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Abstract 
 
Having access to a clean source of water still remains a challenge in some parts of the world. 
Building water pumps in these areas is one part of the solution, while maintaining them with an 
effective method of monitorization is another. For such rural areas, a wireless remote water pump 
monitoring system would be an ideal solution. The monitor should be able to measure important 
values such as temperature and vibration and send those data to a server. This data should then be 
translated to a graphic representation on a website, so that anyone could see it and check if there 
is any problem on the water pump. 
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1. Introduction 

1.1 Problem 
In remote regions of Indonesia, many rural villages are located very far from clean water sources. 
Out of 264 million people in Indonesia, 28 million lack safe water and 71 million lack access to 
improved sanitation systems [1]. Each day, villagers of a specific village named Nibaaf take three-
hour trips [2] to get clean water. In order to fight this problem, a non-profit organization called 
Solar Chapter, affiliated by one of our team members, has been building water pump systems that 
deliver clean water to villages in vicinity. However, they lacked a means to monitor and maintain 
the water pumps. Any sort of downtime would have adverse effects on the villagers’ well-being, 
therefore constant maintenance is crucial. However, due to the remoteness of the location, having 
regular inspection is troublesome.  
 

1.2 Solution 
Our team is proposing a solution in the form of a remote water pump monitoring system. The 
system takes the pump's basic operating data such as water flow and up-time measurement to 
monitor the pump's behavioral trend. The device would also regularly measure safety parameters 
including vibration and temperature of the water pump. The system would send an alert when it 
receives undesired values so the operator can send in maintenance. Performing these precautions 
can extend the longevity of these water pumps and prevent them from breaking down 
unexpectedly. This would also prevent any downtime and greatly improve the sustainability of the 
water system. The values measured from the sensors would then be transmitted remotely through 
a cellular network to a cloud-based database system, which then will be visualized through a 
website or an app. This will allow high accessibility for the operator. This system minimizes the 
need of physical onsite personnel presence to only emergency maintenance and longer-term 
physical inspections, while still keeping the water system dependable. 
 

1.3 High-Level Requirements 
 Microcontroller must process the output signal of each sensor of varying form and translate 

them to a quantitative value. These values include flow, current, temperature, and vibration. 
 Collected data must be transferred successfully without corruption through cellular 

network connection to the cloud based database in an interval of 15 minutes.  
 Once the cloud database is updated with new input from the microcontroller, the updated 

information should also be included in the spreadsheets on the database server. The website 
should reflect the new information every 24 hours. 
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2 Design 
2.1 Physical Design 

 
Figure 1: Placement of physical design on water pump system [3] 

 
Figure 1 represents the real-life implementation of the system, with sensors mounted on the pump 
to monitor its parameters underwater, while power and control modules remain unsubmerged in 
the vicinity of the water source opening. For the prototype we have built, we did not concern 
ourselves with a waterproof design, as we believe that specification is rather trivial to implement. 
The real-life application also requires a rather long wiring between sensor module and control 
module, another aspect we ignored in the prototype. The monitoring system we designed serves as 
an add-on to an already existing water supply system. The pump itself is solar powered, hence the 
idea of implementing a self-sustaining monitoring system in the real-life application. Clean water 
is extracted from the source to be pumped to a reservoir, where further distribution happens to the 
villages nearby. Thus, several of these monitoring systems need to be deployed on the various 
pump sites. 
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2.2 Block Diagram 

 
Figure 2: Block diagram of the remote monitoring system 

 
The system’s block diagram is shown in Figure 2. Firstly, the power module serves as the power 
supplier of the system. It mainly features a voltage regulator which regulates an arbitrary voltage 
source down to a 3.3 V power signal to act as the main power line of the system. Next is the sensor 
module, which can be categorized into two types: operational parameter sensor and safety 
parameter sensor. Operational parameter sensor consists of water flow sensor and current sensor, 
and is meant to monitor the pump’s basic operational data; while safety parameter sensor consists 
of temperature sensor and vibration sensor, and is meant to give a warning flag once either one of 
the parameters start to go out of the norm, indicating a physical issue with the pump. Data from 
each sensor is sent to the control module where a microcontroller will process them to a 
quantifiable value, and then packed into a JSON format to be transmitted through the internet to a 
database in the data storage and visuals subsystem. The website will then read data from the 
database and visualize them through graphs for the user to view. 
 



4 
 

2.3 Hardware Design 

2.3.1 Power Module 

 
Figure 3: Power module schematic 

 
The circuitry of the power module is shown by Figure 3. The main control parameters of the 
voltage regulator are the resistors R1 and R2, which determines the output voltage value by the 
equations [4]: 

𝑉௢௨௧ = 𝑉ி஻ ൬1 +
𝑅ଶ

𝑅ଵ
൰ 

𝑅ଵ + 𝑅ଶ ≤
𝑉௢௨௧

100𝐼ி஻
 

The desired Vout value is the 3.3 V to act as the main power line of the PCB, while VFB and IFB are 
known parameters with values 0.8 V and 50 nA, respectively. So, solving these equations given 
the known parameters yields the resistances R1 = 160 kΩ and R2 = 500 kΩ. 
 
Solder joint SJ1 is a particularly important safety feature, as it initially disconnected the voltage 
regulator’s output signal from the main power line. We needed to first perform a modular test on 
the power module before making the connection to the power line, since we had no guarantee as 
to how the voltage regulator will behave. Without the solder joint, the regulator’s output signal 
will be directly connected to the power line, and if the voltage exceeds certain values, our 
components risk being destroyed by overvoltage. Once we have ensured that the voltage value is 
within the acceptable range of 3.3 V ± 5%, then we made the physical connection for the power 
line. Solder joint SJ2, though, is simply a convenience feature, to give the option of either taking 
power from a battery or from a constant voltage power source. 
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2.3.2 Sensor Module 
Water flow sensor 

 
Figure 4: Flow sensor schematic 

 
The water flow sensor that we use operates based on the Hall effect, where water flow causes the 
rotor to start rotating and periodically induces a voltage value [5] that matches the input voltage. 
The data line alternates between this value and a zero volt reading as the water keeps flowing, 
which means we obtain an output in the form of a square wave. By measuring the period of said 
square wave, we can obtain the frequency and thus the flow rate through the mathematical model: 

𝐹 = 11𝑄 
where F is frequency in Hz and Q is flow rate in LPM [6]. 
 
Our initial design was to provide the sensor with a 5 V input, but this meant the output in the form 
of a 5 V amplitude square wave cannot be directly read by the microcontroller since it runs on 3.3 
V power (readable voltage must be <3.3 V). The circuitry required to modify the flow sensor data 
is shown by Figure 4, which utilizes voltage divider to tune down the amplitude to ⅔*5 = 3.3 V 
for the microcontroller to read. Since we have a square wave, the microcontroller can simply 
perform a digital read on the flow data line to obtain alternating values between logic 1 and 0 to 
then measure period, obtain frequency, and finally calculate flow rate using the above equation. 
 
Current sensor 
The current sensor in our system is powered on by a 3.3 V power signal and has an input current 
range of ±31 A with a sensitivity of 45 mV/A [7]. Input current comes in and out of IP+ and IP- 
ports respectively, as seen in Figure 5. Since we are only concerning ourselves with positive 
current measurement, we have an output voltage range of 0 V to 1.395 V, well within the value of 
readable voltage value using the analog read function. 
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Figure 5: Current sensor schematic 

 
Temperature sensor 
The temperature sensor is powered using a 3.3 V power signal and outputs digital data. Sensor 
data is directly connected to a GPIO, but with a 4.7 kΩ resistor between the data and power lines. 
Data processing for this sensor is solely handled by a library to convert digital data to temperature 
value in degrees Celsius. 
 
Vibration sensor 
We are using a piezoelectric device as our vibration sensor, which means that the sensor reacts to 
mechanical stress and outputs a voltage oscillation with varying amplitude accordingly. There is 
no simple way to definitively measure a vibration, but for our implementation we are especially 
only concerned with an arbitrary form of measurement to be able to differentiate between normal 
and excessive vibration. Out of the sensor’s two terminals, one is connected to ground, while the 
other to a GPIO to be read using the analog read function. 
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2.4 Software Design 

 
 

Figure 6: Block Diagram of Data Flow in Software 
 
As represented in Figure 6 above, the functionalities of C code on ESP 32 are reading sensor data, 
processing the data into JSON format, and then sending data to AWS IoT through WiFi. 

2.4.1 Sensor Data reading on EPS 32 
 
ESP32 reads sensor data from GPIO pins. 
 
Water flow sensor data is read using built-in function pulseIn(). The function pulseIn() reads HIGH 
or LOW pulse in microsecond. Since the flow sensor outputs constant HIGH when it is inactive, 
pulseIn() reads LOW in this program. The equation for flow rate calculation is as follows:  

𝐿𝑃𝑀 =
1

( 𝑝𝑢𝑙𝑠𝑒𝐼𝑛( ) × 2 ) × 1000000 × 11
 

Reading in seconds is needed, so the value is divided by 1000000. Single pulse is half of period, 
so the value is multiplied by 2 to get the whole period. Inverse is frequency, and frequency divided 
by 11 is LPM, which is the unit we want. 
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Current sensor reading is read using the default analogRead() function. 
 
OneWire[8] and DallasTemperature[9] are used to read temperature sensor data digitally. 
 
Vibration sensor data is calculated by averaging the 40 samples of analogRead with 25 ms intervals 
in between. This approach was chosen because precision is not needed, and ESP32 cannot know 
where the wave form starts. The 25 ms interval is chosen because it is 1.5 times larger than the 
period of vibration sensor signal, which is 16 ms. The sample interval is purposefully out of sync 
with signal period in order to avoid having large dependencies on signal phase. 
 

2.4.2 WiFi and AWS IoT communications on EPS 32 
 
WiFi is connected through WiFiClientSecure library. It connects to the WiFi network using WiFi 
name and password stored in the header file. 
 
AWS IoT is connected through MQTTClient library. Amazon root certificate, device certificate, 
device private keys, and AWS IoT endpoint URL stored in header file are used to connect to AWS 
IoT through MQTT protocol. 
 
Build-in ArduinoJson library is used to format sensor data into JSON, which is a suitable format 
for MQTT data transmission. This JSON data is published to esp32/pub IoT topic. This topic is 
accessible through AWS IoT services.  
 

2.4.3 AWS Lambda 
 
AWS Lambda script is responsible for 3 tasks: processing any incoming data from AWS IoT, 
storing data into the database, and updating JSON files on S3 bucket.  
  
AWS Lambda script is triggered when AWS IoT receives data on esp32/pub endpoint. Since ESP 
32 has an internal clock that starts at 0 millisecond, which is 1970 January 1st, AWS Lambda script 
assigns current date time to JSON data. AWS Lambda script also computes warning flags based 
on temperature and vibration data. 
 
Lambda script then executes the query to insert the new data into the table. Then, data from the 
past 8 hours are queried. This data overwrites JSON files on S3 bucket. 
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2.4.4 AWS Athena Database 

 
Figure 7: Database Schema 

 
Figure 8: Data Stored in Database 

 
Figure 7 shows the database schema for the table pumpdata. Datetime is the primary key, which 
ensures every row is unique. Figure 8 shows some experimental data stored in the database. The 
database stores data for four sensors, current date time, and two warning flags. Data for four 
sensors are in float. Datetime is in timestamp. Warning_one and warning_two are in integer, but 
they are used like boolean in practice.  
 

2.4.5 AWS S3 and Website Hosting 
 
After the Lambda script inserts and queries the newest data from Athena into S3 bucket, the 
frontend website reads the JSON file and outputs the content into graphs. We used ajax to unpack 
the contents of the  JSON file, and the graphs were implemented using Google Charts. 
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3. Design Verification 
3.1 Hardware Design Verification 

3.1.1 Power Module 
Table 1: Voltage measurements of power module 

Vin(V) Vout(V) VFB(V) 

3 3 2.27 

3.3 3.3 2.56 

3.5 3.5 2.76 

3.8 3.8 3.05 

4 4 3.3 

4.3 4 3.3 

4.5 4 3.3 

 
We performed the power module test by feeding the voltage regulator a series of increasing Vin 
values and observing the voltage values of Vout and VFB for each case, with the results shown in 
Table 1. Despite expecting our Vout to saturate at 3.3 V, our Vout happens to saturate at 4 V instead, 
which means it cannot be used as the main power line as said value will most likely break most of 
our components. This error might be due to a component, specifically, a capacitor which is too 
small to be soldered by hand, being omitted from the circuitry. 
 
Fortunately, the other set of data in Table 1 shows our VFB saturating at 3.3 V as Vin exceeds 4 V, 
so our solution is to connect VFB to the main power line instead using a wire as shown in Figure 9. 
Naturally, a concern arose regarding if this setup can inject enough current into the system to 
power on all the components. However, during the testing of the system as a whole, this power 
module can reliably power every component on and even provide the heaviest ~140 mA current 
required during data transmission. 
 

 
Figure 9: Physical power module on PCB 
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3.1.2 Sensor Module 
Water flow sensor 

 
Figure 10: Oscilloscope output of flow sensor after voltage divider 

 
During the testing stage of the water flow sensor, we found that the output of the voltage divider 
when water flow is present, where we expect a square wave with 3.3 V amplitude, has a 0.8 V 
amplitude instead as shown in Figure 10. Furthermore, we suspected that we also a little later 
shorted the GPIO that receives this data, such that it cannot read voltage properly anymore (outputs 
constant voltage value despite oscilloscope telling otherwise). We decided to go around this 
problem by disregarding the voltage divider circuitry and feeding the flow data directly to a GPIO 
with the sensor powered on by a 3.3 V power signal. The resulting data is in the original form that 
we expected, a 3.3 V amplitude square wave, which greatly simplifies the data processing. 
 
Current sensor 
The current sensor does not seem to work at all as it outputs a constant 1.8 V value regardless of 
the input. This error might be due to overheating the chip during the soldering process using a 
reflow oven (>200oC, while max temperature for chip is 165oC) or the usage of flux without proper 
cleaning, causing corrosion to pads and thus chip connections. 
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Temperature sensor 
Testing was done by observing temperature values when it measures room temperature versus 
when we warm it up by holding the sensor with a hand. The sensor measures room temperature to 
be ~24oC, and when we warm it up by hand the value gradually increases to ~36oC, the typical 
human body temperature. Thus, the temperature sensor seems to be working well. 
 
Vibration sensor 
The vibration sensor is tested by observing its output while exposing the sensor to finger taps and 
phone vibrations. The larger the force applied to the sensor, the larger the amplitude of oscillation. 
Figure 11 shows an example of the sensor exposed to minor vibrations, with oscillation period of 
approximately 16 ms. This period is an important piece of information for data processing to obtain 
our arbitrary vibration measure. 
 

 
Figure 11: Oscilloscope output of vibration sensor with minor vibration 
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3.2 Software Design Verification 

3.2.1 Sensor Data reading on EPS 32 

 
Figure 12: Sensor Readings printed on Arduino Console. 

 
Figure 12 shows the reading of sensors printed on the Arduino Console. Current sensor is not 
functional, so it is outputting the same value with noise as expected. Flow sensor reading is not 
constant because a hand pump, which does not have a reliable constant flow rate, is used to test 
this sensor. This variability in result is expected and all values are within reasonable range. 
Temperature sensor reading here shows how temperature increases from room temperature (24oC) 
when the sensor is warmed with hands. Vibration sensor reading here shows phone vibration for 
the first 6 data points. Then the sensor is tapped with a finger which resulted in a high value of 
1545.28. Our vibration sensor is more responsive to mechanical stress than to vibration, so this is 
the expected result. 
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3.2.2 WiFi and AWS IoT communications on EPS 32 

 
Figure 13: AWS IoT Console 

 
Figure 13 shows the data transmitted from ESP 32 to AWS IoT console. This is the testing feature 
on AWS IoT console that can print out data published on certain topics. The topic esp32/pub is 
subscribed temporarily to show the data. Data is displayed on AWS IoT console only if ESP 32 is 
connected to WiFi and AWS IoT endpoint. In addition, displayed data is in correctly formatted 
JSON structure, which is the structure defined in C code on EPS 32. 

3.2.3 AWS Lambda 
 
Figure 14 shows the AWS Lambda Log. It shows how AWS Lambda script is executed given the 
mock data sent from ESP 32. The input data “event” is printed in the function. Data is successfully 
printed after execution, so AWS Lambda script executes on AWS IoT trigger. 
 

 
Figure 14: AWS Lambda Log 
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3.2.4 AWS Athena 
 

 
Figure 15: AWS Athena Query Log 

 
Figure 15 shows the query log in AWS Athena database. It shows how data insert query is executed 
before data fetch query. Insert queries or fetch queries can be in a row, but this is due to 
multithreading of AWS Lambda. Since this AWS Lambda script executes in 5 seconds, script 
execution can overlap if the AWS IoT publishes faster than 1 data per 5 minutes. For testing 
purposes, the publishing interval was 1 second, so this behavior is natural and expected. 
 

3.2.5 AWS S3 and Website Hosting  
 
The static frontend website displays the JSON file that is stored in the S3 bucket correctly. There 
are four graphs that display the water pump’s temperature, vibration, current, and water flow level. 
Figure 16 and Figure 17 were taken during the time of the demonstration. The starred points on 
the safety parameter graphs indicate readings that exceeded the safety threshold values. 
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Figure 16: Temperature and Vibration Graphs from the Frontend Website 

 

 
Figure 17: Current and Flow Rate Graphs from the Frontend Website 

 
 
 
 

 
 



17 
 

4. Costs 
4.1 Parts 

Table 2. Table of component cost 

Description Manufacturer Part # Qty Cost (USD) 

Battery SparkFun Electronics 1568-1491-ND 1 4.95 

Voltage Regulator Texas Instruments 296-TLV76733DRVRCT-ND 1 0.83 

Water Flow Sensor Seeed Technology Co. 1597-1520-ND 1 6.02 

Ammeter Allegro MicroSystems 620-1482-1-ND 1 1.41 

Thermocouple Wire BFRobot 1738-1311-ND 1 6.97 

Vibration Sensor TE Connectivity MSP1006-ND 1 5.37 

Microcontroller Espressif Systems ESP32-WROOM-32E 1 2.8 

Push Buttons TE Connectivity 1825910-6 2 0.2 

Header Pins Harwin Inc. - 52 9.03 

Jumper Wires Adafruit Industries - - 5.9 

Resistors Various - - 3.34 

Capacitors Various - - 1 

Total       47.82 

 

4.2 Labor 
Table 3. Table of labor cost distribution 

Name Hourly rate (USD) # of Hours Cost (USD) 
Raynaldi Yose Iskandar 35 100 3500 
Masaki Sato 35 100 3500 
Yun Mo Kang 35 100 3500 

Total 10500 
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4.3 Schedule 
Table 4. Summarized work schedule 

Week Task Members 
Yun, Masaki, Ray 

10/5 Sign up for Design Review, Set up AWS lambda server 
Test power and sensor module interface on breadboard 
Complete design review 

M, Y 
R 
ALL 

10/12 Interface with the RF transceiver 
Design initial frontend website 
Interface the sensors to the microcontroller 

M 
Y 
R 

10/19 Interface the transceiver to AWS server 
Design & finalize PCB orders 

M, Y 
R 

10/26 Connect the AWS backend to the frontend 
Order PCB 

M, Y 
R 

11/2 Install the sensors to the PCB 
Add functionalities on the frontend 

R 
M, Y 

11/9 Mock Demonstration sign up 
Interface everything together & complete mock demonstration 

Y 
ALL 

11/16 Complete Demonstration ALL 

11/23 Thanksgiving Break ALL 

11/30 Complete Mock Presentation 
Complete Presentation 
Write up final papers 

 
ALL 

12/7 Finish and submit final papers 
Lab checkout 
Submit lab notebooks 

 
ALL 
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5. Conclusion 
5.1 Accomplishments 
 
Our monitor worked as it was expected to. The device was able to collect temperature, vibration, 
and water flow data then send them wirelessly to a cloud-based server. This information was then 
displayed as graphs with visual representations to notify users with any malfunctions of the water 
pumps. The time interval of data collection and display was also designed to be flexible as it can 
be changed with a simple change in a line of code. 

5.2 Uncertainties 
 
One main component that failed during the implementation of our project was the current sensor. 
We were not quite sure of the reason, but we suspect that it could have been a faulty chip, or the 
temperature of the soldering machine was much too high which broke the sensor. We tried to order 
a new sensor, but we did not have enough time. In order to fix this, we may try with new current 
sensors, and during the soldering process, we can try using lower temperature. 
 

5.3 Ethical considerations 

5.3.1 Ethics 
 
This project is mainly focused to help maintain a clean water source for undeveloped regions of 
Indonesia. Our effort is a direct practice of the IEEE Code of Ethics #1: “To hold paramount the 
safety, health, and welfare of the public, to strive to comply with ethical design and sustainable 
development practices, to protect the privacy of others, and to disclose promptly factors that might 
endanger the public or the environment” [10]. Despite our efforts to assist the villagers, we realize 
that errors can be made, and in the case of hazardous side-effects, we swore to keep confidentiality 
and tend to the error immediately. This project will not only ensure clean water to the villagers but 
will also allow children to attend school instead of taking hour-long trips to gather water. This will 
enable them to pursue better lives and break the cycle of poverty. Furthermore, by the IEEE Code 
of Ethics #5: “to seek, accept, and offer honest criticism of technical work, to acknowledge and 
correct errors, to be honest and realistic in stating claims or estimates based on available data, and 
to credit properly the contributions of others”, we realize that we are still at a learning stage, where 
we occasionally make mistakes and need the guidance of other, more professional personnel. 
Therefore, being humble and honest about our mistakes, listening to feedback, and crediting the 
people that helped us in the project, is a necessary step for us to improve as an engineer and, more 
importantly, as an individual. 
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5.3.2 Safety 
 
Corrosion on the sensor modules is a serious safety concern. Since this module will be underwater, 
parts can corrode and dissolve into water, which can contaminate the water. The Environmental 
Protection Agency states that the maximum allowable for copper and lead are 1.3 milligrams/liter 
and 0.015 milligrams/liter, respectively [11]. This problem can be solved by building a cover that 
can insulate hardware from water. Any water damage to the power source is another major safety 
concern. Although this part will not be submerged, the weather tends to be rainy in Indonesia. 
Therefore, building a quality water-proof system for the monitor will be important. 
 
The lithium-ion battery also may be a safety concern. If it is not handled properly, it may explode 
and cause severe damage to hardware and possibly anyone near it. Any physical damage or high 
temperatures above 130°F may cause damage to the battery [12]. If the battery breaks or explodes 
and drops debris into the water, it could become a cause of contamination. To counter this concern, 
we will build a casing for the batteries so that they are well-protected against external impacts and 
fluids.  

5.4 Future work 
 
The water pump monitoring system that we have constructed can be improved in many ways. First, 
the connection method that was used for our prototype was a wi-fi connection. This has many 
limitations when it comes to accessibility. We could improve this design by using a cellular chip 
instead, which was part of our original design. However, due to lack of funds and due to lack of 
SIM cards where payment by usage was not available, we were unable to implement our project 
with a cellular chip. However, we found out that the method of connection between a wi fi network 
and a cellular network is very similar, the only difference being that a cellular connection requires 
the credentials of the service provider where a wi fi connection needs the credentials of the wi fi 
network.  
 
The design could also benefit from collecting additional location data. If our prototype gets mass-
produced and gets placed on all the water pumps that Solar Chapter has established, it would be 
essential to know the location of the water pumps. Thus, we would add a small GPS that will read 
the longitude and the latitude of the monitor. This would then be sent to the database and, with the 
Google Maps API, would be displayed on a map on the website. Then the website can be improved 
to display individual pump’s graph data when it is clicked on the map. The website will also list 
which pumps are in a need of maintenance along with a graphic representation on the map. 
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Appendix A: Requirements and Verifications Table 
 

Table 1. RV table for battery 

Requirements Verification 

Battery can supply Vout>3.3V. 1. Setup a mock circuit with a 10kΩ resistor (large 
enough to prevent burning the resistor). 

2. Connect the battery to resistor. 
3. Measure voltage across resistor and confirm that 

V>3.3V. 

 

Table 2. RV table for voltage regulator 

Requirements Verification 

Output voltage is within the 
range of 3.3V±5%. 

1. Power on the regulator with 5V supply voltage. 
2. Measure voltage between output and ground and 

confirm that the value is 3.3V±5%. 

Voltage regulator can output up 
to 1A of current. 

1. Connect the output to a resistor network with 
~3.3Ω total resistance. 

2. Power on the regulator with 5V supply voltage. 
3. Measure current and confirm that the value is ~1A. 
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Table 3. RV table for water flow sensor 

Requirements Verification 

Functions for supply voltage 
5VDC. 

1. Connect sensor output to oscilloscope. 
2. Connect sensor to 5V power source. 
3. Pour water through the sensor. 
4. Confirm that the oscilloscope shows output in 

the form of square waves with 5V amplitude. 

Flow rate and frequency relation is 
described by the mathematical 
model F=11Q where F is frequency 
in Hz and Q is flow rate in LPM. 

1. Connect sensor output to oscilloscope. 
2. Connect sensor to 5V power source. 
3. Provide a constant stream of water to the sensor 

for 30s, storing the water to a bucket. 
4. Calculate the frequency of the output square 

waves from the oscilloscope data. 
5. Measure the amount of water in the bucket. 
6. Calculate the flow rate from the amount of water 

and time. 
7. Check if the frequency and flow rate obtained 

fits the mathematical model; if not, update the 
mathematical model. 

 

Table 4. RV table for ammeter 

Requirements Verification 

Functions for supply voltage 
3.3V±5% DC. 

1. Connect sensor output to oscilloscope. 
2. Connect sensor to 3.3V power source. 
3. Run current through the sensor. 
4. Confirm that the oscilloscope shows output in the 

form of voltage readings. 

Current measurement is accurate 
up to a 5% margin. 

1. Connect sensor output to oscilloscope. 
2. Connect sensor to 3.3V power source. 
3. Run a 15A current through the sensor. 
4. Confirm that the oscilloscope shows an output 

voltage of 675mV/A±5%. 
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Table 5. RV table for temperature sensor 

Requirements Verification 

Functions for supply voltage 3.3V±5% 
DC. 

1. Connect sensor output to mock 
microcontroller. 

2. Connect sensor to 3.3V power source. 
3. Probe the air for its temperature. 
4. Run a mock code to check if the sensor 

outputs any values. 

The sensor can differentiate between 
pump normal operating temperature 
and pump overheating temperature. 

1. Connect sensor output to mock 
microcontroller. 

2. Connect sensor to 3.3V power source. 
3. Probe room temperature water to simulate 

pump in normal operating temperature. 
4. Run a mock code and note the output value. 
5. Probe boiling water to simulate pump 

overheating temperature. 
6. Run a mock code and note the output value. 
7. Confirm that both readings’ values are 

visibly distinct. 

 

Table 6. RV table for vibration sensor 

Requirements Verification 

The sensor can differentiate between 
pump normal operating vibration and 
pump excessive vibration. 

1. Connect sensor output to oscilloscope. 
2. Connect sensor to 3.3V power source. 
3. Shake the sensor moderately to simulate 

pump normal operating vibration. 
4. Note down the output voltage on the 

oscilloscope. 
5. Shake the sensor harder to simulate pump 

excessive vibration. 
6. Note down the output voltage on the 

oscilloscope. 
7. Confirm that both readings’ values are 

visibly distinct. 
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Table 7. RV table for microcontroller 

Requirements Verification 

The C program on the microcontroller 
should be able to process data from the 
sensor module into a format that is suitable 
for transmitting data. This will be JSON. 

1. Run test C program to check if 
signal/data from I/O pins can be 
recognized by the software. 

2. Write test data within the C program to 
check if it can process data into the 
correct format. 

3. Test the C program with sensor input to 
check if the data is processed correctly. 

The C program can transmit data using 
built-in Wi-Fi capabilities to AWS server. 

1. Design and run test C program in 
Arduino IDE to transmit mock data to 
AWS server.  

2. Check server log of received data to 
confirm it matches the mock data 
provided in the code. 

 

Table 8. RV table for SIM module 

Requirements Verification 

The module can establish a GPRS internet 
connection through the 2G network. 

1. Design and run test C program in 
Arduino IDE to establish internet 
connection on the ESP32. 

2. Run test C program to transmit mock 
data to AWS server. 

3. Check server log to confirm received 
data matches mock data. 
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Table 9. RV table for database 

Requirements Verification 

AWS Lambda receives data given that 
the transmission module successfully 
sent data. 

Send test data from hardware, and log the input 
received. Check if log matches with test data sent 
from hardware. Test this after cellular modem is 
tested. 

Data is processed by script on AWS 
Lambda correctly, and processed data is 
stored into the database without 
corruption of data. 

1. Create dummy data input within the script 
and log the processed data. Check if it is 
successfully processed. 

2. Check database table after processed data is 
inserted to database. Make sure it does not 
affect past data, and new data is inserted 
without alteration. 

Whenever the database is updated, AWS 
Lambda script should be executed to 
update JSON files in AWS S3 bucket. 

Send a single data packet every minute and check if 
the csv files in AWS S3 bucket updates. 

 

Table 10. RV table for website 

Requirements Verification 

The Javascript component of the website 
can read and process data from csv files 
on AWS S3 through ajax in real time. 

Upload dummy JSON file with dummy data to S3. 
Log the read data on console, and check if data 
matches with dummy data on csv. 

Warnings should be generated through 
analysis of data read from csv files. 

Create dummy JSON files. One has data satisfying 
warning conditions, and another does not. Test 
warning analysis part of code with both of csv files. 
Check if warnings are generated if only if the csv 
file has data that satisfies warning conditions. 

Data and warnings can be visualised on 
the website. 

Given the csv file, check if the website can display 
all data in graph and highlight the data with 
warnings. 
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Appendix B: ESP 32 C Code 
 
#include "secrets.h" 
#include <WiFiClientSecure.h> 
#include <MQTTClient.h> 
#include <ArduinoJson.h> 
#include <OneWire.h> 
#include <DallasTemperature.h> 
#include "WiFi.h" 

 
#define AWS_IOT_PUBLISH_TOPIC   "esp32/pub" 
#define AWS_IOT_SUBSCRIBE_TOPIC "esp32/sub" 
 
WiFiClientSecure net = WiFiClientSecure(); 
MQTTClient client = MQTTClient(256); 
 
int DS18S20_Pin = 26;  
int vib_pin = 39; 
int amm_pin = 36; 
int flow_pin = 35; 
float analog_high = 0.8; 
 
OneWire oneWire(DS18S20_Pin); 
 
DallasTemperature sensors(&oneWire); 
 
void connectAWS() 
{ 
  Serial.println("Connecting to Wi-Fi"); 
  WiFi.mode(WIFI_STA); 
  WiFi.begin(WIFI_SSID, WIFI_PASSWORD); 
 
  Serial.println("Connecting to Wi-Fi"); 
 
  while (WiFi.status() != WL_CONNECTED){ 
    delay(500); 
    Serial.print("."); 
  } 
 
  net.setCACert(AWS_CERT_CA); 
  net.setCertificate(AWS_CERT_CRT); 
  net.setPrivateKey(AWS_CERT_PRIVATE); 
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  client.begin(AWS_IOT_ENDPOINT, 8883, net); 
 
  client.onMessage(messageHandler); 
 
  Serial.print("Connecting to AWS IOT"); 
 
  while (!client.connect(THINGNAME)) { 
    Serial.print("."); 
    delay(100); 
  } 
 
  if(!client.connected()){ 
    Serial.println("AWS IoT Timeout!"); 
    return; 
  } 
 
  client.subscribe(AWS_IOT_SUBSCRIBE_TOPIC); 
 
  Serial.println("AWS IoT Connected!"); 
} 
 
void publishMessage() 
{ 
  StaticJsonDocument<200> doc; 
 
  float vib_data = 0; 
 
  for (int i=0;i<40; i++){ 
    vib_data = vib_data + analogRead(vib_pin); 
    delay(25); 
  } 
 
   
 
  sensors.requestTemperatures();  
  float temperatureC = sensors.getTempCByIndex(0); 
 
  
   
  doc["time"] = millis(); 
  doc["flow"] = frequency()/11.0; 
  doc["current"] = analogRead(amm_pin); 
  doc["temp"] = temperatureC; 
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  doc["vib"] = vib_data/40.0; 
  char jsonBuffer[512]; 
  serializeJson(doc, jsonBuffer);  
 
  client.publish(AWS_IOT_PUBLISH_TOPIC, jsonBuffer); 
} 
 
void messageHandler(String &topic, String &payload) { 
  Serial.println("incoming: " + topic + " - " + payload); 
 
} 
 
float frequency(){ 
  float period = (pulseIn(flow_pin, LOW)*2)/1000000.0; 
  if (period==0){ 
    return 0; 
  } 
 
  return 1/period; 
} 
 

void setup() { 
  Serial.begin(9600); 
   
  connectAWS(); 
   
  pinMode(flow_pin, INPUT); 
  sensors.begin(); 
} 
 
void loop() { 
  publishMessage(); 
  client.loop(); 
  delay(500); 
} 

 
 
 
 



30 
 

Appendix C: AWS Lambda Python Code 
 
from datetime import datetime, timedelta 
import json 
import boto3 
import time 
 
s3 = boto3.client('s3') 
s31 = boto3.resource('s3') 
athena = boto3.client('athena') 
 
def lambda_handler(event, context): 
    bucketname = "www.waterpumpgraph.com" 
    itemname = "data/data.json" 
    # obj = s31.Object(bucketname, itemname) 
    # body = json.loads(obj.get()['Body'].read()) 
 
    now = datetime.now() 
    yesterday = datetime.now() - timedelta(hours = 8) 
 
    date_time = now.strftime("%Y-%m-%d %H:%M:%S.000") 
    past_time = yesterday.strftime("%Y-%m-%d %H:%M:%S.000") 
    print(date_time) 
    print(past_time) 
 
    insert_query = "insert into waterpumpdata.pumpdata (datetime, temperature, vibration, flow, 
electric_current, warning_one, warning_two) values (TIMESTAMP '{}', {}, {}, {}, {}, {}, 
{})".format(date_time, event["temp"], event["vib"], event["flow"], event["current"], 
int(event["temp"]>30), int(event["vib"]>1000)) 
 
    response = athena.start_query_execution( 
        QueryString=insert_query, 
        QueryExecutionContext={ 
            'Database': 'waterpumpdata' 
        }, 
        ResultConfiguration={ 
            'OutputLocation': 's3://www.waterpumpgraph.com/table storage', 
        } 
    ) 
 
    query_execution_id = response['QueryExecutionId'] 
    print(query_execution_id) 
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    for i in range(1, 21): 
        query_status = athena.get_query_execution(QueryExecutionId=query_execution_id) 
        query_execution_status = query_status['QueryExecution']['Status']['State'] 
 
        if query_execution_status == 'SUCCEEDED': 
            print("STATUS:" + query_execution_status) 
            break 
 
        if query_execution_status == 'FAILED': 
            raise Exception("STATUS:" + query_execution_status) 
 
        else: 
            print("STATUS:" + query_execution_status) 
            time.sleep(i) 
    else: 
        athena.stop_query_execution(QueryExecutionId=query_execution_id) 
        raise Exception('TIME OVER') 
 
 

    fetch_query = "select * from waterpumpdata.pumpdata where datetime between TIMESTAMP '{}' and 
TIMESTAMP '{}' order by datetime".format(past_time, date_time) 
 
    response = athena.start_query_execution( 
        QueryString=fetch_query, 
        QueryExecutionContext={ 
            'Database': 'waterpumpdata' 
        }, 
        ResultConfiguration={ 
            'OutputLocation': 's3://www.waterpumpgraph.com/table storage', 
        } 
    ) 
 
    query_execution_id = response['QueryExecutionId'] 
    print(query_execution_id) 
 
    for i in range(1, 21): 
        query_status = athena.get_query_execution(QueryExecutionId=query_execution_id) 
        query_execution_status = query_status['QueryExecution']['Status']['State'] 
 
        if query_execution_status == 'SUCCEEDED': 
            print("STATUS:" + query_execution_status) 
            break 
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        if query_execution_status == 'FAILED': 
            raise Exception("STATUS:" + query_execution_status) 
 
        else: 
            print("STATUS:" + query_execution_status) 
            time.sleep(i) 
    else: 
        athena.stop_query_execution(QueryExecutionId=query_execution_id) 
        raise Exception('TIME OVER') 
 
    result = athena.get_query_results(QueryExecutionId=query_execution_id) 
    result = result["ResultSet"]["Rows"] 
    #print(result) 
 
    result = [[y["VarCharValue"] for y in x["Data"]] for x in result] 
    #print(result) 
 
    cols = result[0] 
    result = result[1:] 
 
    result_dict = {"data": []} 
    for r in result: 
        temp = {} 
        for i, x in enumerate(r): 
            temp[cols[i]] = x 
 
        result_dict["data"].append(temp) 
 
    #print(result_dict) 
 
    uploadByteStream = bytes(json.dumps(result_dict).encode('UTF-8')) 
    s3.put_object(Bucket=bucketname, Key=itemname, Body=uploadByteStream) 
    print('Put Complete') 
 
 
 
 
 
 
 


