
VR Disability Accessibility

Team 27: Evan Miller (emm2), Justin Zhou (jezhou2), Vinith Raj (vinithr2)
ECE 445 Design Document: Fall 2020

TA: Dean Biskup

Abstract
This report highlights our mission to create an accessory for VR devices, built specifically for
users that have upper body mobility issues. In order to accomplish this goal, we investigated
ways to provide input using your feet, as well as determining the best method to convert this
input into usable signals for VR software. The paper begins with a project overview, and
continues with details about the design of our various components, the assembly of our
hardware, and the frameworks we used to test the functionality of our subsystems. Verifications
and results for the subsystems, as well as details about the costs incurred, are presented
afterwards. We conclude with details of our accomplishments, uncertainties, and ethical
considerations.

Table of Contents

1 Introduction 1
1.1 Problem and Our Solution 1
1.2 High Level Requirements 2
1.3 Block Changes Over the Semester 2

2 Design 3
2.1 Design Procedure 3

2.1.1 Physical Design Procedure 3
2.1.2 Electronics Design Procedure 3
2.1.3 Software and Driver Design Procedure 5

2.2 Design Details 5
2.2.1 Physical Design Details 5
2.2.2 Electronics Design Details 6

2.2.2.1 Microcontroller 6
2.2.2.2 AD Converters 7
2.2.2.3 Load Cells 8
2.2.2.4 NAND Mux 9
2.2.2.5 USB to Serial Adapter 10

2.2.3 Software and Driver Design Details 10

3 Verification 13
3.1 Physical Design Verification 13
3.2 Electronics Design Verification 13
3.3 Software Design Verification 14

4 Costs 15
4.1 Parts 15
4.2 Labor 15
4.3 Total Cost 15

5 Conclusion 16
5.1 Accomplishments 16
5.2 Uncertainties 16
5.3 Ethical Considerations 17

References 18

Appendix 19

1 Introduction

1.1 Problem and Our Solution
As the world advances, virtual reality (VR) devices are becoming increasingly popular. As VR
becomes more advanced and consumer friendly, there is good potential for developers to make
more gaming, resource, and teaching applications. Currently, however, VR is inhospitable for
people with disabilities. This is especially true of people with disabilities of the arms or hands,
because the devices are largely operated through hand-held controllers. There are already full
body capture devices and haptic feedback devices available in the market, but nothing built
specifically for people with upper body mobility issues.

There are a number of controllers in the market, like the QuadStick FPS game controller [1] and
Microsoft Adaptive Controller [2], meant for people with disabilities. However, these controllers
are expensive and not developed to be used in a VR environment. There is one “leg-based”
controller for VR on the market, the 3D Rudder Foot Motion Controller, however, there are a
number of complaints about it. Specifically, it is difficult to control and slide around on the
ground. It should also be noted that there is praise, largely from people with upper body
disabilities, but this support can be attributed to the fact that it is the only device that addresses
their issues on the market [3], so there are few products to compare to.

Our design is broken up into three major sections: the Physical Design, the Electronics Hub, and
the PC software. We use two load cell sensors for each input, with a combined maximum load of
150 kg per location with four locations. The physical input section is in the Physical Design
block of Figure 1.1. The analog data is then digitally converted by two converters. These send
their data to a microcontroller that parses and sends data to whatever personal computer (PC) the
VR systems are connected via the USB-to-Serial converter. This section of the design is in the
Figure 1 Electronics Hub block. The PC should then apply these signals as control inputs. We
were unable to fully implement the bridge between PC inputs and a game system due to time
limitations, but we were able to prove that the data could be parsed into different inputs and
received by the PC for further processing, and believe that it would not take significant
development to finish the software part of our design. The unfinished part is the xInput line of
the PC block in Figure 1.1, but that specific signal type could be replaced with keystroke presses
or any number of game controller protocols to be functional.

1

Figure 1.1: Block diagram of final design

1.2 High Level Requirements
The high level requirements for this project are as follows:
● Latency

The input should be smooth, without volatile signals and latency should be at most 60 ms
to ensure the user has an experience with minimal lag.

● Compatibility
The inputs are compatible with most VR software on computers.

● Comfort
Foot controls can be used without discomfort over a period of one hour.

1.3 Block Changes Over the Semester
We began the semester with a power system with a linear regulator that utilizes batteries to
power our design, and a bluetooth connection that would wirelessly send data. We realized that it
would be much simpler to use the 5 volt power provided by a USB port than it would be to make
a power system with a 5 volt linear regulator, and since a USB to serial converter can provide
both, we removed the power system and wireless bluetooth parts of our design, and powered it
and transferred data via the USB port. In the final product, the voltage source is stable enough to
provide power to all the components without initiating brown-outs, and we achieved stable
voltage levels. However, there were variations in the smaller voltage levels recorded on our
sensors, which could be potentially attributed to the +/- 5% on the voltage output of the USB
while under load. This is the only change that was made to the block diagram.

2

2 Design

2.1 Design Procedure
In our design, we aimed for a simpler, more stable controller than the popular devices in the
market. Instead of having the user sit down and rock their feet on an unstable ball, we wanted a
design that used pressure sensors under the feet to allow for more comfort and accuracy for user
input. This also allows for four inputs (front and back for both feet), which is three more than the
one analog input from the gyro-based design that is currently sold in the market. This design also
allowed for comfortable pads to be put on top of the sensors, improving the feel of the device
over long term use. Since the controller is stable and not likely to move during use, it can also
directly pull power and send data using a USB port instead of having to have its own power
source and being forced to send data wirelessly.

2.1.1 Physical Design Procedure

For our physical design block, we brainstormed the different potential ways a person could make
physical inputs into a program. We then came up with a number of basic designs, like wearable
pressure pads, but then settled on a footpad controller, since it could take multiple inputs
depending on how a foot’s pressure is applied and seemed like it would be less uncomfortable to
use. We then discussed different design options, like making the inputs pads that could attach to
shoes in order to accommodate all foot sizes. We also looked at other tools that were on the
market and eventually settled on the four input footpad design. The current design has a solid
board on bottom, a ring around each sensor to facilitate sensing, and a pad on top of each set of
two sensors for user comfort. Each pad is separated so that the pressure applied to the entire
board doesn’t get passed on to the incorrect controllers and also because it makes it easier for the
user to determine where the input locations are so that they can navigate the inputs while they
have their headset on.

2.1.2 Electronics Design Procedure

For our Electronics Hub block, we have two analog to digital converters, with two channels each.
We made this decision, because it was the bare minimum number of converters necessary, and
fewer parts means a smaller PCB and electronics box as well as a smaller chance of part failure.
We found that swapping between channels on the converters to access both inputs increases
latency from 10 ms to around 60 ms. While the final block design only has two converters, using
four converters instead and not swapping between channels would allow for 10 ms response

3

times and still be within the accepted power range of 500 mW (5 V * 100 mA). Figure 2.1 shows
how the final circuit for our PCB was designed, its main purpose being to hold each of the parts
and chips for our design, and integrate them together.

Figure 2.1: Full PCB schematic

Since power from the standard USB port and the power consumption of each of our parts is
relatively low, there are no specific equations that went into determining if our power design was
functional, other than adding together the maximum power draws of each part and ensuring that
their sums were under the maximum power output of the USB port. We did have to determine
the latency in milliseconds for verification, which is

1000 / IPS = LMS (1)

4

where IPS is the inputs per second and LMS is the latency in milliseconds. To find a converter
that could output at these speeds, we looked at a number of converters and calculated their
operations per second, which is

CF/ (SC + NOB + EB) = OPS (2)

where CF is clock frequency, SC is setup cycles, NOB is number of output bits, EB is number of
end bits, and OPS is operations per second. If the LMS equation was below 60 ms where the IPS
was substituted by the OPS, then it was a viable converter.

2.1.3 Software and Driver Design Procedure

For our PC block, we have code for our microcontroller that polls each of the converters in order
to find their conversion values and output that data back to the PC via the USB-to-Serial adapter.
We then use the Arduino drivers to pick up these signals. The microcontroller, based on it’s
analog to digital converter select at the time checks if the input value is outside of the threshold
since the last input in order to determine if there was a change in input value, and if there was , it
sends a signal back to the Arduino In System Programmer with the appropriate conversion value
and from which sensor input it was obtained. The final part of our project, which was not
implemented, would be to use a standard Arduino library to make the inputs act as keystrokes.
The output could easily be demonstrated in a sample Unreal Engine program. This choice of
programming tool was chosen, because if there is already a functional bootloader that comes
with our microcontroller, then using it simplifies design and reduces potential bugs with our
programs.

2.2 Design Details

2.2.1 Physical Design Details

The physical design, in Figure 2.2, was made with the comfort of the user in mind, with padding
put on top of each of the sensors and a stable board acting as the bottom layer to prevent sliding
and provide stability. Each of the different sensor pads are snugly placed next to each other in a
raised area of the board to prevent them from falling out/off, with the sensors attached to the
snugly fitted, free floating pads so that they can compress and decompress. A 3-D printed ring is
attached between the sensor and top pad to help compress the edges of the sensor to increase
sensitivity. The pads are made of a solid layer of wood for stable inputs, followed by a hard layer
of foam to prevent tearing, a soft layer of foam for comfort, and a vinyl layer for endurance and
to keep the foam in place. The electronics hub box was made separately, and it can be designed

5

to be smaller and fit in between the two sensors, keeping the hub and controller together, instead
of forcing someone to walk around with both of them separately. Each of the pads have a number
and direction on the bottom of them so that they can be placed back into their locations easily if
they need to be removed for access to the sensors. In the side of each raised barrier that keeps in
the pads are holes to allow wires to go through and prevent them from wearing down from the
friction of the pads on them if they were draped over the sides instead.

Figure 2.2: Final physical design schematic and controller board

2.2.2 Electronics Design Details

2.2.2.1 Microcontroller

For the programmable microcontroller, we used an ATMega328p-pu microcontroller to
implement the controller logic required for the project.

We considered a number of different microcontrollers, such as the ATMega2560 or the
Raspberry Pi. We ultimately chose the ATMega328p-pu because it had all the features we
needed, with enough extra inputs to accommodate changes in our design or bug fixes that would
need extra inputs/outputs.

We also chose the ATMega328p-pu because the chips that we could find online included
Arduino bootloaders, which means that it did not require additional effort to program or bootload
the chips. While bug fixing our microcontroller, we realized that both a ceramic oscillator and

6

the internal clock of the microcontroller were too inaccurate, so we settled on using a crystal
oscillator for maximum accuracy and a location was left on the PCB for that part to be installed.
Figure 2.3 shows its location on the schematic and the PCB board.

Figure 2.3: ATMEGA328p-pu in schematic (left) and final PCB (right)

2.2.2.2 AD Converters

We used AD7705 AD Converters for this project. We chose this chip because of its maximum
serial output speed, its ability to take two inputs, and its 16-bit serial output (for accuracy of
measurement). In the documentation, communication also required 4 cycles for startup polling,
and there were no end bits. According to Equation 1 and Equation 2, the OPS is 500/(4 + 16 + 0)
= 25 operations per second and LMS is 1000/25, which equals 40 ms latency. Ceramic
oscillators are used to keep a 500 Hz speed. Figure 2.4 shows the location of the converters in
our schematic, and where one of them is on the PCB.

Figure 2.4: Converter locations in schematic (left) and one location on final PCB (right)

7

Another AD Converter that we considered using was an HX711 AD Converter. This AD
Converter had a higher resolution of 24 bits, however the maximum output speed is only 80Hz,
and because it needed to serially output even more data than the AD7705, the denominator of
Equation 2 was much larger and the numerator was much smaller than with the AD7705,
resulting in a significantly lower OPS. This OPS is much too slow for the latency requirements
for our project, and the converter was subsequently rejected.

2.2.2.3 Load Cells

We use 50kg strain gauge load cells for this project. We chose these cells because they are able
to support the required weight for this project and have a sufficiently high sensitivity voltage.

These load cells have a maximum excitation voltage of 10V, which is well above the 5V that the
project runs off of. The sensitivity of the load cells are 1.0 +/- 0.1 mV/V at the maximum rated
capacity of 50kg.

We also considered a number of different ways to detect if pressure is being applied to the pad
by the user, such as using piezoresistive force sensors or spring-based potentiometer systems,
however there were drawbacks and limitations of those designs compared to a strain gauge load
cell-based design.

In our final design, we use one load cell per input pad on the controller, for testing’s sake. The
load cells were wired to the AD Converters based off of the reference image in Figure 2.5,
however the AD converter pictured is different from the AD7705 we used.

8

Figure 2.5: Reference Wiring Diagram for Single Load Cell

2.2.2.4 NAND Mux

Since we use the SPI communication protocol to interact with each of the analog to digital
converters, we multiplexed their outputs, so that when communicating to them, only the selected
converter outputs it’s data to the MOSI. While looking at MUXes, we realized that it would be
simpler to implement a 2 to 1 mux using nand gates on our own, since there are very few
alternatives on the market, and most muxes are larger or more complicated than our project
required. Since one NAND chip can be used to act as a mux, we use one to select between the
two converters. Figure 2.6 shows the simple mux design and its location on the PCB.

Figure 2.6: 2-1 NAND gate multiplexer schematic (left) with its location on the PCB (right)

9

2.2.2.5 USB to Serial Adapter

In order to send signals between the PC and the microcontroller, we use a USB to Serial Adapter.
We used the SparkFun USB to Serial Breakout FT232RL which uses the FTDI FT232RL chip to
perform serial to USB conversions.

The reason we chose to use a breakout board instead of the FT232 chip itself is because the
breakout board comes with a micro-USB port included. This saves us from having to source and
solder our own USB port, allowing us to get the project done within the timeframe. As shown in
figure 2.7, we include a designated location for the FT232 board in our schematic. The
microcontroller communicates with the FT232 board using the TXD and RXD pins. We also use
the VCC provided by the USB port to power the rest of our board, eliminating the need for a
dedicated power supply.

Figure 2.7: USB to Serial adapter slot in schematic (left), USB to Serial board on PCB (right)

2.2.3 Software and Driver Design Details
In terms of software design, we use code on the microcontroller to read the input from the AD
Converters, check if the values reach a certain threshold, and output the proper controller input if
it does reach the threshold. Figure 2.8 contains the high-level software flowchart for our project.

10

Figure 2.8: High-level software flowchart

Table 2.1 shows the mapping of pins from the microcontroller. In the final design of the
schematic, we specify pin 11 as MOSI, pin 12 as MISO, pin 13 as SCK, and pin 10 as CS. MOSI
goes to the DIN pin on both of the AD7705s; MISO goes to the output of the NAND MUX for
the DOUT signals from both the AD7705s; CS goes to the CS pin on both AD7705s; SCK goes
to the SCLK pin on both of the AD7705s; and we have pin 8 set as the MUX selector to choose
which chip’s data to read. With these pins, we initialize and poll data from either AD7705 chips.

Table 2.1: Microcontroller pin mappings

11

ATMega328p Pin (in software)

Pin 11 (MOSI) AD7705 DIN (both chips)

Pin 12 (MISO) MUX Output

Pin 13 (SCK) AD7705 SCLK (both chips)

Pin 10 (CS) AD7705 CS (both chips)

Pin 8 (MUXSelect) NAND MUX Selector

The final version of the software is very similar to the high-level flowchart, however there are a
number of changes. One change includes throwing out any impossible values (e.g. the value
from an AD converter spikes/dips very high/low) caused by interference or a bad connection.
Another change is instead of checking for load cell values exceeding a set threshold, we check
for an increase in value between two consecutive AD Converter reads. This indicates that the
user has applied more pressure to an input and intends to activate it. This helps prevent
accidental inputs from being sent when the user is not intending it. The following code snippet in
Figure 2.9 shows an example of the finalized code:

Figure 2.9: Example snippet of finalized code with error checking

The code first stores the result of the AD Converter reading into v1. Then, if the new v1
increases enough (i.e. the user wants to send the input), but is not an erroneous value, then it
outputs a signal to the PC, updates the previous value, and loops. Otherwise, as long as the value
is not erroneous, it updates the previous value and loop.

12

3 Verification

3.1 Physical Design Verification
For the physical design, we had to verify that the controller is comfortable to stand on for half an
hour - roughly the average amount of time a user spends in VR. We surveyed a number of people
on their level of comfort after standing on the controller for half an hour, on a scale of 1 to 10.
We expect a passing score to be a 7.5. This verification clearly passed, with an average comfort
rating of 8.5. The controller must also not break when a person stands on the controller, which it
did not break at all during testing. This shows that our physical design is fully functional and has
met our requirements.

3.2 Electronics Design Verification
Our electronics requirements verify that the electronics hardware portion of our project works as
intended and fulfills our high-level requirements for latency and smoothness of input.

To test most of the electronics requirements, we needed to ensure that all the different parts were
functional. Unit testing each of the chips showed that every piece was functional. Then, to verify
that the overall design is functional, we assembled and tested the circuit on a breadboard, and
then the PCB. This verification was successful since behaviors between the breadboard circuit
and PCB circuit were identical.

To test the latency requirement, we uploaded code to the microcontroller which polled the AD
Converters and output the value to the PC. We then counted the number of inputs we received
within one second to get the latency of the system. The final circuit did not meet this
requirement, having a latency of 66 ms as opposed to our required 60 ms. There are a few design
changes we could have made that would have allowed us to get down to as low as 10 ms of
latency. Due to time constraints, however, we were unable to implement these changes.

Another requirement is that there must not be a greater than 1% error rate in the AD Converter
readings. For one of the AD Converters, this requirement was met, however in the second AD
Converter we were using, it would very regularly give false or erroneous data (large spikes/dips
in the readings). We are unsure as to the exact cause of these errors, however, we have tried
multiple solutions such as replacing the chip, replacing the ceramic oscillator, and changing the
microcontroller code. None of these changes would fix the errors we were getting from our
second AD Converter. However, some other changes would be to try to replace the ceramic

13

oscillator with a crystal oscillator or to try on a new PCB. However, due to time constraints we
could not attempt other options.

3.3 Software Design Verification
To test that our software can properly parse the AD Converter values, we uploaded code to the
microcontroller that would simply output the readings from the AD Converter directly to the PC.
We can then test that the values output by the microcontroller changes appropriately when
pressure is applied to the load cells. Figure 3.1 shows a labeled graph showing the AD Converter
values changing when weight is placed on the load cell.

Figure 3.1: Graph of load cells being pressed down

Another software requirement is that it sends the appropriate input signal to the PC when the user
steps on an input. Due to a firmware issue with the microcontroller, we were unable to directly
send keyboard inputs to the PC. However, the microcontroller is still able to print to the
computer, so we were able to print out the input in our demonstration. Additionally, there is a
software library that allows the microcontroller outputs to be used in the Unreal Engine game
engine, effectively fulfilling the requirement that the controller can be used in games or other
software. Due to time constraints, this was unable to be included in the final product, however it
would have allowed us to meet our requirements.

14

4 Costs

4.1 Parts
Table 4.1: Part Cost Analysis

4.2 Labor
Table 4.2: Labor Cost Analysis

4.3 Total Cost
Table 4.3: Total Cost

15

Part Part Number Unit Cost Quantity Cost

ATMega328p
Microcontroller

ATMega328p-pu $7.50 1 $7.50

AD7705 AD
Converter

AD7705BNZ $11.19 2 $22.38

USB-to-Serial
Adapter

FT232RL

$15.95 1 $15.95

SN75HC00N Quad
2-Input NAND Gate

SN75HC00N $0.258 1 $0.258

50kg Load Cells SEN-10245 $10.95 4 $43.80

Team Member Hourly Rate Total Hours Total = Hourly Rate *
2.5 * Total Hours

Justin Zhou $40.00 200 $20,000

Vinith Raj $40.00 200 $20,000

Evan Miller $40.00 200 $20,000

Parts Subtotal Labor Subtotal Grand Total

$89.89 $60,000 $60,089.89

5 Conclusion

5.1 Accomplishments
In the end, our design accomplished much of what we set out to do, and provided an acceptable
benchmark upon which we can improve our design in the future. We find that our design is
comfortable and stable for users, and that the granularity of the responses we obtained from our
sensors are sensitive enough to detect small differences in weight, potentially allowing for
precise movements to be made. The code is also able to, mostly, mark outlier data, and the inputs
(for one of the feet) are stable. The data attributed to each foot is correctly parsed and
consistently attributed to the correct sensing location.

5.2 Uncertainties
Despite the successes, there are still some uncertainties with our design. We found that the
latency is 6 ms above the design goal, however we know why the latency increased, and already
have a solution to that issue. We will add two more AD converters and instead of swapping
channels, we will just use one channel per chip and a 4-to-1 MUX to swap between converter
outputs. This change will theoretically decrease the latency down to around the 10 ms range,
which stays competitive with other game controllers. Another uncertainty with our design is in
the extreme spikes in voltage data we occasionally see from one of our converters. Since the
other converter is not showing this issue, we believe that the extreme spikes are caused due to a
faulty connection or AD converter and that fixing that connection or replacing that converter
would fix the issue of outlying data spikes. If the problem persists, then it could be an issue with
noise in the PCB design and we will have to redesign our PCB. If none of these solutions fix the
problem, then clever coding workarounds will be better used to deal with the voltage spikes.
With regards to the PCB design, there is also an issue where there aren’t enough VCC
connections for clean REF + inputs to each of the converters and for each of the load cells to
access the 5 V from the USB, so we are forced to use a breadboard to safely provide power to all
of the parts. In a future redesign, all of the REF + inputs will be hardwired to VCC and a number
of VCC outs will be lined up so that they can be easily accessed by the load cells. The final
concern with our design is that the parsed signals are not used directly as controller inputs. This
concern has already been addressed in Section 1. All of the issues that we have encountered with
our project have prospective solutions, so we do not think that the specifications should be
lowered or changed to accommodate a less robust product.

16

5.3 Ethical Considerations
Due to the project dealing with VR, some obvious health concerns are evident. Virtual reality
headsets are known to cause nausea and anxiety, especially after extended usage. People with
disabilities might be at a heightened risk. In addition, VR headsets can also cause eye strain, and
even anxiety from all the stress of being in the virtual environment. These issues need to be
addressed as we develop this technology, and make sure our project does not affect users through
both accidental and intentional misuse. With regards to testing specifically, only the project
members tested the technology, but we did survey willing participants on the overall comfort of
the device. Since development time is relatively low, we are not certain that the project is ready
for beta testing with the target audience, however, alpha level testing can be completed by the
project team, as well as some able bodied participants that are aware of the minor risks. During
assembly of the electronics, the main danger is soldering. To mitigate the dangers of accidental
burns, we placed reminders around the soldering equipment to keep it unplugged when not in
use, and we placed the tool in the holder to mitigate the risks such as burns and fire.

With regards to ethical issues relevant to the project, IEEE Code of Ethics Section 1.1 [4]
discusses the importance of safety and health of the public, and we believe that we should ensure
that the project is safe for any user. Considering our target audience is people with disabilities,
for future testing, we need to be even more considerate of their needs to be safe and healthy
while using this project. Furthermore, we need to be clear about the effects of the technology and
the associated risks, and ensure we receive proper consent from testers via waivers. ACM Code
of Ethics Section 2.7 [5] is also quite relevant to our project because it is important for the public
to understand the technology we are using and how it works. This allows for projects like this to
gain even more attention. Virtual reality has a lot of potential, and it could yet be expanded to
help disabled individuals. By educating the public through proper conduct and safety
precautions, as well as helping them to understand the consequences of this technology on
society, we can collectively learn and continue our efforts in this field.

17

References

[1] “QuadStick FPS Game Controller.” quadstick.com QuadStick, 2020,
https://www.quadstick.com/shop/quadstick-fps-game-controller. September 17th, 2020.

[2] “Xbox Adaptive Controller.” microsoft.com Microsoft, 2020,
https://www.xbox.com/en-US/accessories/controllers/xbox-adaptive-controller. September 17th,
2020.

[3] “3D Rudder Foot Motion Controller for VR and PC Games and Applications with VR Mode,
Foot Keyboard Mode, Foot Mouse Mode, Foot Joystick Mode.” amazon.com Amazon,
December 29, 2016,
https://www.amazon.com/3dRudder-Foot-Motion-Controller-Applications/product-reviews/B01
MS26PFK. September 17th, 2020.

[4] “IEEE Code of Ethics” IEEE,
https://www.ieee.org/about/corporate/governance/p7-8.html. September 17th, 2020.

[5] “ACM Code of Ethics and Professional Conduct” ACM,
https://www.acm.org/code-of-ethics. September 17th, 2020.

18

https://www.quadstick.com/shop/quadstick-fps-game-controller
https://www.xbox.com/en-US/accessories/controllers/xbox-adaptive-controller
https://www.amazon.com/3dRudder-Foot-Motion-Controller-Applications/product-reviews/B01MS26PFK
https://www.amazon.com/3dRudder-Foot-Motion-Controller-Applications/product-reviews/B01MS26PFK
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics

Appendix

Figure ii.1: First iteration of block diagram

19

Figure ii.2: Second iteration of block diagram

Table ii.1: Physical Control Design Requirements

20

Requirements Verification

1. When a 10kg load is applied to the top of
the physical design foot pad, at least a .05 mV
difference is measured.

Equipment: Multimeter
Test Procedure:

1. Attach the load cell wires to
appropriate locations according to
schematic on a breadboard

2. Use a multimeter to measure the
change in voltage

3. Record the average value output by
the ATMega328 over 30 seconds with
no weight on the foot pad

4. Place the 1kg weight onto the foot pad
and record the average value output by

Table ii.2: Electronics Requirements

21

the ATMega328 over 30 seconds
5. Repeat steps 1-4 with all load cells.

Presentation of Results:
- The results will be presented in a table

which shows the difference in average
values with and without the weight.

2. After standing on top of the board for 30
minutes, a user does not feel more
uncomfortable than if they were standing on
plain carpet.

Method: Ask roommates and friends to test
Test Procedure:

1. Survey testers on scale of 1-10
2. Aggregate scores should average 7 or

higher, with 6 being explicitly stated
as the comfortability of carpet.

3. When a person of average American weight
(+/- 20 kgs) steps onto the foot pads, they are
able to stay standing on them without sliding
or falling off for 10 minutes.

Method: Asked testers about comfortability
Test Procedure:

1. Survey testers on scale of 1-10 at 10
minute mark

2. Aggregate scores should average 8 or
higher

Requirements Verification

1. The signals on the PCB arrive at the correct
locations.

Equipment: Breadboard
Test Procedure:

1. Wire up the breadboard according to
the PCB schematic.

2. Confirm functionality of other
requirements and expected outputs to
PC

3. Rebuild schematic on PCB
4. Confirm that the functionality from

the PCB matches the expected
response from the breadboard

Presentation of Results:
- A binary confirmation from the

product tester

2. The time from when a user applies pressure
to the load cell to when the signal is received
by the computer must be at or below 60ms.

Equipment: ATMega328, AD7705, Load Cell
Test Procedure:

1. Connect the USB-to-Serial to
computer

2. Restart the ATMega328 to begin

22

polling
3. Use the ArduinoIDE and timestamps

to count the number of average
responses a second

4. Multiply that response time by 4, one
for each analog-to-digital converter

Presentation of Results:
- The results will be presented as a chart

of average timings
Solution:

- It slows down when we swap
channels, so using 4 chips and 1
channel per would significantly
decrease the latency. To further
decrease latency, instead of using the
polling protocol, an interrupt protocol
can be used using the D_Ready pin on
each chip.

3. Outputs from the microcontroller have an
error rate of less than 1%

Equipment: ATMega328, AD7705, Load
Cells
Test Procedure:

1. Wire the ATMega328 and AD7705
according to schematic

2. Connect the circuit to the computer via
USB

3. Let the ATMega328 run for 5 minutes
with no weight on the load cells

4. Check that 99%+ of the outputs
fluctuates between a range of +/- 0.05
mv from the baseline voltage

5. Apply a 10 kg weight to the attached
load cell and record the new baseline
voltage

6. Check that 99%+ of the outputs
fluctuates between a range of +/- 0.05
mv from the baseline voltage

Presentation of Results:
- The results will be presented as an

average voltage with its standard
deviation

Provisional Result:
- Initially failed because of ceramic

oscillators on the ATMega328.

Table ii.3: Software Requirements

23

Succeeded when swapped to crystal
oscillator

Requirements Verifications

The ATMega328 polls the analog to digital
converters correctly and passes that data along
to the PC.

Equipment:PC
Test Procedure:

1. Connect USB-to-Serial to PC
2. Press down on foot pad
3. Use ArduinoIDE to find voltage

values of all inputs
4. Record data
5. Press down again with a different level

of force and record data
6. Repeat for each pad

Presentation of Results: Graph that show each
sensor being pressed with varying levels of
force. Each line represents voltage. X
represents time. Y represents voltage level.

The software properly sends an input signal
(key press) to the PC once a load cell has
exceeded a set threshold (a.k.a the user steps
on the pad)

Equipment: PC
Test Procedure:

1. Plug in USB-to-Serial converter
2. Restart ATMega328
3. Open word processor
4. Step on foot pad
5. Record if a key was output to word

processor
6. Repeat for each foot pad

Presentation of Results:
- Table comparing input values to

output values and expected output
values

Figure ii.2: First Schematic Design

24

Figure ii.2: Second schematic design

25

	Final Report Title Page and Appendix
	Final Report

