> Arduino Pin11 (soft TX) 

HC-05 Key (PIN 34) ---> Arduino Pin 9 

2) Load and compile the Arduino program HC-

05.ino (Appendix F) in the IDE by clicking 

“Verify” [19]. 

3) Before connecting the Arduino to the USB, 

remove the VCC wire from the HC-05 so it 

is not getting any power from the Arduino. 

4) Connect the Arduino Uno to the USB cable 

extended from a PC. Upload the HC-05.ino 

program to the board by clicking “Upload” 

in the IDE.  

5) Reconnect the Arduino Uno 5V wire to the 

HC-05’s VCC pin. The HC-05 LED will 

blink on and off at about 2 second intervals, 

indicating that the HC-05 is in AT command 

mode and ready to accept commands. 

6) Open the Serial Monitor from the Arduino 

IDE, type "AT", and click SEND. “OK” 

should appear on the terminal to confirm the 

HC-05 is properly connected to the PC via 

Bluetooth.  

7) Type “AT+UART” in the Serial Monitor to 

see the baud rate the module is operating at.  

(Continued on next page) 
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2) The Bluetooth 

module must 

transmit data 

between the 

MBA and a 

host machine 

with a delay of 

less than 500 

ms. 

 

 

8) Confirm the baud rate is greater than 1125 

Bd. If not, type “"AT+UART=9600,1,0" to 

explicitly set the baud rate (9600 is the 

default). Upload the program to the Arduino 

again and repeat steps 6 and 7.  

9) Confirm the baud rate is >= 1125 Bd.  

 

2)  The transmission time will be calculated by taking 

the timestamp differences on two computers. 

      Verification Process: 

1) Upload [ping.ino] onto MCU that writes an 

incrementing number to the Serial Monitor 

every 100 ms. 

2) Power on MCU using a host computer. Host 

computer must be running on Windows 7+. 

3) Connect the Bluetooth module to the MCU. 

4) Connect to Bluetooth module wirelessly 

using a second host computer. Host 

computer must be running on Windows 7+. 

5) Open up the Arduino IDE Serial Monitor on 

the computer that the MCU is hooked up to. 

Enable “Show timestamp” feature. 

6) Open up Arduino IDE Serial Monitor on first 

host computer. Enable “Show timestamp” 

feature. 

7) Disable auto-scrolling and observe any ten 

consecutive samples of the same data on 

both monitors, then calculate the difference 

of timestamp. If every difference is less than 

500 ms, the test was successful. 
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C.4. User Display 

Requirement Verification Verified? 

User Display 

1) The user display 

can verify that a 

connection to the 

Bluetooth module 

was made. 

 

 

 

 

 

 

 

 

 

 

 

 

2) IMU data sent by 

the MCU is visible 

on the user display 

in any numerical 

form. (This 

includes 

calculations 

performed on IMU 

data.) 

 

 

 

 

 

 

 

3) User Display screen 

updates with new 

data at least two 

times a second. 

User Display 

1) Check if the backend of the user display recognizes 

connection to device via Bluetooth. 

 Verification Process: 

1) Load Processing script that attempts to 

connect to a specified Bluetooth module and 

returns a print message (e.g. “Success”) 

when connection is successful. 

2) Load script onto computer that supports 

Bluetooth capability. 

3) Power on HC-05 Bluetooth module within 5 

m of the host computer. 

4) Connect to HC-05 on computer via 

Bluetooth. 

5) Run the Processing script. If the specified 

print message is outputted, the test was 

successful. 

 

2) Check if raw MCU data is displayable by GUI. 

 Verification Process: 

1) Load Processing script that prints the raw 

output data of the ATMega328P MCU onto 

a GUI as soon as data is received on 

recieiving computer. 

2) Connect MCU to ICM-20948 IMU, and 

connect MCU/HC-05 to host computer via 

Bluetooth. The ATMega328P must have 

script that  loaded onto it. 

3) Run the Processing script for at least 10 

seconds. If the raw data received from the 

MCU is displayed on the GUI in any 

numerical form (e.g. int, float, etc.), the test 

was successful. 

 

3) Check using a counter if GUI is updating at an 

acceptable rate. 

      Verification Process: 

(Continued on next page) 
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1) Repeat Step 1 of Requirement 2 of the User 

Display, and add a counter that keeps track 

of how many times the GUI has updated 

each second (counter does not have to be 

visible on GUI). 

2) Connect MCU to ICM-20948 IMU, and 

connect MCU to host computer via 

Bluetooth. 

3) Run the Processing script for at least 10 

seconds while performing Step 4. 

4) Simulate conducting at 160 BPM as 

described in the IMU subsystem 

requirements, Req 4, Step 5. If the counter is 

at least equal to 2 for every second the script 

was run, the test was successful. 

 

C.5. Power Supply 

Requirement Verification Verified? 

Li-Poly Battery 

1) Supply +3.7V ± 5% 

power and stores 

2500 mAh ± 5%  of 

charge.  

 

 

 

 

 

 

 

 

 

 

2) Lifetime per charge 

of the sleeve should 

be at least 4 hours of 

usage. 

 

 

 

 

 

 

 

Li-Poly Battery 

1) The current output will be confirmed to be within the 

acceptable range with a digital multimeter.  

      Verification Process: 

1) Ensure the battery has been fully charged 

(reads  +3.7V ± 5%). 

2) Attach a 11 Ohm resistor to the battery, 

the equivalent resistance of the entire 

circuit.  

3) Attach DMM probes to respective JST 

connector pins of the battery. 

4) Measure and record current at 5 minute 

intervals for 60 minutes. 

5) Confirm that less than 2375 mA was 

extracted. 

 

2) The lifetime of the sleeve will be measured while it is 

turned on. 

      Verification Process: 

1) Ensure the battery has been fully charged 

(reads  +3.7V ± 5%). 

2) Attach an 11 Ohm resistor to the battery, 

the equivalent resistance of the entire 

circuit.  

3) Attach DMM probes to respective JST 

connector pins of the battery. 
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3) Must not exceed an 

operating temperature 

that can damage the 

user’s skin (44℃) 

[17].  

 

4) Measure and record I and V at half hour 

intervals for 4 hours. 

5) Confirm the voltage of the battery is at 

least 3.7 V.  

 

3) The temperature of the battery will be measured with 

a thermistor.  

       Verification Process: 

1) Ensure the battery has been fully charged 

(reads  +3.7 V ± 5%). 

2) Attach a 11 Ohm resistor to the battery, 

the equivalent resistance of the entire 

circuit.  

3) Attach the thermistor to DMM probes and 

hold against battery. 

4) Measure and record the temperature at 30 

minute intervals.  

5) Terminate verification process when the 

fourth hour is reached.   

 

 

 

 

 

 

Y 

Linear Voltage Regulator 

1) Voltage must be 

regulated to 

+3.3V ± 5% for 

the Bluetooth 

module, 

microcontroller, 

and the VDD pin 

on the IMU  

Linear Voltage Regulator 

1) Stable voltage outputs at the desired values will be 

measured and observed through oscilloscope 

waveforms. 

      Verification Process: 

1) Attach the oscilloscope GND probe to 

GND of the PCB and the signal probe to 

the VDD input pin of the Bluetooth 

module. 

2) Supply regulator with 3.7V DC from a 

power supply. 

3) Ensure output voltage remains 3.3V. 

4) Repeat steps 1-3 for the microcontroller 

and the VDD pins on the IMU. 

 

Y 

On/Off Switch 

1) Switch must have 

an operating force 

above 1000 grams 

[8, 9]. 

On/Off Switch 

1) Check that the operating force of the switch is above 

1000 grams. 

      Verification Process 

1) Connect switch in series with a resistor 

and battery. 

1) Attach DMM probes parallel to the 

resistor. 

2) Ensure the switch is initially in the “OFF” 

position by checking that the voltage of 

N 
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the resistor is 0V. 

3) Stack weights on top of the switch, until 

the switch is turned on and a non-zero 

voltage is measured across the resistor. 

4) Check the size of the weights to ensure 

that it is over 1000 grams. 
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APPENDIX D: Current and Supply Voltage Requirements 
 

Component Current Requirements Voltage Requirements  

(Typical Operating Voltage)  

 ICM-20948 9DoF IMU 

Breakout Board 

Max: 3.11 mA 3.3 V 

Bluetooth Module (HC-05) 250 mA in full operation 

(transmitting data).  

30 mA when in standby. 

3.3 V 

ATMega328P Microcontroller 1.5 mA 3.3 V 

1-position DIP Switch Max: 25 mA Max: 24 V 

Status RGB LED  R: 30 mA (max) 

G: 25 mA (max) 

B: 30 mA (max) 

R: 2.2 V 

G: 3.3 V 

B: 3.3 V 

LP2985 Low-Noise Low-

Dropout Voltage Regulator 

Output: 150 mA Supply Input Voltage:  

Min: 2.2 V 

Max: 16 V 

Relevant Fixed Output 

Options: +3.3V 

Lithium Ion Polymer 

Rechargeable Battery 

Typical: 2500 mAh Nominal: 3.7 V 

 

 

To calculate the battery capacity in mA-hours needed for the subsystems on the sleeve, we add 

the maximum currents drawn by each subsystem: 

 

3.11 𝑚𝐴 +  250 𝑚𝐴 +  1.5 𝑚𝐴 +  25 𝑚𝐴 +  30 𝑚𝐴 = 309.61 𝑚𝐴  
 

If we want the fully charged MBA sleeve to last 4 hours, we utilize the following equation: 
 

 
It is good practice to assume our battery will have less than ideal battery life. This can be 

compensated with the assumption that a real-world battery life will be 75% of its theoretical 

value. The parameters used for calculating the battery capacity on the sleeve are 309.61 mA for 

the current draw and 5.5 hours (approximately 1.5 hours more than we would expect) for battery 

life. This results in a battery capacity requirement of at least 1702.86 mAh. Because the largest 
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voltage needed for these components is 3.3 V, we needed a battery that can supply at least this 

amount as well. We chose a Li-Poly battery with a nominal voltage supply of 3.7 V and a typical 

supply current of 2500 mAh to extend the lifetime of the sleeve to approximately 8 hours before 

charging is needed.  
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APPENDIX E: Parts Cost Table 

Name Manufacturer Part Number Quantity Unit Price ($) 

Rechargeable Li-Poly 

Battery 3.7V 

Adafruit LIPO785060 

 

1 11.49 

USB Li-Ion/Li-Poly 

Charger v1.2 

Adafruit MCP73833/4 1 19.42 

Mini B to USB Adapter 

Cable 

Amazon N/A 1 6.28 

LDO Voltage 

Regulator 

Texas 

Instruments 

LP2985-33DBVR 1 0.51 

IMU Breakout Board Invensense ICM-20948 1 5.91 

HC-05 Bluetooth 

Module 

DSD TECH HC-05 1 8.99 

ATMega328P MCU Microchip ATMega328P-PU 1 2.08 

DIP Switch CUI Devices DS04-254-SMT 1 0.70 

Green LED SparkFun COM-10633 ROHS 1 0.55 

Velcro Fastener Strips VELCRO N/A 1 5.79 

JST Connector Elechawk JJRC H36 H67 1 0.80 

.01 uF Capacitor KEMET C0805X103K5RAC3316 1 0.33 

.1 uF Capacitor KEMET C0805C104K5RAC7411 1 0.25 

2.2 uF Capacitor KEMET C0805C225K4REC7210 1 0.30 

20 pF Capacitor KEMET C0805X200J5GACTU 2 0.38 

750 Ohm Resistor TT Electronics PFCW0805LF037500B 1 0.99 

10 Kohm Resistor Vishay MCU0805PD1002DP500 1 0.66 

Plastic Project Box Zulkit B07WCKF6P4 1 2.00 

PCB PCBWay N/A 1 0.50 

Total    $68.31 
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APPENDIX F: HC-05.ino Program 
/* 

AUTHOR: Hazim Bitar (techbitar) 

DATE: Aug 29, 2013 

LICENSE: Public domain (use at your own risk) 

CONTACT: techbitar at gmail dot com (techbitar.com) 

*/ 

 

 

#include <SoftwareSerial.h> 

 

 

SoftwareSerial BTSerial(10, 11); // RX | TX 

 

 

void setup() 

{ 

  pinMode(9, OUTPUT);  // this pin will pull the HC-05 pin 34 (key pin) HIGH to switch module 

to AT mode 

  digitalWrite(9, HIGH); 

  Serial.begin(9600); 

  Serial.println("Enter AT commands:"); 

  BTSerial.begin(38400);  // HC-05 default speed in AT command more 

} 

 

 

void loop() 

{ 

 

 

  // Keep reading from HC-05 and send to Arduino Serial Monitor 

  if (BTSerial.available()) 

    Serial.write(BTSerial.read()); 

 

  // Keep reading from Arduino Serial Monitor and send to HC-05 

  if (Serial.available()) 

    BTSerial.write(Serial.read()); 

} 

 


