

REMOTE WATER PUMP
MONITORING SYSTEM

By

Masaki Sato
Raynaldi Yose Iskandar

Yun Mo Kang

Final Report for ECE 445, Senior Design, Fall Spring 2020
TA: Dean Biskup

09 December 2020
Project No. 18

ii

Abstract

Having access to a clean source of water still remains a challenge in some parts of the world.
Building water pumps in these areas is one part of the solution, while maintaining them with an
effective method of monitorization is another. For such rural areas, a wireless remote water pump
monitoring system would be an ideal solution. The monitor should be able to measure important
values such as temperature and vibration and send those data to a server. This data should then be
translated to a graphic representation on a website, so that anyone could see it and check if there
is any problem on the water pump.

iii

Contents

1. Introduction ... 1

1.1 Problem ... 1

1.2 Solution ... 1

1.3 High-Level Requirements ... 1

2 Design .. 2

2.1 Physical Design ... 2

2.2 Block Diagram .. 3

2.3 Hardware Design ... 4

2.3.1 Power Module... 4

2.3.2 Sensor Module .. 5

2.4 Software Design .. 7

2.4.1 Sensor Data reading on EPS 32 .. 7

2.4.2 WiFi and AWS IoT communications on EPS 32 ... 8

2.4.3 AWS Lambda ... 8

2.4.4 AWS Athena Database ... 9

2.4.5 AWS S3 and Website Hosting.. 9

3. Design Verification ... 10

3.1 Hardware Design Verification .. 10

3.1.1 Power Module... 10

3.1.2 Sensor Module .. 11

3.2 Software Design Verification .. 13

3.2.1 Sensor Data reading on EPS 32 .. 13

3.2.2 WiFi and AWS IoT communications on EPS 32 ... 14

3.2.3 AWS Lambda ... 14

3.2.4 AWS Athena ... 15

3.2.5 AWS S3 and Website Hosting.. 15

4. Costs .. 17

4.1 Parts ... 17

4.2 Labor ... 17

4.3 Schedule .. 18

5. Conclusion .. 19

5.1 Accomplishments .. 19

iv

5.2 Uncertainties.. 19

5.3 Ethical considerations ... 19

5.3.1 Ethics .. 19

5.3.2 Safety .. 20

5.4 Future work ... 20

References ... 21

Appendix A: Requirements and Verifications Table .. 22

Appendix B: ESP 32 C Code .. 27

Appendix C: AWS Lambda Python Code .. 30

1

1. Introduction

1.1 Problem
In remote regions of Indonesia, many rural villages are located very far from clean water sources.
Out of 264 million people in Indonesia, 28 million lack safe water and 71 million lack access to
improved sanitation systems [1]. Each day, villagers of a specific village named Nibaaf take three-
hour trips [2] to get clean water. In order to fight this problem, a non-profit organization called
Solar Chapter, affiliated by one of our team members, has been building water pump systems that
deliver clean water to villages in vicinity. However, they lacked a means to monitor and maintain
the water pumps. Any sort of downtime would have adverse effects on the villagers’ well-being,
therefore constant maintenance is crucial. However, due to the remoteness of the location, having
regular inspection is troublesome.

1.2 Solution
Our team is proposing a solution in the form of a remote water pump monitoring system. The
system takes the pump's basic operating data such as water flow and up-time measurement to
monitor the pump's behavioral trend. The device would also regularly measure safety parameters
including vibration and temperature of the water pump. The system would send an alert when it
receives undesired values so the operator can send in maintenance. Performing these precautions
can extend the longevity of these water pumps and prevent them from breaking down
unexpectedly. This would also prevent any downtime and greatly improve the sustainability of the
water system. The values measured from the sensors would then be transmitted remotely through
a cellular network to a cloud-based database system, which then will be visualized through a
website or an app. This will allow high accessibility for the operator. This system minimizes the
need of physical onsite personnel presence to only emergency maintenance and longer-term
physical inspections, while still keeping the water system dependable.

1.3 High-Level Requirements
 Microcontroller must process the output signal of each sensor of varying form and translate

them to a quantitative value. These values include flow, current, temperature, and vibration.
 Collected data must be transferred successfully without corruption through cellular

network connection to the cloud based database in an interval of 15 minutes.
 Once the cloud database is updated with new input from the microcontroller, the updated

information should also be included in the spreadsheets on the database server. The website
should reflect the new information every 24 hours.

2

2 Design
2.1 Physical Design

Figure 1: Placement of physical design on water pump system [3]

Figure 1 represents the real-life implementation of the system, with sensors mounted on the pump
to monitor its parameters underwater, while power and control modules remain unsubmerged in
the vicinity of the water source opening. For the prototype we have built, we did not concern
ourselves with a waterproof design, as we believe that specification is rather trivial to implement.
The real-life application also requires a rather long wiring between sensor module and control
module, another aspect we ignored in the prototype. The monitoring system we designed serves as
an add-on to an already existing water supply system. The pump itself is solar powered, hence the
idea of implementing a self-sustaining monitoring system in the real-life application. Clean water
is extracted from the source to be pumped to a reservoir, where further distribution happens to the
villages nearby. Thus, several of these monitoring systems need to be deployed on the various
pump sites.

3

2.2 Block Diagram

Figure 2: Block diagram of the remote monitoring system

The system’s block diagram is shown in Figure 2. Firstly, the power module serves as the power
supplier of the system. It mainly features a voltage regulator which regulates an arbitrary voltage
source down to a 3.3 V power signal to act as the main power line of the system. Next is the sensor
module, which can be categorized into two types: operational parameter sensor and safety
parameter sensor. Operational parameter sensor consists of water flow sensor and current sensor,
and is meant to monitor the pump’s basic operational data; while safety parameter sensor consists
of temperature sensor and vibration sensor, and is meant to give a warning flag once either one of
the parameters start to go out of the norm, indicating a physical issue with the pump. Data from
each sensor is sent to the control module where a microcontroller will process them to a
quantifiable value, and then packed into a JSON format to be transmitted through the internet to a
database in the data storage and visuals subsystem. The website will then read data from the
database and visualize them through graphs for the user to view.

4

2.3 Hardware Design

2.3.1 Power Module

Figure 3: Power module schematic

The circuitry of the power module is shown by Figure 3. The main control parameters of the
voltage regulator are the resistors R1 and R2, which determines the output voltage value by the
equations [4]:

𝑉௢௨௧ = 𝑉ி஻ ൬1 +
𝑅ଶ

𝑅ଵ
൰

𝑅ଵ + 𝑅ଶ ≤
𝑉௢௨௧

100𝐼ி஻

The desired Vout value is the 3.3 V to act as the main power line of the PCB, while VFB and IFB are
known parameters with values 0.8 V and 50 nA, respectively. So, solving these equations given
the known parameters yields the resistances R1 = 160 kΩ and R2 = 500 kΩ.

Solder joint SJ1 is a particularly important safety feature, as it initially disconnected the voltage
regulator’s output signal from the main power line. We needed to first perform a modular test on
the power module before making the connection to the power line, since we had no guarantee as
to how the voltage regulator will behave. Without the solder joint, the regulator’s output signal
will be directly connected to the power line, and if the voltage exceeds certain values, our
components risk being destroyed by overvoltage. Once we have ensured that the voltage value is
within the acceptable range of 3.3 V ± 5%, then we made the physical connection for the power
line. Solder joint SJ2, though, is simply a convenience feature, to give the option of either taking
power from a battery or from a constant voltage power source.

5

2.3.2 Sensor Module
Water flow sensor

Figure 4: Flow sensor schematic

The water flow sensor that we use operates based on the Hall effect, where water flow causes the
rotor to start rotating and periodically induces a voltage value [5] that matches the input voltage.
The data line alternates between this value and a zero volt reading as the water keeps flowing,
which means we obtain an output in the form of a square wave. By measuring the period of said
square wave, we can obtain the frequency and thus the flow rate through the mathematical model:

𝐹 = 11𝑄
where F is frequency in Hz and Q is flow rate in LPM [6].

Our initial design was to provide the sensor with a 5 V input, but this meant the output in the form
of a 5 V amplitude square wave cannot be directly read by the microcontroller since it runs on 3.3
V power (readable voltage must be <3.3 V). The circuitry required to modify the flow sensor data
is shown by Figure 4, which utilizes voltage divider to tune down the amplitude to ⅔*5 = 3.3 V
for the microcontroller to read. Since we have a square wave, the microcontroller can simply
perform a digital read on the flow data line to obtain alternating values between logic 1 and 0 to
then measure period, obtain frequency, and finally calculate flow rate using the above equation.

Current sensor
The current sensor in our system is powered on by a 3.3 V power signal and has an input current
range of ±31 A with a sensitivity of 45 mV/A [7]. Input current comes in and out of IP+ and IP-
ports respectively, as seen in Figure 5. Since we are only concerning ourselves with positive
current measurement, we have an output voltage range of 0 V to 1.395 V, well within the value of
readable voltage value using the analog read function.

6

Figure 5: Current sensor schematic

Temperature sensor
The temperature sensor is powered using a 3.3 V power signal and outputs digital data. Sensor
data is directly connected to a GPIO, but with a 4.7 kΩ resistor between the data and power lines.
Data processing for this sensor is solely handled by a library to convert digital data to temperature
value in degrees Celsius.

Vibration sensor
We are using a piezoelectric device as our vibration sensor, which means that the sensor reacts to
mechanical stress and outputs a voltage oscillation with varying amplitude accordingly. There is
no simple way to definitively measure a vibration, but for our implementation we are especially
only concerned with an arbitrary form of measurement to be able to differentiate between normal
and excessive vibration. Out of the sensor’s two terminals, one is connected to ground, while the
other to a GPIO to be read using the analog read function.

7

2.4 Software Design

Figure 6: Block Diagram of Data Flow in Software

As represented in Figure 6 above, the functionalities of C code on ESP 32 are reading sensor data,
processing the data into JSON format, and then sending data to AWS IoT through WiFi.

2.4.1 Sensor Data reading on EPS 32

ESP32 reads sensor data from GPIO pins.

Water flow sensor data is read using built-in function pulseIn(). The function pulseIn() reads HIGH
or LOW pulse in microsecond. Since the flow sensor outputs constant HIGH when it is inactive,
pulseIn() reads LOW in this program. The equation for flow rate calculation is as follows:

𝐿𝑃𝑀 =
1

(𝑝𝑢𝑙𝑠𝑒𝐼𝑛() × 2) × 1000000 × 11

Reading in seconds is needed, so the value is divided by 1000000. Single pulse is half of period,
so the value is multiplied by 2 to get the whole period. Inverse is frequency, and frequency divided
by 11 is LPM, which is the unit we want.

8

Current sensor reading is read using the default analogRead() function.

OneWire[8] and DallasTemperature[9] are used to read temperature sensor data digitally.

Vibration sensor data is calculated by averaging the 40 samples of analogRead with 25 ms intervals
in between. This approach was chosen because precision is not needed, and ESP32 cannot know
where the wave form starts. The 25 ms interval is chosen because it is 1.5 times larger than the
period of vibration sensor signal, which is 16 ms. The sample interval is purposefully out of sync
with signal period in order to avoid having large dependencies on signal phase.

2.4.2 WiFi and AWS IoT communications on EPS 32

WiFi is connected through WiFiClientSecure library. It connects to the WiFi network using WiFi
name and password stored in the header file.

AWS IoT is connected through MQTTClient library. Amazon root certificate, device certificate,
device private keys, and AWS IoT endpoint URL stored in header file are used to connect to AWS
IoT through MQTT protocol.

Build-in ArduinoJson library is used to format sensor data into JSON, which is a suitable format
for MQTT data transmission. This JSON data is published to esp32/pub IoT topic. This topic is
accessible through AWS IoT services.

2.4.3 AWS Lambda

AWS Lambda script is responsible for 3 tasks: processing any incoming data from AWS IoT,
storing data into the database, and updating JSON files on S3 bucket.

AWS Lambda script is triggered when AWS IoT receives data on esp32/pub endpoint. Since ESP
32 has an internal clock that starts at 0 millisecond, which is 1970 January 1st, AWS Lambda script
assigns current date time to JSON data. AWS Lambda script also computes warning flags based
on temperature and vibration data.

Lambda script then executes the query to insert the new data into the table. Then, data from the
past 8 hours are queried. This data overwrites JSON files on S3 bucket.

9

2.4.4 AWS Athena Database

Figure 7: Database Schema

Figure 8: Data Stored in Database

Figure 7 shows the database schema for the table pumpdata. Datetime is the primary key, which
ensures every row is unique. Figure 8 shows some experimental data stored in the database. The
database stores data for four sensors, current date time, and two warning flags. Data for four
sensors are in float. Datetime is in timestamp. Warning_one and warning_two are in integer, but
they are used like boolean in practice.

2.4.5 AWS S3 and Website Hosting

After the Lambda script inserts and queries the newest data from Athena into S3 bucket, the
frontend website reads the JSON file and outputs the content into graphs. We used ajax to unpack
the contents of the JSON file, and the graphs were implemented using Google Charts.

10

3. Design Verification
3.1 Hardware Design Verification

3.1.1 Power Module
Table 1: Voltage measurements of power module

Vin(V) Vout(V) VFB(V)

3 3 2.27

3.3 3.3 2.56

3.5 3.5 2.76

3.8 3.8 3.05

4 4 3.3

4.3 4 3.3

4.5 4 3.3

We performed the power module test by feeding the voltage regulator a series of increasing Vin
values and observing the voltage values of Vout and VFB for each case, with the results shown in
Table 1. Despite expecting our Vout to saturate at 3.3 V, our Vout happens to saturate at 4 V instead,
which means it cannot be used as the main power line as said value will most likely break most of
our components. This error might be due to a component, specifically, a capacitor which is too
small to be soldered by hand, being omitted from the circuitry.

Fortunately, the other set of data in Table 1 shows our VFB saturating at 3.3 V as Vin exceeds 4 V,
so our solution is to connect VFB to the main power line instead using a wire as shown in Figure 9.
Naturally, a concern arose regarding if this setup can inject enough current into the system to
power on all the components. However, during the testing of the system as a whole, this power
module can reliably power every component on and even provide the heaviest ~140 mA current
required during data transmission.

Figure 9: Physical power module on PCB

11

3.1.2 Sensor Module
Water flow sensor

Figure 10: Oscilloscope output of flow sensor after voltage divider

During the testing stage of the water flow sensor, we found that the output of the voltage divider
when water flow is present, where we expect a square wave with 3.3 V amplitude, has a 0.8 V
amplitude instead as shown in Figure 10. Furthermore, we suspected that we also a little later
shorted the GPIO that receives this data, such that it cannot read voltage properly anymore (outputs
constant voltage value despite oscilloscope telling otherwise). We decided to go around this
problem by disregarding the voltage divider circuitry and feeding the flow data directly to a GPIO
with the sensor powered on by a 3.3 V power signal. The resulting data is in the original form that
we expected, a 3.3 V amplitude square wave, which greatly simplifies the data processing.

Current sensor
The current sensor does not seem to work at all as it outputs a constant 1.8 V value regardless of
the input. This error might be due to overheating the chip during the soldering process using a
reflow oven (>200oC, while max temperature for chip is 165oC) or the usage of flux without proper
cleaning, causing corrosion to pads and thus chip connections.

12

Temperature sensor
Testing was done by observing temperature values when it measures room temperature versus
when we warm it up by holding the sensor with a hand. The sensor measures room temperature to
be ~24oC, and when we warm it up by hand the value gradually increases to ~36oC, the typical
human body temperature. Thus, the temperature sensor seems to be working well.

Vibration sensor
The vibration sensor is tested by observing its output while exposing the sensor to finger taps and
phone vibrations. The larger the force applied to the sensor, the larger the amplitude of oscillation.
Figure 11 shows an example of the sensor exposed to minor vibrations, with oscillation period of
approximately 16 ms. This period is an important piece of information for data processing to obtain
our arbitrary vibration measure.

Figure 11: Oscilloscope output of vibration sensor with minor vibration

13

3.2 Software Design Verification

3.2.1 Sensor Data reading on EPS 32

Figure 12: Sensor Readings printed on Arduino Console.

Figure 12 shows the reading of sensors printed on the Arduino Console. Current sensor is not
functional, so it is outputting the same value with noise as expected. Flow sensor reading is not
constant because a hand pump, which does not have a reliable constant flow rate, is used to test
this sensor. This variability in result is expected and all values are within reasonable range.
Temperature sensor reading here shows how temperature increases from room temperature (24oC)
when the sensor is warmed with hands. Vibration sensor reading here shows phone vibration for
the first 6 data points. Then the sensor is tapped with a finger which resulted in a high value of
1545.28. Our vibration sensor is more responsive to mechanical stress than to vibration, so this is
the expected result.

14

3.2.2 WiFi and AWS IoT communications on EPS 32

Figure 13: AWS IoT Console

Figure 13 shows the data transmitted from ESP 32 to AWS IoT console. This is the testing feature
on AWS IoT console that can print out data published on certain topics. The topic esp32/pub is
subscribed temporarily to show the data. Data is displayed on AWS IoT console only if ESP 32 is
connected to WiFi and AWS IoT endpoint. In addition, displayed data is in correctly formatted
JSON structure, which is the structure defined in C code on EPS 32.

3.2.3 AWS Lambda

Figure 14 shows the AWS Lambda Log. It shows how AWS Lambda script is executed given the
mock data sent from ESP 32. The input data “event” is printed in the function. Data is successfully
printed after execution, so AWS Lambda script executes on AWS IoT trigger.

Figure 14: AWS Lambda Log

15

3.2.4 AWS Athena

Figure 15: AWS Athena Query Log

Figure 15 shows the query log in AWS Athena database. It shows how data insert query is executed
before data fetch query. Insert queries or fetch queries can be in a row, but this is due to
multithreading of AWS Lambda. Since this AWS Lambda script executes in 5 seconds, script
execution can overlap if the AWS IoT publishes faster than 1 data per 5 minutes. For testing
purposes, the publishing interval was 1 second, so this behavior is natural and expected.

3.2.5 AWS S3 and Website Hosting

The static frontend website displays the JSON file that is stored in the S3 bucket correctly. There
are four graphs that display the water pump’s temperature, vibration, current, and water flow level.
Figure 16 and Figure 17 were taken during the time of the demonstration. The starred points on
the safety parameter graphs indicate readings that exceeded the safety threshold values.

16

Figure 16: Temperature and Vibration Graphs from the Frontend Website

Figure 17: Current and Flow Rate Graphs from the Frontend Website

17

4. Costs
4.1 Parts

Table 2. Table of component cost

Description Manufacturer Part # Qty Cost (USD)

Battery SparkFun Electronics 1568-1491-ND 1 4.95

Voltage Regulator Texas Instruments 296-TLV76733DRVRCT-ND 1 0.83

Water Flow Sensor Seeed Technology Co. 1597-1520-ND 1 6.02

Ammeter Allegro MicroSystems 620-1482-1-ND 1 1.41

Thermocouple Wire BFRobot 1738-1311-ND 1 6.97

Vibration Sensor TE Connectivity MSP1006-ND 1 5.37

Microcontroller Espressif Systems ESP32-WROOM-32E 1 2.8

Push Buttons TE Connectivity 1825910-6 2 0.2

Header Pins Harwin Inc. - 52 9.03

Jumper Wires Adafruit Industries - - 5.9

Resistors Various - - 3.34

Capacitors Various - - 1

Total 47.82

4.2 Labor
Table 3. Table of labor cost distribution

Name Hourly rate (USD) # of Hours Cost (USD)
Raynaldi Yose Iskandar 35 100 3500
Masaki Sato 35 100 3500
Yun Mo Kang 35 100 3500

Total 10500

18

4.3 Schedule
Table 4. Summarized work schedule

Week Task Members
Yun, Masaki, Ray

10/5 Sign up for Design Review, Set up AWS lambda server
Test power and sensor module interface on breadboard
Complete design review

M, Y
R
ALL

10/12 Interface with the RF transceiver
Design initial frontend website
Interface the sensors to the microcontroller

M
Y
R

10/19 Interface the transceiver to AWS server
Design & finalize PCB orders

M, Y
R

10/26 Connect the AWS backend to the frontend
Order PCB

M, Y
R

11/2 Install the sensors to the PCB
Add functionalities on the frontend

R
M, Y

11/9 Mock Demonstration sign up
Interface everything together & complete mock demonstration

Y
ALL

11/16 Complete Demonstration ALL

11/23 Thanksgiving Break ALL

11/30 Complete Mock Presentation
Complete Presentation
Write up final papers

ALL

12/7 Finish and submit final papers
Lab checkout
Submit lab notebooks

ALL

19

5. Conclusion
5.1 Accomplishments

Our monitor worked as it was expected to. The device was able to collect temperature, vibration,
and water flow data then send them wirelessly to a cloud-based server. This information was then
displayed as graphs with visual representations to notify users with any malfunctions of the water
pumps. The time interval of data collection and display was also designed to be flexible as it can
be changed with a simple change in a line of code.

5.2 Uncertainties

One main component that failed during the implementation of our project was the current sensor.
We were not quite sure of the reason, but we suspect that it could have been a faulty chip, or the
temperature of the soldering machine was much too high which broke the sensor. We tried to order
a new sensor, but we did not have enough time. In order to fix this, we may try with new current
sensors, and during the soldering process, we can try using lower temperature.

5.3 Ethical considerations

5.3.1 Ethics

This project is mainly focused to help maintain a clean water source for undeveloped regions of
Indonesia. Our effort is a direct practice of the IEEE Code of Ethics #1: “To hold paramount the
safety, health, and welfare of the public, to strive to comply with ethical design and sustainable
development practices, to protect the privacy of others, and to disclose promptly factors that might
endanger the public or the environment” [10]. Despite our efforts to assist the villagers, we realize
that errors can be made, and in the case of hazardous side-effects, we swore to keep confidentiality
and tend to the error immediately. This project will not only ensure clean water to the villagers but
will also allow children to attend school instead of taking hour-long trips to gather water. This will
enable them to pursue better lives and break the cycle of poverty. Furthermore, by the IEEE Code
of Ethics #5: “to seek, accept, and offer honest criticism of technical work, to acknowledge and
correct errors, to be honest and realistic in stating claims or estimates based on available data, and
to credit properly the contributions of others”, we realize that we are still at a learning stage, where
we occasionally make mistakes and need the guidance of other, more professional personnel.
Therefore, being humble and honest about our mistakes, listening to feedback, and crediting the
people that helped us in the project, is a necessary step for us to improve as an engineer and, more
importantly, as an individual.

20

5.3.2 Safety

Corrosion on the sensor modules is a serious safety concern. Since this module will be underwater,
parts can corrode and dissolve into water, which can contaminate the water. The Environmental
Protection Agency states that the maximum allowable for copper and lead are 1.3 milligrams/liter
and 0.015 milligrams/liter, respectively [11]. This problem can be solved by building a cover that
can insulate hardware from water. Any water damage to the power source is another major safety
concern. Although this part will not be submerged, the weather tends to be rainy in Indonesia.
Therefore, building a quality water-proof system for the monitor will be important.

The lithium-ion battery also may be a safety concern. If it is not handled properly, it may explode
and cause severe damage to hardware and possibly anyone near it. Any physical damage or high
temperatures above 130°F may cause damage to the battery [12]. If the battery breaks or explodes
and drops debris into the water, it could become a cause of contamination. To counter this concern,
we will build a casing for the batteries so that they are well-protected against external impacts and
fluids.

5.4 Future work

The water pump monitoring system that we have constructed can be improved in many ways. First,
the connection method that was used for our prototype was a wi-fi connection. This has many
limitations when it comes to accessibility. We could improve this design by using a cellular chip
instead, which was part of our original design. However, due to lack of funds and due to lack of
SIM cards where payment by usage was not available, we were unable to implement our project
with a cellular chip. However, we found out that the method of connection between a wi fi network
and a cellular network is very similar, the only difference being that a cellular connection requires
the credentials of the service provider where a wi fi connection needs the credentials of the wi fi
network.

The design could also benefit from collecting additional location data. If our prototype gets mass-
produced and gets placed on all the water pumps that Solar Chapter has established, it would be
essential to know the location of the water pumps. Thus, we would add a small GPS that will read
the longitude and the latitude of the monitor. This would then be sent to the database and, with the
Google Maps API, would be displayed on a map on the website. Then the website can be improved
to display individual pump’s graph data when it is clicked on the map. The website will also list
which pumps are in a need of maintenance along with a graphic representation on the map.

21

References

[1] Water.org, “Indonesia’s Water Crisis”, 2020. [Online]. Available: https://water.org/our-
impact/where-we-work/indonesia. [Accessed: 25- Sep- 2020].

[2] Solar Chapter. “Water for Nibaaf.” , 2020. [Online]. Available:
https://solarchapter.com/chapter/one/water-for-nibaaf [Accessed 16- Sep- 2020].

[3] G. Karina, “Project Timor Tengah Utara,” Reja Aton Energi. Sidoarjo, Indonesia. Feb.
07, 2020.

[4] Texas Instruments, “TLV767 1-A, 16-V Precision Linear Voltage Regulator”, TLV767
datasheet, Dec. 2018 [Revised Jun. 2020].

[5] Elprocus, “Water Flow Sensor Workings and Its Applications”, 2020. [Online].
Available: https://www.elprocus.com/a-memoir-on-water-flow-sensor. [Accessed: 1-Oct-
2020].

[6] Seeed Technology, “Water Flow Sensor YF-B3”, YF-B3 datasheet, Jun. 2017.

[7] Allegro, “Hall-Effect Linear Current Sensor with Overcurrent Fault Output for <100V
Isolation Applications”, ACS711 datasheet, Jun. 2017.

[8] “PaulStoffregen/OneWire” [Online]. Available:
https://github.com/PaulStoffregen/OneWire. [Accessed: 10- Nov- 2020].

[9] “milesburton/Arduino-Temperature-Control-Library” [Online]. Available:
https://github.com/milesburton/Arduino-Temperature-Control-Library. [Accessed: 12-
Nov- 2020].

[10] IEEE.org, "IEEE IEEE Code of Ethics", 2020. [Online]. Available:
http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 16- Sep- 2020].

[11] Epa.gov, “Ground Water and Drinking Water”, 2020. [Online]. Available:
https://www.epa.gov/ground-water-and-drinking-water. [Accessed: 25- Sep- 2020].

[12] Osha.gov, “Preventing Fire and/or Explosion Injury from Small and Wearable Lithium
Battery Powered Devices”, 2020. [Online]. Available:
https://www.osha.gov/dts/shib/shib011819.html [Accessed: 28-Sep-2020].

22

Appendix A: Requirements and Verifications Table

Table 1. RV table for battery

Requirements Verification

Battery can supply Vout>3.3V. 1. Setup a mock circuit with a 10kΩ resistor (large
enough to prevent burning the resistor).

2. Connect the battery to resistor.
3. Measure voltage across resistor and confirm that

V>3.3V.

Table 2. RV table for voltage regulator

Requirements Verification

Output voltage is within the
range of 3.3V±5%.

1. Power on the regulator with 5V supply voltage.
2. Measure voltage between output and ground and

confirm that the value is 3.3V±5%.

Voltage regulator can output up
to 1A of current.

1. Connect the output to a resistor network with
~3.3Ω total resistance.

2. Power on the regulator with 5V supply voltage.
3. Measure current and confirm that the value is ~1A.

23

Table 3. RV table for water flow sensor

Requirements Verification

Functions for supply voltage
5VDC.

1. Connect sensor output to oscilloscope.
2. Connect sensor to 5V power source.
3. Pour water through the sensor.
4. Confirm that the oscilloscope shows output in

the form of square waves with 5V amplitude.

Flow rate and frequency relation is
described by the mathematical
model F=11Q where F is frequency
in Hz and Q is flow rate in LPM.

1. Connect sensor output to oscilloscope.
2. Connect sensor to 5V power source.
3. Provide a constant stream of water to the sensor

for 30s, storing the water to a bucket.
4. Calculate the frequency of the output square

waves from the oscilloscope data.
5. Measure the amount of water in the bucket.
6. Calculate the flow rate from the amount of water

and time.
7. Check if the frequency and flow rate obtained

fits the mathematical model; if not, update the
mathematical model.

Table 4. RV table for ammeter

Requirements Verification

Functions for supply voltage
3.3V±5% DC.

1. Connect sensor output to oscilloscope.
2. Connect sensor to 3.3V power source.
3. Run current through the sensor.
4. Confirm that the oscilloscope shows output in the

form of voltage readings.

Current measurement is accurate
up to a 5% margin.

1. Connect sensor output to oscilloscope.
2. Connect sensor to 3.3V power source.
3. Run a 15A current through the sensor.
4. Confirm that the oscilloscope shows an output

voltage of 675mV/A±5%.

24

Table 5. RV table for temperature sensor

Requirements Verification

Functions for supply voltage 3.3V±5%
DC.

1. Connect sensor output to mock
microcontroller.

2. Connect sensor to 3.3V power source.
3. Probe the air for its temperature.
4. Run a mock code to check if the sensor

outputs any values.

The sensor can differentiate between
pump normal operating temperature
and pump overheating temperature.

1. Connect sensor output to mock
microcontroller.

2. Connect sensor to 3.3V power source.
3. Probe room temperature water to simulate

pump in normal operating temperature.
4. Run a mock code and note the output value.
5. Probe boiling water to simulate pump

overheating temperature.
6. Run a mock code and note the output value.
7. Confirm that both readings’ values are

visibly distinct.

Table 6. RV table for vibration sensor

Requirements Verification

The sensor can differentiate between
pump normal operating vibration and
pump excessive vibration.

1. Connect sensor output to oscilloscope.
2. Connect sensor to 3.3V power source.
3. Shake the sensor moderately to simulate

pump normal operating vibration.
4. Note down the output voltage on the

oscilloscope.
5. Shake the sensor harder to simulate pump

excessive vibration.
6. Note down the output voltage on the

oscilloscope.
7. Confirm that both readings’ values are

visibly distinct.

25

Table 7. RV table for microcontroller

Requirements Verification

The C program on the microcontroller
should be able to process data from the
sensor module into a format that is suitable
for transmitting data. This will be JSON.

1. Run test C program to check if
signal/data from I/O pins can be
recognized by the software.

2. Write test data within the C program to
check if it can process data into the
correct format.

3. Test the C program with sensor input to
check if the data is processed correctly.

The C program can transmit data using
built-in Wi-Fi capabilities to AWS server.

1. Design and run test C program in
Arduino IDE to transmit mock data to
AWS server.

2. Check server log of received data to
confirm it matches the mock data
provided in the code.

Table 8. RV table for SIM module

Requirements Verification

The module can establish a GPRS internet
connection through the 2G network.

1. Design and run test C program in
Arduino IDE to establish internet
connection on the ESP32.

2. Run test C program to transmit mock
data to AWS server.

3. Check server log to confirm received
data matches mock data.

26

Table 9. RV table for database

Requirements Verification

AWS Lambda receives data given that
the transmission module successfully
sent data.

Send test data from hardware, and log the input
received. Check if log matches with test data sent
from hardware. Test this after cellular modem is
tested.

Data is processed by script on AWS
Lambda correctly, and processed data is
stored into the database without
corruption of data.

1. Create dummy data input within the script
and log the processed data. Check if it is
successfully processed.

2. Check database table after processed data is
inserted to database. Make sure it does not
affect past data, and new data is inserted
without alteration.

Whenever the database is updated, AWS
Lambda script should be executed to
update JSON files in AWS S3 bucket.

Send a single data packet every minute and check if
the csv files in AWS S3 bucket updates.

Table 10. RV table for website

Requirements Verification

The Javascript component of the website
can read and process data from csv files
on AWS S3 through ajax in real time.

Upload dummy JSON file with dummy data to S3.
Log the read data on console, and check if data
matches with dummy data on csv.

Warnings should be generated through
analysis of data read from csv files.

Create dummy JSON files. One has data satisfying
warning conditions, and another does not. Test
warning analysis part of code with both of csv files.
Check if warnings are generated if only if the csv
file has data that satisfies warning conditions.

Data and warnings can be visualised on
the website.

Given the csv file, check if the website can display
all data in graph and highlight the data with
warnings.

27

Appendix B: ESP 32 C Code

#include "secrets.h"
#include <WiFiClientSecure.h>
#include <MQTTClient.h>
#include <ArduinoJson.h>
#include <OneWire.h>
#include <DallasTemperature.h>
#include "WiFi.h"

#define AWS_IOT_PUBLISH_TOPIC "esp32/pub"
#define AWS_IOT_SUBSCRIBE_TOPIC "esp32/sub"

WiFiClientSecure net = WiFiClientSecure();
MQTTClient client = MQTTClient(256);

int DS18S20_Pin = 26;
int vib_pin = 39;
int amm_pin = 36;
int flow_pin = 35;
float analog_high = 0.8;

OneWire oneWire(DS18S20_Pin);

DallasTemperature sensors(&oneWire);

void connectAWS()
{
 Serial.println("Connecting to Wi-Fi");
 WiFi.mode(WIFI_STA);
 WiFi.begin(WIFI_SSID, WIFI_PASSWORD);

 Serial.println("Connecting to Wi-Fi");

 while (WiFi.status() != WL_CONNECTED){
 delay(500);
 Serial.print(".");
 }

 net.setCACert(AWS_CERT_CA);
 net.setCertificate(AWS_CERT_CRT);
 net.setPrivateKey(AWS_CERT_PRIVATE);

28

 client.begin(AWS_IOT_ENDPOINT, 8883, net);

 client.onMessage(messageHandler);

 Serial.print("Connecting to AWS IOT");

 while (!client.connect(THINGNAME)) {
 Serial.print(".");
 delay(100);
 }

 if(!client.connected()){
 Serial.println("AWS IoT Timeout!");
 return;
 }

 client.subscribe(AWS_IOT_SUBSCRIBE_TOPIC);

 Serial.println("AWS IoT Connected!");
}

void publishMessage()
{
 StaticJsonDocument<200> doc;

 float vib_data = 0;

 for (int i=0;i<40; i++){
 vib_data = vib_data + analogRead(vib_pin);
 delay(25);
 }

 sensors.requestTemperatures();
 float temperatureC = sensors.getTempCByIndex(0);

 doc["time"] = millis();
 doc["flow"] = frequency()/11.0;
 doc["current"] = analogRead(amm_pin);
 doc["temp"] = temperatureC;

29

 doc["vib"] = vib_data/40.0;
 char jsonBuffer[512];
 serializeJson(doc, jsonBuffer);

 client.publish(AWS_IOT_PUBLISH_TOPIC, jsonBuffer);
}

void messageHandler(String &topic, String &payload) {
 Serial.println("incoming: " + topic + " - " + payload);

}

float frequency(){
 float period = (pulseIn(flow_pin, LOW)*2)/1000000.0;
 if (period==0){
 return 0;
 }

 return 1/period;
}

void setup() {
 Serial.begin(9600);

 connectAWS();

 pinMode(flow_pin, INPUT);
 sensors.begin();
}

void loop() {
 publishMessage();
 client.loop();
 delay(500);
}

30

Appendix C: AWS Lambda Python Code

from datetime import datetime, timedelta
import json
import boto3
import time

s3 = boto3.client('s3')
s31 = boto3.resource('s3')
athena = boto3.client('athena')

def lambda_handler(event, context):
 bucketname = "www.waterpumpgraph.com"
 itemname = "data/data.json"
 # obj = s31.Object(bucketname, itemname)
 # body = json.loads(obj.get()['Body'].read())

 now = datetime.now()
 yesterday = datetime.now() - timedelta(hours = 8)

 date_time = now.strftime("%Y-%m-%d %H:%M:%S.000")
 past_time = yesterday.strftime("%Y-%m-%d %H:%M:%S.000")
 print(date_time)
 print(past_time)

 insert_query = "insert into waterpumpdata.pumpdata (datetime, temperature, vibration, flow,
electric_current, warning_one, warning_two) values (TIMESTAMP '{}', {}, {}, {}, {}, {},
{})".format(date_time, event["temp"], event["vib"], event["flow"], event["current"],
int(event["temp"]>30), int(event["vib"]>1000))

 response = athena.start_query_execution(
 QueryString=insert_query,
 QueryExecutionContext={
 'Database': 'waterpumpdata'
 },
 ResultConfiguration={
 'OutputLocation': 's3://www.waterpumpgraph.com/table storage',
 }
)

 query_execution_id = response['QueryExecutionId']
 print(query_execution_id)

31

 for i in range(1, 21):
 query_status = athena.get_query_execution(QueryExecutionId=query_execution_id)
 query_execution_status = query_status['QueryExecution']['Status']['State']

 if query_execution_status == 'SUCCEEDED':
 print("STATUS:" + query_execution_status)
 break

 if query_execution_status == 'FAILED':
 raise Exception("STATUS:" + query_execution_status)

 else:
 print("STATUS:" + query_execution_status)
 time.sleep(i)
 else:
 athena.stop_query_execution(QueryExecutionId=query_execution_id)
 raise Exception('TIME OVER')

 fetch_query = "select * from waterpumpdata.pumpdata where datetime between TIMESTAMP '{}' and
TIMESTAMP '{}' order by datetime".format(past_time, date_time)

 response = athena.start_query_execution(
 QueryString=fetch_query,
 QueryExecutionContext={
 'Database': 'waterpumpdata'
 },
 ResultConfiguration={
 'OutputLocation': 's3://www.waterpumpgraph.com/table storage',
 }
)

 query_execution_id = response['QueryExecutionId']
 print(query_execution_id)

 for i in range(1, 21):
 query_status = athena.get_query_execution(QueryExecutionId=query_execution_id)
 query_execution_status = query_status['QueryExecution']['Status']['State']

 if query_execution_status == 'SUCCEEDED':
 print("STATUS:" + query_execution_status)
 break

32

 if query_execution_status == 'FAILED':
 raise Exception("STATUS:" + query_execution_status)

 else:
 print("STATUS:" + query_execution_status)
 time.sleep(i)
 else:
 athena.stop_query_execution(QueryExecutionId=query_execution_id)
 raise Exception('TIME OVER')

 result = athena.get_query_results(QueryExecutionId=query_execution_id)
 result = result["ResultSet"]["Rows"]
 #print(result)

 result = [[y["VarCharValue"] for y in x["Data"]] for x in result]
 #print(result)

 cols = result[0]
 result = result[1:]

 result_dict = {"data": []}
 for r in result:
 temp = {}
 for i, x in enumerate(r):
 temp[cols[i]] = x

 result_dict["data"].append(temp)

 #print(result_dict)

 uploadByteStream = bytes(json.dumps(result_dict).encode('UTF-8'))
 s3.put_object(Bucket=bucketname, Key=itemname, Body=uploadByteStream)
 print('Put Complete')

