ECE 445 Group 22 Fall 2020

COVID-19 TEST KIT DISTRIBUTION MACHINE

Richard Ding, Daniel Polyakov, Brian Zheng

-Introduction

Current situation:

- Ongoing COVID-19 Pandemic and the possibility of a future pandemic
- Private and public sector need

Idea:

- Automated Machine with authentication that can distribute testing kits
- Can interact with a database on server for verification and testing registration

– Objectives

- Labor Reduction -> 0 extra labor assistance
- Less unsafe contact -> 0 need to touch the machine
- More security -> 1 Verification token usage for each user
- More extensibility -> Wirelessly connection enabled
- More data stability -> Run with SQL, cloud deployable
- Time saving -> Last no more than 1 min for each user

_ Picture of _____ the Prototype

Outer View

Inner View

_ Block Diagram

- <u>Power subsystem</u>
 2 Linear Regulators
 12 to 5V and 5 to 3.3V
- <u>Control Unit subsystem</u> ATmega328P 5V ESP-001 3.3V
- <u>Mechanical subsystem</u> L298N Motor Controller A motor with encoder A spiral
- <u>User Interface subsystem</u> An info display RFID Sensor

_ PCB Design Board View

_ PCB Board Physical View

Hardware Overview

(in-house)

- ATMEGA328P-PU
- Voltage Linear Regulators (Convert from 12 V DC -> 5 V DC -> 3 V DC)

Central Control Unit (ATMega328P-PU)

- Communicaticates with all components (RFID, Wi-Fi, and Motor Controller)
- Receive signal from the server, the RFID
- Sends outputs to the L298N motor controller, and communicates with the ESP-001 Wi-Fi Chip

PCB Failure (ATMega328P-PU)

- Programming problems (the USB serial did not interface with board)
- Voltage regulators, capacitors ruled out; all functioned as intended
- Pin connections and ports were correct
- 16 MHZ crystal likely shorted due to small size (commonly causes errors if improperly connected)
- USB serial was set to correct port, board, a firmware in the Arduino ISP

PCB Improvements

- PCB did not make use of a chip mount: easy removal of the microcontroller would reduce time and allow for easier debugging and reprogramming
- Test the USB FTDI beforehand to ensure the ATMEGA328 can communicate
- Use a larger 16 MHZ crystal

Voltage Linear Regulators

- Convert DC Power 12V (L298N) -> 5V (ATMEGA) -> 3.3V (ESP-001)
- 12 5 V (Texas Instruments LM117)
- 5 3.3 V (MicroChip MIC5205 Low Noise (3.3 V))

.5V - 3.3 Converter

Hardware Overview (Outsourced)

- PITTMAN GM9413D631 Motor with Encoder
- L298N Motor Controller
- Parallax 28440 RFID
- ESP 001 Wi Fi Chip
- LCD
- Power Supply

PITTMAN GM9413D631 Motor with Encoder

- 5 V Encoder
- 12 V Motor
- 65:5:1 Ratio
- Physical calculation of the encoder pulse per revolution (PPR) yielded approximately 1176 PPR (~1200 PPR)
- Using encoder yields more accurate positioning for the machine to determine when to stop the motor

PITTMAN MOTOR Encoder Calculation

Encoder $PPR = \frac{60 \text{ seconds}}{rpm} \times pulse \text{ per second}$

- To calculate the proper spin of the motor, one must calculate the total amount of pulses needed to conduct a 360 degree rotation (Pulses Per Revolution or PPR).
- Most encoders come with two outputs, only one output needed (only one direction for the motor)

Motor Calculation (continued)

- Using a 5V source to power the motor:
- 30 pulses in 50 mS (or 600 pulses in 1 second)
- RPM: 30.6 rotations per minute.
- Resolution of encoder: 360 degrees/ PPR = .3 degrees per pulse

Measurement of Encoder Pulse (30 pulses over 50 mS)

Encoder $PPR = \frac{60 \text{ seconds}}{30.6 \text{ rpm}} \times 600 \text{ pps} = 1176 PPR$

External Factors that can affect a motor's speed

- Friction (what the spiral holds can affect the weight and tension)
- Temperature
- Connections (voltage and power supplied to the controller)
- Winding

L298N Motor Controller

- 12 V (more than enough power)
- Provides the power needed to operate the motor
- Can also serve as an auxiliary power for the central control unit if the external power supply fails (via 5V output)

External Power Supply

- LEDMO Switching Converter, AC/DC Power Supply Adapter Transformer Driver for LED Strip Lights, AC 100V/240V to DC 12V, 10A, 120W
- Serves as the main source of power for the central control unit
- US Plug
- Connected directly to the PCB DC power port

Parallax 28140 RFID

- Necessary for reading RFID tokens from the machine
- 125 kHz

- 5V Input

Parameter	Ideal Value	Tolerant Range	Test Value			
Vcc	5.0 V	5.0 ± 0.5 V	5.07 V			
Icc 108 mA		108 + 92 mA	112.8 mA			
Verification Table						

At V_{CC} = +5.0V and T_A = 25°C unless otherwise noted

Paramotor	Symbol	Tost Conditions	Specification			Unit	
Falanetei	Symbol	Test conditions	Min. Typ. Max.		Max.		
Supply Voltage	Vcc	200	4.5	5.0	5.5	V	
Supply Current, Idle	IIDLE			9.4		mA	
Supply Current, Active	lcc	855	10000	108	200	mA	
Input LOW voltage	VIL	+4.5V <= V _{CC} +5.5V			0.8	V	
Input HIGH voltage	V _{IH}	+4.5V <= V _{CC} +5.5V	2.0			V	
Output LOW voltage	Vol	$V_{CC} = +4.5V$			0.6	V	
Output HIGH voltage	V _{OH}	$V_{\text{CC}} = +4.5V$	V _{cc} - 0.7	1000		V	

ESP-001 Wi-Fi Chip

- WiFi Protocols 802.11 b/g/n
- Frequency 2.4GHz
- Operating Voltage 3.3V

Operating Condition	Ideal Value	Tolerant Range	Tested Value
Operating Temperature	20 °C	-40 °C to 125 °C	25 °C to 36 °C
Supply Voltage	3.3 V	3.3 ± 0.3 V	3.28 V

Verification Table

Operating Condition	Symbol	Min	Тур	Max	Unit
Operating Temperature		-40	20	125	°C
Supply voltage	VDD	3.0	3.3	3.6	V

Datasheet Table

– LCD

- SunFounder IIC I2C TWI 1602 Serial LCD Module Display
- Standard interface into ATMEGA

Software Overview

- Software in machine
 - ATMEGA running code to manage the RFID, LCD, Motor controller
 - Serial communication with the WIFI chip
 - ESP WIFI running code to manage web communication with server
- Software off machine
 - Authentication Server
 - Running in Java Spring boot

e 🖸 COM4	
an	
21.33.44.703 -7 100p	
21:33:45.800 -> no token	
21:33:46.814 -> loop	
21:33:46.849 -> 1st:2	
21:33:46.849 -> 2nd:C1	
21:33:46.849 -> 3rd:EB	
21:33:46.849 -> 4th:94	
1 21:33:46.883 ->	
21:33:46.883 -> 02cleb94	
21:33:47.930 -> Wifi stuff	
21:34:05.806 -> wifi return: 4	
21:34:05.806 -> bad token	
p 21:34:08.851 -> loop	
21:34:09.868 -> no token	
@ 21:34:10.885 -> loop	
p 21:34:11.907 -> no token	
21:34:12.929 -> loop	
Show timestamp	and the second
io-8080-exec-2] spring A1	New
io-8080-exec-31 spring Application	
io-8080-exec-31 spring.Application	
lio-8080-exec-31 spring Application	
nio-8080-exec-4] spring Application	. 02CJ

ATmega Running Code

- Controls RFID and LCD chips
- Interfaces to Wifi Chip on Serial Connection
- Interfaces to L298N Motor Controller
 - Does't send signals to motor directly.
- Directly receives the encoder PPR

(a)	21:33:45.800 -	> no token
	21:33:46.814 -	> loop
	21:33:46.849 -	> 1st:2
	21:33:46.849 -	> 2nd:Cl
Di	21:33:46.849 -	> 3rd:EB
L.T.	21:33:46.849 -	> 4th:94
11	21:33:46.883 -	>
	21:33:46.883 -	> 02cleb94
p	21:33:47.930 -	> Wifi stuff
	21:34:05.806 -	> wifi return: 4
	21:34:05.806 -	> bad token
	21:34:09 868	> 100p
	21:34:10.885	> loop
	21:34:11.907 -	-> no token
	21:34:12.929	-> loop
	21:34:13.946	-> no token
		and the second
	Autoscroll	Show timestamp

ESP-01 WiFi Chip Running Code

- Accepts RFID tokens from ATMEGA, interprets results from server, and returns if valid or not
- Very common and low cost chip running C code
- Connects to Wifi then waits for ATMEGA code
- Hardcoded server host and Wifi ssid/pass

Server Side Running Code

- Accepts RFID tokens, returns if they're valid or not
- REST-ful type endpoint written in Java Springboot
 - Easy to create endpoints and manipulate data
- Running SQL on the backend
 - Highly expandable
- Highly versatile
 - Deployable to your favorite cloud hosting service

	s ali	m pom	i.xml	37	Tes	stTaker t3 = <mark>new</mark> TestTaker();	;	
		📄 Ap	plication ×					\$ -
🍁 2: Favorites 🚦 12: Structure	d ■ @ ☆ ഈ ■ ★	↑ 20 ↓ 20	20-12-03 00:32:36.740 120-12-03 00:32:37.058 120-12-03 00:33:28.750 120-12-03 00:33:28.751 120-12-03 00:33:28.751 120-12-03 00:33:43.636 120-12-03 00:33:43.636 120-12-03 00:33:43.637	INFO 13336 INFO 13336 INFO 13336 INFO 13336 INFO 13336 INFO 13336 INFO 13336 INFO 13336	[nio-8080-exec-2] [nio-8080-exec-2] [nio-8080-exec-3] [nio-8080-exec-3] [nio-8080-exec-3] [nio-8080-exec-4] [nio-8080-exec-4] [nio-8080-exec-4]	spring.Application spring.Application spring.Application spring.Application spring.Application spring.Application spring.Application	: incorrect : not in database : Rfid: : 02c1ed00f : found in database : Rfid: : 04c12d5f : not in database	
	▶.4 Build	Run i complete	≡ TODO ⊕ <u>6</u> : Problems ⊠ :d successfully in 19 s 1 ms (3 mini	Terminal 🔨 Build utes ago)				① Event Log 50:79 LF UTF-8 Tab* Ŷ

-Conclusion-

- Can help government, school and enterprises with COVID testing
- Safe for both human resources and property
- Affordable, about 100-150\$ for basic components
- Easy to assemble and place

Potential

Improvements

- Expand the size of the machine to make it contain more testing tubes
- Construct a more complexed database for a more complete and stable data storage
- Compatibility and support with tracing apps (i.e. Safer Illinois, COVIDWISE) to record testing information and make testing reminder for users
- More practical verification tokens to make the system more accessible like ICard

Thank You --GROUP 22