

Digitizing the Restaurant with
Network-Enabled Smart Tables

By

Andrew Chen (andrew6)

Eric Ong (eong3)

Can Zhou (czhou34)

Final Report for ECE 445, Senior Design, Fall 2020

TA: Sophie Liu

December 9, 2020

Group 3

Abstract

The primary goal of our design is to pose solutions to challenges brought by new restaurant

regulations due to the COVID-19 pandemic. We aim to propose a more contact-free seating

process with tables that adapt to customer seating preferences and a monitoring system for

restaurant employees to determine if seats are vacant, occupied, or in need of cleaning. We

also include a mechanism for contactless payment directly with the dining table that leverages

our occupancy monitoring system. Ultimately, this minimizes contact during the dining

experience such that the sole point of employee to patron contact is when food is served to the

customer.

ii

Table of Contents

iii

1. Introduction
Since the onset of COVID-19, there has been a shift in the restaurant industry to support more

contactless service due to new regulations that require fewer personnel in-house and tighter

occupancy caps. Many restaurants, however, still lack contact-free interaction in almost every

stage of the typical dining experience including: initial seating, ordering, food delivery, and

payment [1], [2]. Restaurants unable to adapt to this new contactless norm have suffered as a

consequence: more than 26,000 restaurants have closed since this past July [3]. The purpose of

this project is to showcase potential solutions to minimize contact during these interactions.

We propose three modular improvements to dining tables that encourage minimal contact

between customers and staff in the restaurant setting. Firstly, we have designed a table system

that includes an automatic height adjustment mechanism so restaurants may serve customers

with a greater variety of physical needs while retaining a low furniture count. Secondly, we

constructed a table network system that monitors occupancy status of all seating in the

restaurant which will cut down the number of staff needed to directly monitor customers and

also be useful for analytics in the future. Finally, we offer a payment method directly integrated

into the table, further reducing the number of interactions between waiters and patrons. Our

design culminated in a prototype unit that demonstrates these technologies.

Fig. 1: Ideal Diner Interaction with Table System

1

2. Design Details and Procedure
Our design can be broken down into four main functional groups, or modules. We had a group

of components dedicated to adjusting the table height, a group used to determine the presence

of a customer at the table, a network component used to connect to a central computer owned

by the restaurant running our dashboard software application, and a group of components that

facilitate table-based monetary transactions. These modules and the parts that make up each

of them is shown in Figure 2.

Fig. 2: Table System Block Diagram

For the sake of organization and bookkeeping, we decided to reorganize our groups from our

design document into ones that better fit the functionality of each of the components we used.

Notably, we have powered separate modules with their own dedicated power sources, and

have considered the main node, our table, to be part of the networking group rather than

belonging to its own individual group.

2

2.1. Height Adjustment Module

The prototype we built adjusts its height with assistance from two ultrasonic sensors pointed at

the floor on opposite sides of the tabletop. A microcontroller, which is also situated on the top

portion of our table, is employed to make decisions with this data, and sends PWM signals to a

motor driver circuit in the base of our table. The motor driver circuit uses an h-bridge to route

voltage to the terminals of a gear motor that drives the mechanical height adjustment of our

table. For safety purposes, we included button switches to provide manual control to the height

adjustment of our table. We designed a PCB to connect the sensors, motor components, and

safety features of the Height Adjustment Module together. When designing this PCB, we used

the public SparkFun repository for our microcontroller library [4] and the public Eagle libraries

archive for our linear regulator library [5]. The schematics of this board is included in Appendix

E, and the final design of our board is provided in Appendix F. Due to the physical distance

between our components, and to encourage more efficient verification of individual hardware,

we used screw terminal blocks to connect parts to the table module PCB. More specific

interactions between our hardware for the Table Adjustment Module are detailed in Table 1.

3

Table 1: Table Adjustment Module Interconnects

Connection From Connection To Purpose

9V Battery Linear Regulator To provide sufficient voltage for conversion to a
stable, continuous 5V power stream for the rest of
the components in this module

Linear Regulator Table Adjustment
Module Board

To route power to each of the components involved
in this module

Table Adjustment
Module Board

Microcontroller To read data from the attached sensors and make a
decision on what PWM signal to output that would
turn the motor driving the height of the table

Table Adjustment
Module Board

Front Ultrasonic
Distance Sensor

To determine the height of customers, if any, sitting
at the table

Table Adjustment
Module Board

Rear Ultrasonic
Distance Sensor

To determine the height of the table itself

H-bridge Motor
Driver

Gear Motor To drive the rotation of the lead screw that
supports the nut that in turn supports the entire
hollow tabletop compartment of our prototype

Our model measures the distance between the tabletop and any customer seating underneath

it with an ultrasonic sensor on the user's side of the table. Our table adjusts downwards such

that this ultrasonic distance sensor reaches a height of eight inches from the legs of any

customer sitting at the table if it is physically possible to do so, determined by the other

distance sensor. Our height adjustment has a tolerance of one inch, so the table will halt with a

distance between seven and nine inches. We use the sensor on the opposite side of the table to

keep track of the height of the table itself, which prevents the table from adjusting upwards

from its maximum height or downwards from its minimum height. When the height adjustment

to eight inches is not possible, we adjust as far downwards as possible. When no customer

seating is detected under the table, our prototype adjusts to a standing height.

To build a prototype to showcase our technology developed for this project, we consulted the

ECEB Machine Shop, interfacing with Greggory Bennett to design our table and Jordan Spezia to

build and fit the mechanical parts of our prototype. During early development of our project,

we had planned to use a linear actuator to perform the height adjustment operation of our

table, but upon recommendation and discussion with the shop we instead moved towards a

lead-screw system operated by a gear motor. This was to ensure that the height adjustment

portion that also acted as the support beam for the table would not be too powerful and tear

the tabletop in half when raised.

To go into further detail, the table was separated into two parts by this system, the bottom

portion containing the motor and the top portion that moves up and down based on the

position of a large nut driven by the rotation of the lead screw. This provided us with a safer

option that would put less stress on the metal used for our table, though linear actuators could

potentially be a preferable option for tables with more supporting legs [6]. Figure 3 details the

4

Table 1: Table Adjustment Module Interconnects (continued)

Connection From Connection To Purpose

Table Adjustment
Module Board

Latching Enable
Button Switch

To provide a safety mechanism that disables
automatic operation of the table

Table Adjustment
Module Board

Momentary Up
Button Switch

To provide additional support to our safety
mechanism for this module, allowing the table to
have an option to manually ascend

Table Adjustment
Module Board

Momentary Down
Button Switch

To provide additional support to our safety
mechanism for this module, allowing the table to
have an option to manually descend

design of the mechanical component of our Table Adjustment Module. A picture of the final

build is provided in Appendix B.

Fig. 3: Diagrams of the Physical Prototype from the ECEB Machine Shop [6]

We had originally planned to measure and compare the different voltages to the rotational

speeds of our motor, however due to time constraints and limited access to laboratory

equipment we were unable to record these measurements. Despite this, the voltage that we

sent to our motor provided adequate speed per our specifications all the while causing little to

no motion intrusion on the table, thus allowing for a smooth dining experience for the

customer.

When designing our prototype, we considered the balance between how modular and

integrated we wanted our functional modules to be. During this process, we considered the

height adjustment attribute of our table in relation to the network aspect of it. We determined

that restaurant staff would not be interested in how a table is configured relative to more

commercially beneficial information that could be used for analytics, such as the amount

customers spend in a table regularly, the demand for picking one table as opposed to other

vacant tables, and the total number of occupied seats at a given time during the day. With this

in mind, we opted to keep table height adjustment segregated from the network-enabled

portion of our design, though it would be simple to integrate the two using serial

communication from the table module PCB we designed.

Due to our partnership with the ECEB Machine Shop, much of the placement of our

components while designing our project was predetermined by where sections were provided.

5

For example, during discussion of the parts integral to our design, we explained the necessity of

connecting components from the base of our table to the circuit contained in the top of the

table. Specifically, we needed to send PWM signals from our microcontroller in the upper box

of our prototype to the H-bridge circuit in the bottom box, which would reroute a PWM signal

to the motor held in the same location. Rather than run wires from a hole in the top of the

table to a hole in the bottom of the table, we collaboratively pursued an option to thread wires

through an internal notch in the shaft of our prototype, though this had limited space. Due to

the placement of these wires, we had to plan the placement of our designed PCB such that it

facilitated movement in this fragile configuration. Similarly, spatial limitations resulted in the

decision to use the rear ultrasonic sensor.

We had also initially planned to use a motor encoder to determine the current height of the

table since it would be stored internally in the table and would be minimally susceptible to

external tampering. However, due to the physical constraints of our prototype, we were unable

to route a sufficient amount of wires from the top to the bottom of our table model. As such,

we had to improvise and therefore opted to instead use a second ultrasonic sensor to

determine the current height of the table, instead. By doing this, we saved development time

adapting to a new sensor while accomplishing the same task, albeit externally instead of

contained within the metal shell of our model. Though these spatial limitations forced us to

make certain design decisions, the constrained locations for our components also allowed us to

be decisive with the layout of our electronics and organize the components in a more intuitive

way.

2.2. Customer Presence Module

This determines the vacancy status of our model by detecting customers sitting at the table

with a force sensing resistor and objects on the tabletop with load cells. More specific

interactions between our hardware for the Customer Presence Module is detailed in Table 2.

6

Table 2: Customer Presence Module Hardware Interconnects

Connection From Connection To Purpose

9V Battery Linear Regulator To provide sufficient voltage for conversion to a
stable, continuous 5V power stream for the rest of
the components in this module

Linear Regulator Chair Module Board To route power to the chair module parts

We designed a PCB for the Chair Module to organize the connection between the FSR, Chair

Module microcontroller, bluetooth transmitter, and provided battery power. The schematic for

this board is included in Appendix E, and the final board design is as shown in Appendix F.

In order to detect customers sitting at a table we built our own force sensing resistor

(shortened as "FSR") to act as a pressure plate. When force is applied on the resistor, the

resistance measured across it is decreased; We use this to detect a customer sitting down via

the increased voltage difference through the resistor. Our custom FSR was constructed by

combining two copper plates, formed out of copper tape, and separating them with two pieces

of semi-conducting foam, all enclosed in PVC and gaffer's tape for comfort and safety. The two

copper ends get closer when a force is applied, decreasing resistance between the leads and

thus allowing us to The internal construction of this resistor is as shown in Figure 4. We decided

to use a custom FSR due to the limited selection of budget-friendly weight detection options

online. We could have used a system of high weight strain gauges, but this would be intrusive

to the user as these units are made of metal and require specific mounted placement. We

sought a more modular option that could be used without custom seating. For the purpose of

future reference, we will refer to the chair-based components of the Customer Presence

Module as the "Chair Module".

7

Table 2: Customer Presence Module Hardware Interconnects

Connection From Connection To Purpose

Chair Module
Board

Microcontroller To read and interpret data from the FSR

Chair Module
Board

Bluetooth
Transmitter

To relay the information from the microcontroller
in the chair module to the Raspberry Pi Zero W in
the Table Network Module

Raspberry Pi
Zero W
(Table Network
Module)

Analog to Digital
Converter (ADC)

To provide a reference voltage to the ADC and
power both the strain gauges and the ADC. This
will also ultimately receive the digital output from
the load cells.

Strain Gauges Analog to Digital
Converter (ADC)

Send raw analog readings from the load cells, and
to provide power to the load cells from the ADC,
which is powered by the Raspberry Pi Zero W

Analog to Digital
Converter (ADC)

Raspberry Pi Zero W
(Table Network
Module)

Send converted digital data to the Raspberry Pi
Zero W for operations in the Table Network
Module

Fig. 4: Force Sensing Resistor Internals

Communication from the Chair Module to the Table Network Module was sent over Bluetooth,

utilizing the HC-05 Bluetooth module as a sender and the Raspberry Pi Zero W as the receiver.

We picked the HC-05 because of its low cost and known compatibility with our microcontroller,

and we chose to send the data via Bluetooth since it is a reliable form of communication at a

low range and uses a relatively low amount of power. The Bluetooth module is wired up to a

microcontroller which in turn is then connected to the FSR to detect customers. The

microcontroller continuously polls for the status of the FSR and sends a ‘0’ over Bluetooth if it

determines the chair it is placed on is unoccupied. When sufficient force is applied downwards

to the FSR from a customer sitting down on it, the microcontroller detects this increased

voltage and declares the seat as occupied, sending a ‘1’ over Bluetooth for the duration that

voltage is determined to be greater than a set threshold.

We also used load cells to measure the weight on the tabletop surface. "Load cells" are also

known as "strain gauges", and these terms will be used interchangeably in this report. We used

the load cells to determine if there was an excess amount of weight on the table, and this

allowed us to detect whether a table needs a waitress to service it by cleaning its surface. We

wired the load cells to an Hx711 analog-to-digital converter (this will be referred to as an "ADC"

going forwards) and sent the converted information to our Table Network Module. To connect

the ADC to our Table Network Module we used the serial pins of the module's Raspberry Pi

Zero W. For future reference, the Raspberry Pi Zero W will also be referred to as the "RPi Zero

W". We initially had four load cells but were only able to accurately measure weight with two,

which we deduced was due to faulty internal wiring.

8

2.3. Table Network Module

There are two methods of wireless communication used in this project. In particular, we

communicate wirelessly from our chair module to the RPi Zero W in the table via Bluetooth,

and from the RPi Zero W to our dashboard running in our external computer via TCP/IP. For our

demonstration, we used a personally owned laptop, but the dashboard may run on any laptop

or desktop computer that can connect to the same local area network as the RPi Zero W's used

in each table.

The Table Network Module contains both distinct hardware and software components. In terms

of hardware, the Table Network Module consists of our RPi Zero W, paired with its power

source as shown in Table 3, which is connected to an external computer running our dashboard

software. The component diagram for the table is shown in Figure 5.

9

Table 3: Table Network Module Hardware Interconnects

Connection From Connection To Purpose

9V Battery Linear
Regulator

To provide sufficient voltage for conversion to a stable,
continuous 5V power stream for the rest of the
components in this module

Linear Regulator RPi Zero W To route power to each of the components involved in
this module

Fig. 5: Circuit Diagram for Internal Network-enabled Table Components

The RPi Zero W reads in data from the FSR via Bluetooth and from the load cell via serial

communication. The RPi Zero W takes in this data, makes a decision for table state, and then

forwards that data to the dashboard over UDP. This process will be handled by the Python

program running on each RPi Zero W shown in Figure 7. The current table status is then decided

by the logic included in Figure 6.

 Fig. 6: Table Status Decision Tree

10

Fig. 7: Software running on Raspberry Pi (on each physical Table)

Table-to-dashboard communication in turn is simply over TCP/IP from the RPi Zero W to

whatever computer the restaurant staff have running the dashboard. We initially considered

using Zigbee and using a single XBee coordinator for the dashboard, XBee routers for the tables,

and XBee edges for the seats. This would have in theory worked as well, but Zigbee modules

are a lot more expensive than Bluetooth and so we decided to go with the latter. For the

table-to-dashboard communication we also decided to go with a socket-based approach,

meaning all these devices would need to be on the same network. At first we attempted to use

an ad-hoc network but were running into issues getting the RPi Zero W to connect to this

network (hosted on one of our group member’s computers) despite being on the same channel

and frequency. Next we tried using the UIUC network, but eventually settled on using a mobile

hotspot. The reason for this was there were issues connecting all devices to the UIUC network

in ECEB, but fortunately using a mobile hotspot allowed for us to have the dashboard talk to the

table with no issues. All message passing between devices were then done over the network

with Python using socket.io since it is a well-known, reliable socket communication library.

The dashboard is the main way dining staff will interface with our overall design. The dashboard

is a software application that may run on any browser-enabled computer that is able to connect

to the same network as the RPi Zero W table nodes. The dashboard software architecture is

pictured in Figure 8. The dashboard we created for our demonstration was designed to be

flexible with different restaurant configurations. Therefore, on setup, it is blank so users may

upload their own restaurant floor plan onto it to aid with different seating arrangements. This

11

also allows restaurants to easily adapt to changes in their layout. A picture of the dashboard

GUI is provided in Appendix C. The table node shown in the picture changes color accordingly

with the status of the table. The database will store the status of each table and will be updated

in real-time at a rate of approximately one update per three seconds.

Fig. 8: Dashboard Software running on Restaurant Staff’s Computer

All incoming and outgoing communication with the table RPis is handled by a multi-threaded

Python application, which we dubbed as the “Transceiver”. The messages updating table

statuses are stored in the MongoDB database also running on the same computer. Finally, the

web application will have a GUI for the dining staff to monitor each table’s status which will be

queried from the database.

Our dashboard uses MERN stack since it allows us to create dynamic web pages and is also an

industry-standard methodology. React.js is a powerful frontend framework developed by

Facebook that enables us to move objects and update their appearances on the web page all

without ever having to refresh the page. MongoDB is a NoSQL document-based database that

allows for inserting various data-types without being restricted to a single schema. This was

very helpful in the beginning when we were not quite sure what exact data and data formats

we would be storing.

12

2.4. Payment Module

In order for users to send bills to the table independently, the user needs an interface to

interact with. The interface we used in the Table Network Module allows restaurant employees

to contactlessly bill customers. On the patron end of this transaction, we have outfitted our

prototype with an NFC Card Reader as an example payment method and a four-digit seven

segment display to inform customers when and how much they need to pay. The connections

to these components are detailed in Table 4. Visuals for the Paypal API dashboard and hex

display are provided in Appendix D.

In order to send a bill to a table, the restaurant staff would input the dollar amount in the

dashboard’s GUI and have this value be sent over to the table. This would create a bill with the

help of Paypal’s payment API, and would require the customer’s payment data to complete a

transaction. In our model, this request is made first through gRPC from the web application

backend to the transceiver, and the transceiver forwards the request to the desired table.

When the table receives the bill request it lights up the hex display connected to the RPi Zero W

and polls for customer payment information from the NFC reader, both of which are shown

previously in the table circuit diagram in Figure 5. A customer will then pay with his/her card

and the card information will follow the reverse path to respond to the dashboard’s billing

request. When the card information arrives at the web application backend, we utilize Paypal’s

payment gateway API to process the transaction, and the bill is then complete.

Initially, we were planning to use both a magnetic stripe reader and NFC reader in our payment

solution but we realized that it will be more cost effective if we cut the magnetic stripe reader

as most modern credit cards have NFC technology.

13

Table 4: Payment Module Hardware Interconnects

Connection From Connection To Purpose

NFC Card Reader RPi Zero W
(Table Network
Module)

Powered by the RPi Zero W, we use the NFC card
reader to relay NFC card information to our Table
Network Module to showcase

RPi Zero W (Table
Network Module)

4-digit
7-segment
Display

Powered by the RPi Zero W, we send numbers to
display on our panel to facilitate payment from the
customer side

3. Verification
As opposed to the lower-level component-based verification of operation that we used in our

Design Document, it made more sense to shift to a module-based approach during later

development of our prototype. This was in part due to organizational concerns, as we had

components that required significantly different procedures for verification and different

hardware for testing, but also due to the interdependence of the requirements for our

components. As such, we sought to verify multiple low-level requirements per a higher level

application, such that if these tests worked, we would know that all low-level requirements

were satisfied. If these tests failed, we could fall back to our old verification processes to

troubleshoot. A table detailing the requirements, steps, and results of verification is included in

Appendix A. In sections 3.1 to 3.4, we elaborate on the verification process per module.

3.1. Table Adjustment Module

The components used in this module relied heavily on the reliability of the other components.

This was made especially apparent to us while testing the ultrasonic sensors with our

microcontroller, which had trouble sending simultaneous outputs to both the front and rear

distance sensors. Because of this, we could test that our microcontroller used in this module

was able to parse 10 inputs to each sensor per second, and verify that each sensor could send

handle 10 inputs from the microcontroller per second, yet fail when both sensors were

attached to the microcontroller and both were tested simultaneously. With this in mind,

despite the sufficient verification of our lower level components, it became necessary to

additionally audit the integration of multiple parts on top of this. Therefore, to verify our Table

Adjustment Module components, we took advantage of the serial communication pins of our

microcontroller and output to the Arduino IDE. We did this by connecting our Table Adjustment

Module PCB to an Arduino Uno as shown in Figure 9.

Fig. 9: Configuration between Table Adjustment PCB and Arduino IDE

14

With the displayed configuration, we had access to the serial monitor included as a part of the

Arduino IDE and were able to view what signals were received by the microcontroller and

confirm that it was accurate in the uploaded program.

3.2. Customer Presence Module

To collect the resistance values of our FSR, we attached an ohmmeter across its copper leads

and applied even force downwards with a flat plastic board. We employed a digital scale under

the components to measure the force downwards. The resistance measurements were taken

over a wooden table on a hard floor. The resistance values we collected as related to applied

force is provided in Appendix G. Initially, we declared there to be a customer presence if a force

exceeding 20 kg (measured voltage 4.7 V) was applied, and sent whether or not a presence was

detected to the Table Network as elaborated in Section 1.3.3. However, to achieve more

consistent results, as force in practice is not always evenly distributed, we changed this voltage

threshold to be 3 V for demonstration purposes. This voltage was observed when the resistor

had about 15 pounds of force applied downwards onto it, and compensated for softer surfaces

for the resistor to be placed on and for uneven amounts of force applied to it.

Fig. 10: Force Sensor Resistor with Chair Module PCB

Verification for the load cell can be found in Appendix A under "Customer Presence Module".

3.3. Table Network Module

Verification can be done by connecting all devices on the same network and pinging each other.

Bluetooth connection can be verified by the steps defined under the Table Network Module in

Appendix A.

15

The overall network topology of how devices communicate is shown in Appendix H.

3.4. Payment Module

Our verification of the payment module was done by connecting the 4-digit 7 segment display

and the NFC Reader to our RPi Zero W. We then programmed the GPIOs to print out digits to

the display and we verified that display is printing what we requested seen in Figure 11. To

verify the functionality of the NFC reader, we will need to write a python program that will

constantly poll for NFC contact and will extract the information from it. We verified it that the

payment information has been parsed and the NFC waits for NFC contact shown on Figure 12.

Fig. 11: 4-digit 7 Segment Display Printing a Total Bill Amount and Confirming a Successful Transaction

Fig. 12: Linux Terminal Printing the Content Read From an NFC card

16

4. Costs

4.1. Labor

An entry-level Electrical Engineer’s average hourly wage is $31.12 [7] and an entry-level

Software Engineer’s average hourly wage is $35.61 [8]. Each member of our team worked on

both hardware and software. Taking the average of both hourly wages into consideration, each

engineer on a team using our design can be estimated to be making $33.37 per hour.

Considering the time frame for a build to be 16 weeks, and assuming each person works on it

for 10 hours, the cost of labor for three engineers contracted for the assignment would be

$40,044. In addition, our table was made by the ECE machine shop, paid for by the department,

which we estimate would incur a labor $25 per hour, for approximately 6 hours. Our two PCBs

were quoted at $23 each, for a total of $46 including labor, manufacturing, and shipping. With

all these numbers in mind, the total labor cost comes out to a grand total of $40,240. The

calculations described and related costs are shown in Table 5.

4.2. Components

17

Table 5: Involved Labor and Related Costs

Labor Description Math Total Cost

ngineering LaborE people ⋅ $33.37/person hr ⋅ 10hr/wk ⋅ 16wk ⋅ 2.53 $40, 44 0

achine ShopM 25.00/hr ⋅ 6hr $ 150$

PCB Production and Labor pcbs ⋅ $23/pcb2 46$

Total Labor Cost 40, 44 $150 46 0 + + $40,240

Table 6: Components Used and Related Prices

Component Name Component Description Manufacturer # Total Cost

B07RT54H9V 24V 5A DC Power Supply Arcity 1 $22.98

B07BXBS93X 9V Battery Holders LAMPVPATH 4 $8.99

L7805CV Linear Voltage Regulators MCIGICM 4 $6.99

BTS7960 H Bridge Motor Driver Circuit SongHe 1 $8.75

A17092900ux0369 24V DC High Torque Gear Motor uxcell 1 $32.99

4.3. Total

As shown in equation 4.1.1, taking into account the calculated labor costs and the total cost of

components, we estimate that this project would cost about $40,520. It must be noted that the

total price of the components was higher than one might have with contracts with the

companies; we purchased the parts for our prototype through retail sites and secondhand

electronics shops online due to speed constraints. We have reason to believe that all of these

components had a significant markup from the vendors we bought them from.
(eq 4.1.1)

otal Cost Labor Components $40, 40 $279.96 $40, 19.96 $40, 20 T = + = 2 + = 5 ≈ 5

18

Table 6: Components Used and Related Prices (continued)

Component Name Component Description Manufacturer # Total Cost

A18050400ux0104 Latching Push Button Switch uxcell 1 $7.79

B07FS9G4ZJ Momentary Push Button Switch WGCD 2 $9.98

HC-SR04 Ultrasonic Distance Sensor Excelity 2 $9.99

ATMEGA328P-PU Microcontrollers with Sockets Fii Tech 2 $12.25

Arduino Uno Microcontroller programmer Arduino 1 $22.79

HC-05 Bluetooth Module HiLetgo 1 $8.99

B07RTHD45H Screw Terminals QSU 40 $10.99

L6LAC003-DT-R Power Cords AmazonBasics 2 $7.42

WP2PINBB QD Connector Pairs BTF-LIGHTING 2 $8.88

N/A Antistatic Semiconducting Foam
Sheet

Multicomp 2 $14.99

N/A Roll of Copper Tape Samyoung 1 $7.99

N/A Roll of Gaffer's Tape YYXLIFE 1 $7.97

TM1637 4-Digit Tube LED Segment Display Comimark 1 $5.49

RPi Zero W Single board computer Raspberry Pi 1 $14.00

ACR122U USB NFC Reader ACS 1 $42.75

OTG4HUB MicroUSB to USB Port Hub LoveRPi 1 $6.99

Total Component Cost $279.96

5. Conclusions

5.1. Summary

Overall, our project culminated in a working prototype that showcased possible improvements

in the restaurant setting. Looking at each of our working modules, we consider this project to

be a success. By programming a dedicated algorithm to take advantage of our chosen sensors,

we were able to model a table that adjusts to any chair that will fit under it. With it interpreting

information from our customer presence module, we were able to successfully share the

vacancy status of our prototype table with an external device that one might use as an

employee in a restaurant setting. Finally, we explored and modeled a method of contactless

payment that could potentially see success in a regulated environment. The modules we

constructed offer solutions to a changed dining landscape.

5.2. Ethics

Per the IEEE Code of Ethics, which demand a responsibility "to hold paramount the safety,

health, and welfare of the public, to strive to comply with ethical design and sustainable

development practices, to protect the privacy of others, and to disclose promptly factors that

might endanger the public or the environment" in Article 1, we made efforts to comply to safe

and ethical design in our project [9].

On the physical level of our prototype, we had to consider various factors that could potentially

harm users: the moving parts and the high power used in our prototype specifically pose a

security threat. One particular concern is in the automatic adjusting height mechanism of the

table: an error could cause the motor driving the system to keep adjusting downwards and

possibly injure a user. To address this, we implemented a safety control and a manual override

system in order to adjust the height of the table should it be desired.

Since we used high voltage and current in our circuits, the erroneous discharging of our

electronics to the user could be potentially fatal. We used a 24 V (5 A) DC power supply in the

base of our table, 9V battery holders, and various 5 V (1.5 A) connections elsewhere in the

table. All of these voltages are potentially life-threatening if passing through a user. Therefore,

we made efforts to segregate the electronic components from areas that would be easily

accessible externally. For the top of our prototype, we used non-conductive foam to form a

physical barrier from our power wires and the metal shell that most of our model was made of.

For our custom FSR, we used thick sheets of PVC to increase resistance between the copper

19

tape plates and any object or person on top of the sensor. We also used gaffers tape as a

second, waterproof layer for this component.

Finally, since the table we built involves a payment and billing mechanism, there is a possibility

that private information has the capacity to be accessed by a malicious actor. For our

demonstration, we used fake card information and a private network. For future consideration

of our product and integration into a commercialized environment, it is paramount that

security measures are put into place to protect private information from the transactions. This

is elaborated on in Section 5.3, Future Work.

5.3. Future Work

Considering the exposed sensors used during project development, one point of future

improvement we recommend going forward with this design is in upgrading the sensors for

more seamless integration. Our prototype utilized hobbyist components, and collaborating with

sensor manufacturers and furniture manufacturers for specialized hardware would result in a

higher quality product at a reduced cost.

One other area of improvement to pursue for our project is in the security of using NFC

communication for payment. In our demonstration and proof of concept, we showcased the

modules relying on a personal mobile hotspot. For future products based on this design, some

possible avenues to take include using a hidden personal network, the development of a

restaurant's own proprietary ad-hoc network, and the integration of encryption and decryption

mechanisms in the communication between restaurant tables and the central hub that

manages them. Potential cryptography solutions include using AES encryption, having IPSec

enabled between the tables and hub, and using a OTP system for all allowed connectections to

the network.

20

References
[1] PYMNTS, ‘Restaurants That Aren’t Ready For A Mobile Future Risk Losing Out‘, ​PYMNTS​,

2020 [Online]. Available:

https://www.pymnts.com/news/mobile-payments/2019/restaurants-mobile-ordering-food-

delivery-ritual/​ [Accessed 17-Sep-2020].

[2] MRM Staff, ‘The Future of Dining: Industry Expert Insights‘, ​MRM​, 2020 [Online]. Available:

https://modernrestaurantmanagement.com/the-future-of-dining-industry-expert-insights/

[Accessed 17-Sep-2020].

[3] Yelp, ‘Increased Consumer Interest in May Correlates with COVID-19 Hot Spots in June,

According to the Yelp Economic Average‘, ​Yelp​, 2020 [Online]. Available:

https://www.yelpeconomicaverage.com/yea-q2-2020.html​ [Accessed 17-Sep-2020].

[4] Sparkfun Electronics, ​Github​ 2020 [Online]. Available:

 ​https://github.com/sparkfun/SparkFun-Eagle-Libraries​ [Accessed 28-Sep-2020].

[5] C. Focant, “tango.lbr.” Autodesk, San Rafael, California, 06-Aug-2008.

http://eagle.autodesk.com/eagle/download/800

[6] G. Bennett, private communication, Oct. 2020.

[7] Payscale, ‘Average Electrical Engineering Salary’, Payscale, 2020 [Online]. Available:

https://www.payscale.com/research/US/Job=Electrical_Engineer/Salary

[Accessed 7-Oct-2020]

[8] Payscale, ‘Average Software Engineering Salary’, Payscale, 2020 [Online]. Available:

https://www.payscale.com/research/US/Job=Software_Engineer/Salary

[Accessed 7-Oct-2020]

[9] IEEE, ‘IEEE Code of Ethics’, ​IEEE​, 2020 [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html​ [Accessed 17-Sep-2020].

21

https://www.pymnts.com/news/mobile-payments/2019/restaurants-mobile-ordering-food-delivery-ritual/
https://www.pymnts.com/news/mobile-payments/2019/restaurants-mobile-ordering-food-delivery-ritual/
https://modernrestaurantmanagement.com/the-future-of-dining-industry-expert-insights/
https://www.yelpeconomicaverage.com/yea-q2-2020.html
https://github.com/sparkfun/SparkFun-Eagle-Libraries
http://eagle.autodesk.com/eagle/download/800
https://www.payscale.com/research/US/Job=Electrical_Engineer/Salary
https://www.payscale.com/research/US/Job=Software_Engineer/Salary
https://www.ieee.org/about/corporate/governance/p7-8.html

Appendix

A. Requirements and Validation Table per Project Module

22

Table of Requirements, Validation, and Results per Project Module

Requirement Verification Result

Height Adjustment Module

The microcontroller
must determine the
distance to any
customer seating
while eliminating
outliers at a rate of
10 samples a
second, and sensors
will work up at least
up to our maximum
table height of 40
inches

1. Connect serial connection from height adjustment
PCB to Arduino

2. Display the serial output via the Arduino IDE
3. Put the table in automatic mode for at least one

second
4. Visually confirm that 20 readings, 10 per each of

two sensors, are managed per second
5. Mathematically confirm both medians are correct
6. Remove objects under the table to make it

automatically adjust to the maximum height
7. Verify that the collected information from the

sensors is accurate when the table is at a height of
40 inches

Satisfied

The height
adjustment adjust
upwards and
downwards at a
rate of an inch
vertically between
10 and 20 seconds

1. Set table to manual adjustment
2. Hold tape measurer parallel with shaft of the

table
3. Time the ascent and descent of the table and

verify travelling an inch takes between 10 and 20
seconds

Ranges from
17-19 seconds
depending on
operation;
Satisfied

The height
adjustment system
must have safeties
implemented to
disable automatic
adjustment within
an inch of travel

1. Connect serial connection from height adjustment
PCB to Arduino

2. Display the serial output via the Arduino IDE
3. Put the table in automatic mode for at least one

second
4. Enable the manual safety mode and time how

long it takes to stop
5. Confirm on the monitor that the microcontroller

has switched to manual control
6. Visually confirm that table has stopped moving

Table halts
within 1
second, less
than a 10th of
an inch;
Satisfied

23

Table of Requirements, Validation, and Results per Project Module (continued)

Requirement Verification Result

Customer Presence Module

Voltage difference
can be measured
when applying a
force on the FSR to
denote that a
person is sitting on
it.

1. Wire up FSR to microcontroller.
2. Print the output from the microcontroller to a

terminal via UART.
3. Verify that values change according to how much

pressure is applied to the FSR.

Satisfied

Load Cell can detect
when there is an
excess amount of
weight on the
tabletop.

1. Wire up the load cell to the Hx711 A/DC and the
A/DC to the Raspberry Pi.

2. Place a large smooth surface on top of the load
cells.

3. Run a program on the Raspberry Pi that prints the
output weight sensed by the load cell.

4. Verify the weight value changes according to how
much weight is placed on top of the surface atop
the load cells.

Satisfied

Table Network Module

Data from FSR sent
via Bluetooth can
be read at an
approximate rate of
one message every
five minutes.

1. Pair Bluetooth device with Raspberry Pi.

2. Flash a program on the microcontroller connected

to the Bluetooth device that will write data to the

connected serial pin.

3. Run a program on the Raspberry Pi to read data

from the paired Bluetooth device serial port at ​the

same baud rate​.
4. Validate via inspection that the message received

was the one sent over the flashed program.

Data from FSR
can be sent via
Bluetooth to
Raspberry Pi at
a rate of one
message every
three seconds;
Satisfied

24

Table of Requirements, Validation, and Results per Project Module (continued)

Requirement Verification Result

Table Network Module

All table nodes will
be able to send
information to a
single central server
node via sockets
over a network.

1. Connect all necessary devices onto the same local
area network.

2. Obtain the IP addresses of each device (e.g.
‘ifconfig’ command).

3. Attempt to ping each device from one device. If
this step fails, go back and diagnose that step 1
was performed correctly.

4. Write a sender program to send a message over
TCP from one device on the network to another.

5. Write a receiver program to receive a message
over a TCP socket.

6. Run the sender and receiver programs on
different​ devices but ensure they read/write to
the ​same​ port.

7. Validate via inspection that the sent/received
message match.

Satisfied

Payment Module

Seven-segment
display is able to
output integer
values

1. Connect the seven-segment display to the RPi
Zero W.

2. Program the GPIOs to print an arbitrarily decided
two to four digit number

3. Verify that the seven-segment display shows the
number as requested

Satisfied

NFC Reader is able
to poll for an NFC
card and interpret
transmitted
information given
by said card

1. Connect the NFC Reader to the Rpi Zero W
2. Run the terminal-based NFC reading program to

print the data from the card
3. Quickly bring an NFC card near the reader
4. Confirm that information is transmitted by the

card by observing the output of the reading
program

5. Confirm that the transmitted information is as
expected

Satisfied

B. Finalized Prototype

25

C. Restaurant Dashboard

Fig. 1: Empty Dashboard

Fig. 2: Dashboard with Floor Plan and Table Node

26

D. Payment

27

Fig. 1: Payment Interface

Fig. 2: 4-digit 7 Segment Display

Fig. 3: Paypal Dashboard

E. Schematics

Fig. 1: Schematic of our Table Height Adjustment Module PCB

Fig. 2: Schematic of our Chair Module PCB

28

F. Board Design

 Fig. 1: Table Module PCB

Fig. 2: Chair Module PCB

29

G. Resistance Values Collected for Custom FSR

30

Table of Resistance Values per Applied Force for FSR

Weight on the
FSR (in lb)

Resistance Measured
by Voltmeter (in Ω)

Weight on
the FSR (in lb)

Resistance Measured
by Voltmeter (in Ω)

0
17
18
19
20
21
22
23
24
25
26
27
28
29
30

40 to 60 kΩ
330
130
130
200
155
134
142
136
132
140
109
108
90

400

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

82
80
92
71

150
81
70
62
66
45
43
42
44
40
49

H. Network Topology

31

