

ECE 445: Auto-Played Guitar

Jiyu Hu (jiyuhu2), Peilin Rao (peilinr2), Qianlu Chen (qianluc2)

Final Report for ECE 445, Senior Design, Fall 2020

TA: Yifan Chen

9 Dec 2020

Team #: 12

Abstract

In this project, we designed, implemented, and tested the Auto-Played Guitar, a device that can be

installed on any kind of guitar to play music. The device consists of two main components of fulfilling the

basic functionality: 36 actuators and six servo motors. The 36-actuator component mimics the left hand of

a guitar player to press the frets on the guitar. The 6-servo motor component mimics the right hand of a

guitar player to strike the guitar strings. Combined, they produce the desired sound. Besides, the device

can produce drum beats to add flavor to the music played. We have successfully encoded several classical

music pieces into the device. They can all be played at an adjustable tempo.

1

Table of Contents

1. Design 3
1.1 Introduction 3
1.2 Solution Overview 3
1.3 High-Level Requirements 4
1.4 Block Diagram 4

2. Implementation 5
2.1 Visual Aid 5
2.2 Fret Pressing Unit 5
2.3 String Strumming Unit 6
2.4 Control Unit and PCB design 7
2.5 Alarm Unit 9
2.6 Drumbeat Unit 10
2.7 Power Supply Unit 11

2.7.1 Power Source 11
2.7.2 Separation of Power and Logic Circuits 12

2.8 Software 13
2.8.1 Workflow 13
2.8.2 Sheet Music Data Structure 13
2.8.3 Multithreading 14

3. Verifications 16
3.1 Overall Verification 16
3.2 Major Verification Problem 16

4. Cost 17
4.1 Purchasing Cost 17
4.2 Labor Cost 17

5. Schedule 18

6. Conclusion 19
6.1 Accomplishments 19
6.2 Uncertainties and Future Improvements 19
6.3 Ethnic Issues 19

7. References 20

8. Appendix 21
8.1 Requirements and Verification Tables 21

2

1. Design
1.1 Introduction
We built an auto-played guitar for those people or places that need it. Some people love the original sound

of guitar music but lack the time and energy to practice it; Just like the existence and common use of

auto-played piano in the lobby of grand hotels [1], some bars may need a playing guitar for entertainment

or creating atmosphere; Guitar stores want to show the good sound quality of the guitars they are selling

but it is usually very expensive to hire someone to play for a long period of time; Music creators want to

hear the sound of their customized guitar for testing or for remix; Some people want to hear the authentic

sound of guitar music as their wake up alarm; Some new guitar learners wish to hear a demonstration of

the musical piece that they are practicing on while watching the notes they should play. Despite that

people can listen to guitar music by simply using electronic music players, the beautiful original sounds

from different real guitars are irreplaceable. Our design solves our customer’s problems by presenting the

auto-played guitar. Although the idea of the auto-played guitar is not an invention, all the existing

auto-played guitar devices are expensive to manufacture, too ponderous, or lack compatibility to be

reinstalled on a variety of guitars. Therefore, the pivot of our design is to build a piece of automatic guitar

playing unit that is affordable, portable, and compatible with any type of guitar.

1.2 Solution Overview
In order to build a device that can be installed on any type of guitar for automatic music playing, we break

the design down into six subsystems. They would work together to mimic the left hand and the right-hand

motion of a real guitar musician while also providing extra functionalities such as alarm and metronome.

In order to mimic the left-hand motion, our device can press any string swiftly from the third fret to the

eighth fret using 36 linear actuators, which is a wide enough range for most of the guitar music pieces. It

can activate at most 8 linear actuators concurrently, which means it can produce any chords in this range.

Also, to mimic the right-hand motion, our device can strum the string to play clear sounds with six servo

motors. All the fret pressing and string strumming motions are controlled by the signal pins from our PCB

and can respond quickly to our multitasking software. The alarm is embedded into the PCB as well, which

provides several buttons for users to set the alarm time and plays the pre-figured music when the time is

up. The metronome produces a periodic drumbeat sound by hitting the guitar surface using a servo motor.

It acts as a practicing aid and also adds flavor to the guitar music produced. All those parts are powered

up by the design idea of separating power and control signals to ensure safety and stability.

3

1.3 High-Level Requirements
To verify the overall system works, we require our device must:

A. Be able to play the correct notes on the guitar in tune and loudly.

B. Be able to deliver the drumbeat and guitar note at the correct rhythm and adjustable tempo.

C. Be able to perform an alarm function that is synchronized with real-world time.

1.4 Block Diagram

Figure 1. Block Diagram of overall design

Our design of the auto-played guitar contains six submodules: Fret Pressing Unit, String Strumming Unit,

Control Unit, Alarm Unit, Drumbeat Unit, and Power Supply Unit. According to the block diagram, the

Fret Pressing Unit and the String Strumming Unit work together to produce guitar music while the

Drumbeat Unit handles tempos and adds flavor to the performance. The Alarm Unit allows user

interactions with our device to set the time of the alarm. The Control Unit can process the code to create

control signals for the three guitar-playing units and the Alarm Units. The Power Supply Unit figures out

the power requirement for others and provides the corresponding voltage. The Power Supply Unit has its

own PCBs with transistors matrices for driving the linear actuators in the Fret Pressing Unit, which

requires a larger current than others.

4

2. Implementation
2.1 Visual Aid

Figure 2. Auto-played Guitar overview

The Fret Pressing Unit is attached to the fretboard of the guitar while the String Strumming Unit is placed

on the guitar body. The Control Unit and Alarm Unit are both placed on the main PCB and attached to the

guitar body. The Drumbeat Unit is placed on the edge of the guitar surface. The Power Supply Unit

contains the power jack, all the power wires, and the transistor matrices placed in a box.

2.2 Fret Pressing Unit
The Fret Pressing Unit mimics the left-hand motion of a guitar player by pressing and holding the strings

on the frets according to the control signal from the Control Unit. It consists of two parts: 36 actuators and

the 3D printed parts that fix them on the fretboard. The linear actuators of our choice are Sparkfun Push

Actuators ROB11015 [9], which are powered by the transistors matrices in the Power Supply Unit.

Figure 3. Sparkfun Push Linear Actuator ROB11015

5

The actuators can generate up to 8 gram-force when working at 5V and 1.1A, which is verified to be

strong enough to hold the strings tightly on the fret bar. To ensure that strumming the pressed string does

not prevent the actuators from holding it, we designed a 3D printed holder for 36 actuators.

Figure 4. 3D printed holder for linear actuators

The holder consists of a base with 36 holes based on the direct measurement of the guitar frets, six square

boards that can be inserted perpendicularly to the base, 18 short extension rods, and 18 long extension

rods. To fit the design of this plastic holder, six actuators are attached on each square board with a zig-zag

arrangement and alternatively using long and short extension rods that touch the strings.

2.3 String Strumming Unit

The String Strumming Unit mimics the right-hand motion of a guitar player to hit the guitar through

plastic guitar picks attached to the six servo motors. The servo motors of our choice are SG90 [10]. In

order to generate the PWM wave that delivers the analog signal of how fast and how many degrees the

motors should rotate, we are using a PCA9685 servo driver chip [12], which is controlled by the Control

Unit. To make our device as compact as possible, we 3D printed three bridge-shaped holders and placed

two servo motors on each holder. Each servo motor is in charge of strumming one specific string and the

guitar pick attached to servo motors can barely touch that specific string without interfering with each

other.

Figure 5. 3D printed holder for servo motors

6

2.4 Control Unit and PCB design

Figure 6. PCB schematics divided into different sections

The aim of the Control Unit is to generate control signals for other units based on the code imported into

the microcontroller. The PCB schematics can be divided into several sections, which serve the purposes

of driving different units. Section A from Figure 6 is the microcontroller chip ATMega328 chip [13],

which is the central processor of the Control Unit that determines what other units should do.

Figure 7. ATMega328 Pinout (left), MCP23017 configuration (right)

7

However, ATMega328 itself does not have enough digital pins to drive 36 actuators. Therefore, we

connected three I2C pin extenders chips MCP23017 [11] in Section D in the circuit schematics. The

detailed connection configuration is shown by the right diagram in Figure 7, where A4 and A5 pins of an

Arduino board correspond to the SDA and SCL pins on ATMega328. When different address pin

configurations on the pin 15, 16, 17 of the MCP23017, ATMega328 allows software to access all 16

digitals pins on each MCP23017. Section B in the circuit schematics is for four active-low push buttons

that can be used in the Alarm Unit. Section C contains four six-pin ports for USB chip, LED chip, time

chip and servo driver chip PCA9685. LED, time and servo drivers chips require connection to SDA and

SCL pins to ATMega328 while the USB chip needs RX and TX pins for Serial Peripheral Interface

Communication. Section E provides simply 36 control pins for all the actuators. Those control pins are

delivered to the transistors matrices in the Power Unit, which then provide sufficient voltage for actuators

to work.

Figure 8. PCB components arrangement

The PCB arrangement of all the components shown in Figure 8 is deliberately designed with the principle

of clustering. The ports of time chip, USB chip and servo driver chip in section F and the LED chip in

section J are placed on the edge of the board to leave enough room for those chips to be inserted. Section

G contains all small parts including resistors, capacitors, and an oscillator. They are all clustered in one

block to ease the soldering process. Three MCP23017 chips and the ATMega328 chip are placed in

Section H, four buttons are placed in Section K and the 36 control signal pins are placed in Section I.

8

2.5 Alarm Unit

 Figure 9 . Real Time Chip DS3231 Figure 10. Adafruit 7-segment LED chip

The Alarm Unit is designed to make the guitar function as a wake up alarm. The goal is to play a certain

piece of music on the guitar when the preset time is reached because some people find it very enjoyable to

be woken up by the real guitar sound. The main components of the Alarm Unit are a time chip [5] and an

LED chip [7]. The ports of both chips are placed on the main PCB board with the Control Unit. In order

for this unit to function normally, they need to be connected to the ATMega328 along with three control

buttons as shown in Figure 11. They both use standard SDA/SC pins to communicate with the

ATMega328 and both work at 5V DC. The time chip itself has a small battery on its back and is

individual of the power supply. After its time has been set, it can keep the inner clock on its own even

after the power is cut off.

 Figure 11. Alarm Unit schematics

9

The Alarm Unit has two main functions: time telling and alarm. For time telling, the ATMega 2560 will

get the data from the time chip and then command the LED to show the numbers, also asking the colon in

the middle to blink every 500 ms. For the alarm function, the time chip has inner built alarm registers, and

can store two alarms[8]. However, for simplicity we are only using one. In order to set the alarm, one way

is to serial transfer it to a string of data in predetermined format. Yet, we can not do that for common user

operation. There are four buttons on our main PCB. While one of them is for direct music playing tests,

the other are for the Alarm Unit. These three buttons are embedded to make it function like some of the

buttons on a watch and help us set the alarm. Button 1 is the mode button. There are three modes in the

inner software state machine for the alarm. Mode 0 is the time telling state where the system is usually in.

After pressing Button 1 once, the system will switch to Mode 2 where the time stops refreshing on the

LED and we can use Button 2 (Add) and Button 3 (Minus) to adjust the hour number for the alarm.

Pressing again Button 2 and the system will switch to Mode 3 where we can adjust the minute number for

the alarm in a similar manner. Finally when Button 1 is pressed the third time, we will switch from Mode

2 back to Mode 0. Then the time resumes on the LED and the previously set hour and minute will be

transformed into an instruction and sent to the time chip to keep the alarm.

2.6 Drumbeat Unit
The Drumbeat acts as a metronome with adjustable tempo. It contains a servo motor SG90, a holder, and

an L-shaped arm. When placed on the edge of the guitar body surface, two tips of the L-shaped arm can

hit the guitar body and the guitar edge. Since the guitar body and the guitar edge are made of different

materials, the sounds produced by the hits are different. The Drumbeat Unit uses those two different

drumbeat sounds to add flavor and rhythm to the music produced.

Figure 12. 3D printed holder for servo motor and the L-shaped arm

10

2.7 Power Supply Unit
2.7.1 Power Source

Table 1. Power requirements of all parts

We first provide a brief calculation of the total power supply required for our system to function properly.

As indicated in Table 1, the component that consumes most of the power is the actuator. Compared to it,

the power consumption of other components is almost negligible. By design, the Auto-played Guitar

needs at most six actuators to work at the same time, since at most each string needs one actuator to press.

All of the components run under 5 V DC. Therefore there is no need in our design to perform voltage

transformation in the circuit. According to the electrical power formula:

 (2.7.1.1)P = V × I

Each actuator functions with a power supply of 5.5 W. Therefore, six actuators working in parallel

requires 33.0 W of power supply in total. Following the same formula (2.7.1.1), each SG90 Servo Motor

runs with 1.8 W. Seven servos (six for string strumming and one for drum beating) in total consumes 12.6

W. The LED unit, RTC and ATMega328 microcontroller together occupy 1.65 W power distribution,

which can be ignored. We choose a 5 V 75 W power source that is easily accessible through websites such

as Amazon [3]. 75 W is more than enough to guarantee an abundant power supply to our system.

Figure 13. Power Adaptor [3]

11

Device Working Current

Actuator ROB 11015 1.1A

Servo Motor SG90 360mA

LED 160mA

RTC 160mA

ATMega328 microcontroller 10mA

2.7.2 Separation of Power and Logic Circuits
Two problems arise with the high power requirements of the actuators: 1) the ATMega328

microcontroller digital I/O pins only supports a maximum current of 50 mA, which is not enough to drive

the actuator directly; 2) the large current for driving the actuators can burn the ground wires on our PCB

board because the wires are too thin to support large currents.

Figure 14. Control circuit for actuators

To address the first problem, we use the output signal from ATMega328 as a logic signal that triggers

transistors that are directly connected to the power source. As indicated in Figure 14 The transistors

function as logical switches controlled by the output digital signals to drive the actuators.

The second problem is more difficult to solve. We decided to completely separate the control signals on

the PCB board from the power supply circuits that drive the actuators and servos. In this way, the PCB

only provides logic control that runs with very small current, safe from burning the PCB circuit.

Figure 15. Separation of control and power circuit

As Figure 15 (A) shows, the power jack is connected to the Power Separation board. On the Power

Separation Board, power supply is divided into section A and B. Section A supports the function of the

PCB control logic, while section B powers the Actuator Driver Unit in Figure 15 (B) and Servo Driver.

The Actuator Driver Unit are two 36-transistors matrices connected to the power source and controlled by

digital signal from the PCB.

12

2.8 Software
2.8.1 Workflow

Figure 16. workflow diagram

The system’s software has three modes, two of which have been briefly described in the 2.5 Alarm Unit

section. Usually the software is only running a loop to get data from RTC to LED for showing the correct

time. This is called the IDLE mode.

Only when Button 1 is pressed the system jumps to a different loop of setting the alarm: ALARM mode.

Here time is still kept by the RTC but data is no longer requested. The numbers on the LED start acting as

a temporary register for the hour and minute we want to set the clock at. The code constantly checks only

for signals from the buttons.

The most important part of software is the MUSIC mode. This can be triggered by either pressing Button

4 manually or when the RTC sends out a signal that the alarm has gone off. However, unlike the other

two modes, MUSIC mode needs to command the Fret Pressing Unit, the Drumbeat Unit and the Alarm

Unit. To achieve this we implemented a simulation of multithreading and will be discussed in later

sections.

2.8.2 Sheet Music Data Structure

 Figure 17. Data Structure Rules Figure 18. Data Structure Example

We designed a special data structure for storing the music piece being played in the software. Due to the

way we designed our hardware, we only need the information of when to press which fret and when to

13

strike which string in order to play the music. Since at each minimum time interval we have at most six

strings to press or strike, we decided to use a 6-input vector to store the information. Each input would

represent one string. Usually when we press a string we would also need to strike it in order for the sound

to be heard. However, our actuators push down fast and hard enough so that the simple “striking” of the

fret can produce the same note as pressing and striking simultaneously. As our hardware covers from the

third to the eighth fret, we use number 3-8 to represent which fret to press. If the same note is requested

after that note has been played by Fret Pressing, we will need to strike that string, which is indicated by

number 2 input. If we want all actuators to be released on a certain string we will give number 1 and if we

want the actuators and servos to remain in their current position we would use number 0.

2.8.3 Multithreading
When playing the music, we need the program to control the movement of the actuators, string strumming

servos and the drum beating servos. At the same time, we also require the time to be undated and the

colon between the hour and minute number to blink. The actuators and string strumming servos can be

triggered in a sequential order, as we always first press the fret and then strike the string. However, in the

case of producing the drum beats and updating the time, these behaviors are not necessarily synchronized

with the fret pressing and string strumming. As a consequence, we need to keep a different tempo for

these three instructions, thus requiring some sort of multithreading in the control flow. This is illustrated

in the multithreading workflow in Figure 19.

Figure 19. Multithreading workflow

14

As it is known to all, ATMega328 is a basic microcontroller that does not support multithreading by

itself. Therefore, we need a pseudo-multithreading mechanism, i.e. a task switching mechanism,

implemented in the software. We utilize Protothreading as the solution [4]. Protothreading quickly

switches between different tasks and checks for conditions for execution. If the condition is met, then the

corresponding function is executed. Usually the condition is the some time interval between the two

consecutive times the function needs to be called. This is shown by Figure 20, the code example.

Figure 20. Code example for the actuator thread

Line 569 is the condition statement. Here millis() is a function to retrieve real world time in milliseconds,

and timestamp is the first time the function is executed, so the difference is the time passed since last

execution, this should be multiples of the designated interval.

15

3. Verifications

3.1 Overall Verification
For the Fret Pressing Unit, we need to verify that the fret pressing unit can actually play the correct sound.

The verification process is very straightforward: to play each note by order and check the quality of the

sound with the help of a tuner. We have developed a test case in the control program to activate each

actuator in order. The attempt of the general test failed to pass due to some of the actuators not installed in

the right place. We smoothly fixed this problem by reinstalling them at the correct position. After that the

test was easily passed. For the String Strumming Unit, we also included a small unit test for this unit in

our control program to drive each of the servos by order, each note turns out to have at most 2%

discrepancy in frequency with its correct value, which is completely acceptable. The overall verification

is performed after the detailed verification. Therefore, we passed this verification on the first attempt - all

servos can strike to produce the sound correctly. The Control Unit is the most important part of our design

because it coordinates the behavior of all other units, but the verification is in contrast the simplest. This

is because the ATMega microcontroller is easily programmable and debuggable on the Arduino platform.

We do not need to specifically verify the correctness of the program, as the functionality is reflected by all

other units.The verification of the Drum Beat Unit shows that there is at most 1.5% discrepancy in the

time intervals provided under the same tempo, which is acceptable. For the Power Supply Unit, we met

and solved a major problem that is discussed below.

3.2 Major Verification Problem

When verifying the functionality of the PCB, we burned several of them during the process. In order to

pinpoint the problem on the PCB, we used a multimeter to measure the current and voltage between all

pins on the PCB. We found that the current between the transistor and ground hit 5.6 A for a very short

time, and then the PCB burned. Discovering this, we immediately realized that the over-large current was

burning the board.

To solve this problem, we separated the power circuit and the control logic circuit, as described above in

section 2.7.2. We further verified the correctness of the new circuit with the multimeter.When driving six

actuators and seven motors at the same time, the current in the power circuit could go up to 8 A

instantaneously. However, the current in the PCB is always smaller than 400 mA. We measured the

current on the PCB over the span of playing “Canon in C”, our most power demanding piece of music.

The average current was 206.3 mA, with a variance of ±85.4 mA. This current is absolutely within the

safety range of the PCB board.

16

4. Cost
The total cost of our project is:

 otal Cost urchasing Cost Labor Cost $320 15000 $15320 T = P + = + $ = (4.0.1)

4.1 Purchasing Cost

Table 2. Purchasing Cost

4.2 Labor Cost
We assume our hourly payment is 25 US dollars. Each of us spent about 80 hours on various tasks

including designing, building, testing, soldering, and coding. Therefore, the total labor cost should be:

 (4.2.1)abor Cost 5 0 .5 $15000 L = 3 × 2 × 8 × 2 =

17

Items Number Cost (US dollars)

PCA9685 servo driver chip 1 7

MCP23017 I2C pin expander chip 3 3 3 = 9×

3D printing material - 30

ATMega 2560 microcontroller chip 1 10

servo motor SG90 7 3 7 = 21×

linear actuator ROB-11015 36 4 36 = 144×

transistor 2SK3703 36 1.25 36 = 45×

wires, resistors, capacitors, oscillators - 20

USB chip 1 6

time record chip 1 4

Hex LED 1 4

PCB manufacture 2 2 10 = 20×

Sum - 320

5. Schedule

Table 3. Schedule

18

Date Peilin Rao Jiyu Hu Qianlu Chen

10/7/2020 Finish the 3D printing part

of the fret pressing unit.

Start to design the 3D

printing part of the string

strimming unit.

Finish the prototype circuit of

the Drumbeat unit.

Finishing purchase of all the

requirements parts.

Finish Testing the LED and

RTC chips on the

breadboard. Achieve function

of showing time, and setting

alarm with button.Draw the

PCB routing for LED, RTC,

and button.

10/14/2020 Draw the PCB part for the

fret pressing unit.

Draw the PCB part for the

string strumming unit.

Integrate PCB design for all

units.

10/21/2020 Test the prototype of the

fret pressing unit circuit.

Test the prototype of the fret

pressing unit circuit.

Integrate all circuits on

breadboard for testing and

await for PCB arrival.

10/28/2020 Start to write code in center

control part, including

possible finite state

machines and control logic

Take tests on all individual

parts except center control, fix

bugs if any.

Soldering and verification for

first round PCB. Make

necessary changes and

improvements, submit the

final version of PCB.

11/4/2020 Program music into the

control control music.

Test the code and testing. Integration of code and

testing.

11/11/2020 Edge tests on basic

functional units (#1 #2 #3)

Edge tests on advanced units

(#4 #5 #6)

Integration of code and

testing

11/18/2020 Demonstration Demonstration Demonstration

After that Write final paper Write final paper Write final paper

6. Conclusion
6.1 Accomplishments
In conclusion, we successfully implemented a Auto-Played Guitar that is capable of playing any music

and can be installed on any guitars based according to the high level requirements. We demonstrated a

few music pieces including “The Imperial March (Darth Vader's Theme)”, “Autumn Leaves”, and

“Canon in C”, which are very challenging tasks for the stability of our mechanical parts and the

functionality of our control logic. The decent performance for those complex music pieces proved the

completeness of design as well as the correctness of implementation. Our design of the music sheet

storage data structure provides a concise interface for customizing the music played. Also, with the power

of our multithreading control software, the system can perform add-on features such as alarm and

metronome.

6.2 Uncertainties and Future Improvements
Due to the shortage in budget and time, the Auto-Played Guitar has some limitations. We used a cheap 3D

printer for creating the mechanical structures in the Fret Pressing Unit and the String Strumming Unit.

The position of the extension rods on linear actuators are not very accurate because of 3D printing

uncertainty of ± 0.2 mm. In order for those structures to function properly on different guitars, some

manual adjustments on the position of the actuators are required. This problem can be solved by using a

better 3D printer.

 In addition, given the current project as a prototype, we can optimise the connections between each unit.

By applying better packaging, we can turn all models in our system to a unified part, which would

improve the portability and stability of the Auto-Played Guitar as a commercial product.

6.3 Ethnic Issues
We anticipate concerns about our work going against #2.6 in ACM Code of Ethics[2] since some people

think that machines should never replace human beings in terms of creating art and music. However, in

our opinion, the project’s purpose is never to replace the human efforts in creating and performing fine

music. In contrast, it is rather a means for many more people to enjoy music and get more access to the

beautiful and original sound of guitars.

19

7. References
[1] Yamaha Disklavier ENSPIRE Product Demo | Piano Gallery Utah: (Apr.9.) Retrieved on October 01,
2020 from https://www.youtube.com/watch?v=sxI0PIPZjBQ
[2] The Code affirms an obligation of computing professionals to use their skills for the benefit of society.
(n.d.). Retrieved October 01, 2020, from https://www.acm.org/code-of-ethics
[3] 5V 15A 75W Power Supply 100V-240V or 110V - 220V AC to DC Adapter 5V 15 amp Switching
Converter 5.5x2.1mm Plug for WS2811 WS2812B WS2813 2801 LED Strip Pixel Lights. Retrieved
October 25, 2020, from
https://www.amazon.com/gp/product/B07K9Q4DV1/ref=ppx_yo_dt_b_asin_image_o04_s00?ie=UTF8&
psc=1
[4] How to “Multithread” an Arduino (Protothreading Tutorial). Retrieved December 8, 2020, from
https://create.arduino.cc/projecthub/reanimationxp/how-to-multithread-an-arduino-protothreading-tutorial
-dd2c37
[5] DS3231 Datasheet(2015), Retrieved November 2nd, 2020 from
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
[6] Transistor 2SK3703 Datasheet, Retrieved December 08, 2020 from
https://alltransistors.com/pdfview.php?doc=2sk3703.pdf&dire=_sanyo
[7] Adafruit LED backpack Datasheet (2020, June 19) Retrieved November 02, 2020:
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-led-backpack.pdf?timestamp=1604359487
[8] Earl, B. (n.d.). All About Arduino Libraries. Retrieved November 03, 2020, from
https://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
[9] ZHO-0420S-05A4.5 SPECIFICATION.pdf (2015, 05) Retrieved October 01, 2020:
https://cdn.sparkfun.com/datasheets/Robotics/ZHO-0420S-05A4.5%20SPECIFICATION.pdf
[10] Servo motor SG90 Data Sheet(2016, 06) Retrieved October 01, 2020:
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
[11] MCP23017/MCP23S17 Data Sheet (2016, 07) Retrieved October 01, 2020:
https://ww1.microchip.com/downloads/en/DeviceDoc/20001952C.pdf
[12] PCA9685 16-channel, 12-bit PWM Fm+ I2C-bus LED controller(2015, 04) Retrieved October 01,
2020 from https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
[13] “ATmega328,” ATmega328 - 8-bit AVR Microcontrollers. [Online]. Available:
https://www.microchip.com/wwwproducts/en/ATmega328. [Accessed: 10-Dec-2020].

20

https://www.youtube.com/watch?v=sxI0PIPZjBQ
https://www.acm.org/code-of-ethics
https://www.amazon.com/gp/product/B07K9Q4DV1/ref=ppx_yo_dt_b_asin_image_o04_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07K9Q4DV1/ref=ppx_yo_dt_b_asin_image_o04_s00?ie=UTF8&psc=1
https://create.arduino.cc/projecthub/reanimationxp/how-to-multithread-an-arduino-protothreading-tutorial-dd2c37
https://create.arduino.cc/projecthub/reanimationxp/how-to-multithread-an-arduino-protothreading-tutorial-dd2c37
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
https://alltransistors.com/pdfview.php?doc=2sk3703.pdf&dire=_sanyo
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-led-backpack.pdf?timestamp=1604359487
https://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
https://cdn.sparkfun.com/datasheets/Robotics/ZHO-0420S-05A4.5%20SPECIFICATION.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/20001952C.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf

8. Appendix
8.1 Requirements and Verification Tables

Table 4. R&V for the Fret Pressing Unit

21

Requirements Verification

The actuators should be hanged precisely and stably

fixed in the correct place above the guitar neck. The

distance between adjacent actuators is 6.64mm ± 0.2

mm (the distance of adjacent strings on a guitar). The

unit is fixed 8.0mm ± 0.2mm above the guitar neck.

The unit should not move after functioning.

A. After actuators are assembled onto the frame

box, use a Vernier caliper to measure the

distance between each adjacent actuator is

6.64mm ± 0.2 mm.

B. Fix the frame box onto the guitar neck.

Measure the distance between the unit and

guitar neck (8.0mm ± 0.2mm).

C. Activate each actuator sequentially 100 times,

perform A. and B. again to verify that the unit

has not moved.

Most people can easily tell the discrepancy between

theoretical tone and real tone when they are different

by a semitone. So we are limiting this discrepancy to be

less than half of a semitone to ensure every tone sounds

correct. Typically, the range of a semitone is about

16Hz. Therefore, our tone discrepancy should be

within 4Hz.

A. Activate one actuator and pluck at the

corresponding string. Measure the produced

sound with a tuner. Verify that the sound is

within ±4Hz of the standard note.

B. Perform A. for all 36 actuators to verify that

the unit plays notes in tune.

The 36 actuators should be able to work individually

without breaking the consistency of music. It is

reasonable to require the function period on the same

actuators should take less than 0.5s±0.05s.

A. Use a slow-motion camera to film several

function cycles of the actuators and calculate

the mean of time taken for push and release

actions of the actuator.

B. Perform A. for all 35 actuators to verify that

actuators and press the string on time.

Requirements Verification

Table 5. R&V for the String Strumming Unit

Table 6. R&V for the Control Unit

22

The servos should be working and attached firmly

above the strings on the guitar body. The displacement

of each actuator after a strike is less than 0.2mm. The

tips of the guitar picks should be 0.5mm ± 0.2 mm

below the string when strumming.

A. Fix the servos on the guitar. Verify that the

guitar pick tips can touch the string.

B. Activate each servo to pluck at the string

sequentially for 100 times, perform A. again

to verify that the unit has not moved.

Each servo should respond fast and correctly (less than

0.2s ± 0.05s) to the signal of rotation. Up to six servos

can be triggered by the same signal at the same time

(less than 0.1s ± 0.02s time discrepancy)

C. Use a slow-motion camera to film several

function cycles of the servos and verify that

the servo can respond within 0.2s after the

signal is given.

D. Use a slow-motion camera to film six servos

triggered with the same signal. Verify that the

time lapse between the servos is less than 0.1s.

The sound played should be loud enough (greater than

60 dB)

Let the servos pluck at the strings, measure the

volume of the sound with a sound meter.

Verify that the sound is greater than 60 dB.

Requirements Verification

When the fret pressing unit, string strumming unit,

drumbeat unit, and alarm unit is correctly figured, the

produced music should be correct and consistent. And

the ATMega should operate at 16 MHz. To ensure the

consistency of music pieces, there should be less than

0.1s delay between signals when activating the same

piece, such as actuators and servos.

The correct behavior of this unit is verified by

all the other units performing correctly. Not

separate verification needed for the Control

Unit.

Requirements Verification

After pressing Button 1, the LED should respond in

500ms and change mode.

Connect to Arduino and print timestamp to the

serial port every time it receives and responds

to a push signal. Press the button for 10

seconds, calculate the time interval through

the time stamp.

Table 7. R&V for the Alarm Unit

Table 8. R&V for the Drumbeat Unit

23

Button 2 and 3 should change nothing in Mode 0. In

Mode 1 and 2, Button 2 and 3 should add or subtract

the number by 1 every 500ms.

Connect to Arduino and print time stamp

every time to the serial port every time it

receives and responds to a push signal. Press

the button for 10 seconds, calculate the time

interval through the time stamp, and the

number should add by 20 or minus by 20.

The alarm will go off and date once it reaches the set

hour and minute. The difference should be no bigger

than one second.

A. Set the time for one minute later by date of the

month and wait for it to start the guitar at the

exact time.

B. Set the time for one minute later by day of the

week and wait for it to start the guitar at the

exact time.

C. Set the time for 10 hours later by date of the

month and wait for it to start the guitar at the

exact time.

Requirements Verification

The tempo of the drum beats should be correct (tempo

discrepancy ± 5% of time gap).

Record the tempo as an audio file and analyze

the time difference between each peak. The

drum beats should be at the correct frequency.

Should be able to provide two kinds of drumbeat (hit

on the surface of the guitar & hit on the side of the

guitar). The two kinds of drumbeat should be clear

enough to tell from each other. Both sounds should

reach at least 70 dB.

A. Hit the guitar with this unit on both guitar

body and guitar side. Verify that the produced

sound is different

B. Measure several drum beats with a sound

meter to verify that the volume of the sounds

are greater than 70 dB.

Requirements Verification

The Power Supply Unit must be able to supply a

voltage of 5V±0.2V for a current load up to 10A.

A. Link Fret Pressing Unit to PCB and use test

points to confirm that 5V±0.2V voltage and

sufficient current is supplied (1.1A±0.1A

more for every actuator activated).

Table 9. R&V for the Power Supply Unit

24

B. Link String Pressing Unit to PCB and use test

points to confirm that 5V±0.2V voltage is

supplied and can play at least 70dB when

playing.

C. Link Arduino Mega to PCB and confirm that

5V output pin can output 5V±0.2V voltage

D. Link Alarm Unit to PCB and confirm that

5V±0.2V voltage is supplied and

1mA±0.1mA current is supplied

E. Link Drum Beat Unit to PCB and confirm that

5V±0.2V voltage is supplied and

360mA±5mA is supplied.

The Power Supply Unit must be able to convert 120AV

voltage to 5V DC.

Link to PCB and use test point to confirm the

output voltage is 5V±0.2V

