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Abstract  
This document is the final report for the Sub-Gigahertz Arduino Shield project. The 
report will include the design considerations we made, our tests, and our results. 
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1.0 Introduction 

There is currently a gap in the market for cheap, low power, and long-range wireless 
communications. Our team planned to solve this issue by creating a Sub-Gigahertz 
Arduino Shield. An Arduino Shield is a device that is connected to an Arduino and gives 
it extra functionality. Our Arduino Shield will enable wireless communication with the 
Arduino. Once the Arduino receives the wireless signal, it will execute a 
pre-programmed response. The pre-programmed response can be changed by the 
consumers to better suit their own needs. Our team decided to base the project around 
Arduinos because they are easy-to-use tools that can be used by both beginners and 
experts. Since the Arduino is accessible to a wide range of consumers, our device will 
also be widely accessible. Our Arduino Shield will operate using wireless signals with 
frequencies below one gigahertz because they offer longer ranges and lower power 
consumption than higher frequency wireless signals. Alex designed and soldered the 
PCB while Christopher created the code for the project. 

1.1 High Level Requirements 
● The Arduino Shield must be able to convert a 7-17 DC input voltage into 5 

volts for the Arduino. 
● The Arduino must be able to send and receive wireless signals from a remote 

and execute a pre-programed action upon receiving a signal from the remote. 
2.0 Design 

Our Arduino Shield has five main parts. It has a 5-volt buck converter, a 3.3-volt 
buck converter, an MCU, six load switches, and an antenna. The 5-volt buck converter 
supplies power to the Arduino. The 3.3-volt buck converter supplies power to the MCU. 
The MCU sends and receives wireless signals using the antenna. The load switches 
send power to other devices. The Arduino Shield will also include two LEDs for 
debugging purposes. The block diagram for our Arduino Shield is shown in Figure 1. 

In this project we chose to use the Sub-1Gigahertz protocol from Texas 
Instruments rather than Bluetooth, Wifi, ZigBee, 6LoWPAN, and other wireless 
protocols.​ ​We chose to use the Sub-1 Gigahertz protocol due to it having lower noise 
from BLE/Zigbee/WIFI devices and due to its ability to penetrate and bend around 
obstacles. The energy of the transmission can be described as follows. 

P​R ​∝ P​T​ / d​2​ f​2  
Where P​R​ is the power at the receiver, P​T​ is the power at the transmitter, d is the 

distance between transmitter and receiver, and f is the frequency of transmission. This 
means we have longer range for the same power or lower power for the same range. 
This combined with the reduced noise makes Sub-1 Gigahertz satisfy our requirements. 

In this project we chose to use load switches instead of relays or discrete 
transistors due to their small size, low parasitic power draw, and quick output discharge. 
This means that the user could use a PWM signal with their higher voltage output. 
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Figure 1: The block diagram for the Arduino Shield. 

 

Originally, we planned to use the 3.3-volt output of the Arduino to supply power 
to the MCU. However, we soon realized that the Arduino cannot supply the current that 
the MCU requires. To solve this problem, we used a 3.3-volt buck converter to power 
the MCU in addition to using the Arduino to power it. Initially, we were unsure if the 
3.3-volt buck converter should convert the input voltage to 3.3 volts or if it should 
convert the five-volt output of the other buck converter to 3.3 volts. Ultimately, we chose 
to convert the input voltage to 3.3 volts because it was more power efficient compared 
to other options such as an LDO. The efficiency of an LDO is  

𝜂 =  V in
V out   

which for this case would be 66% efficient. Comparing this to the buck converter, we 
believe that the buck converter was the better option. 

2.1 5-Volt Buck Converter 
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The 5-volt buck converter supplies power to the Arduino. It converts an input 
voltage between seven and seventeen volts down to five volts. It allows a maximum 
current of 0.6 amps since that is the maximum input current of the Arduino. To meet the 
low power goal of our project, we decided the 5-volt buck converter must be at least 80 
percent efficient. To create the 5-volt buck converter, we used a TPS563249 buck 
converter [1] because we were already familiar with the part. We generated a circuit for 
the 5-volt buck converter using Texas Instruments’ Webench Power Designer [2] by 
inputting the TPS563249 part and the circuit requirements stated above. The generated 
circuit for the 5-volt buck converter is shown in Figure 2. 

 

Figure 2: The generated circuit for the 5-volt buck converter using Webench Power 
Designer.  

 

After we generated the circuit, we then recreated it as an Eagle schematic. We 
downloaded the ECAD files for the TSP563249 from the Texas Instruments website and 
imported them into Eagle. For the other parts of the circuit, we found what specific parts 
we needed to use in the generated circuit’s bill of materials. Once we knew what 
specific parts were needed, we imported their ECAD designs into Eagle. The ECAD 
design of the inductor caused some confusion for a while. The generated circuit showed 
the inductor as a two-pin device while the ECAD design of the inductor showed it as a 
three-pin device. Concerned, we looked at the inductor’s data sheet [3] hoping to find 
out why there was a third pin. Fortunately, the data sheet had an answer. The third pin 
of the inductor is not connected to the circuit. It exists to increase the mounting stability 
of the inductor. With that issue solved, we finished the Eagle schematic for the 5-volt 
buck converter. The Eagle schematic and the PCB layout of the 5-volt buck converter 
are shown in Figure 3 and Figure 4, respectively.  
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Figure 3: The Eagle schematic of the 5-volt buck converter. 

 

 

Figure 4: The PCB layout of the 5-volt buck converter.  

 

2.2 3.3-Volt Buck Converter 

The 3.3-volt buck converter takes an input voltage between seven and seventeen 
volts and converts it to 3.3 volts. We used another TPS563249 buck converter since it 
could also convert the input voltage down to 3.3 volts. Unlike the 5-volt buck converter, 
the 3.3-volt buck converter can output a much higher current. It was decided the 
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maximum current of the 3.3-volt buck converter would be three amps. The 3.3-volt buck 
converter needs to be highly efficient to meet the low power goal of the project. We 
decided the efficiency of the 3.3-volt buck converter must be at least 80 percent. Using 
the parameters above, we generated a circuit for the 3.3-volt buck converter using 
Webench Power Designer [2]. The generated circuit for the 3.3-volt buck converter is 
shown in Figure 5. 

 

Figure 5: The generated circuit for the 3.3-volt buck converter. 

 

The 3.3-volt buck converter’s circuit is very similar to the 5-volt buck converter’s 
circuit. The Rfbt resistor is now 45.3 kilohms and Cout has one more 22 uF capacitor. 
All the other parts are the same as the 5-volt buck converter. Using the generated 
circuit, we created an Eagle schematic and a PCB layout for the 3.3-volt buck converter. 
The schematic and the PCB layout are shown in Figure 6 and Figure 7, respectively. 

 

Figure 6: The Eagle schematic of the 3.3-volt buck converter based on the 
generated circuit. 

5 



 

 

Figure 7: The PCB layout design for the 3.3-volt buck converter. 

 

2.3 MCU 

The MCU receives wireless signals for the Arduino shield using an antenna. We 
used the TI’s TIDA-00484 reference design[4] as a template for our RF antenna design 
shown in Figure 8. Our MCU used a CC1310F128RHBR chip while the TIDA-00484 
layout uses a CC1310F128RGZR chip. As shown on the CC1310 datasheet [5], the 
main difference between the pins of the two chips is that the CC1310F128RHBR chip 
has less DIO pins than the CC1310F128RGZR chip. We chose this package due to the 
pitch of the device pads being bigger than the other packages. This was done to assist 
in hand soldering the board and to help with cost. For a future iteration, this may be 
substituted for the RGZ package to add additional functionality to the shield. 

The MCU features an ARM main CPU as well as a separate RF Core. This 
allows for much better flexibility with power as the main CPU can enter low power states 
while the program waits for an RF packet. The main CPU is able to communicate to the 
RF core through system calls which allow for high levels of programming abstraction. 

The CC1310 has a number of features we did not use in this project such as AES 
encryption, an 8 channel ADC, a constant current source, and an 8 bit DAC. By using 
the larger package size, we might be able to give the user access to these features at 
minimal increase in cost. 
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Figure 8: The TIDA-00484 layout. Our MCU uses a CC1310F128RHBR chip instead of 
the CC1310F128RGZR chip in the layout. 

 

While we were working on the schematic and board design for the MCU, we 
initially used generic parts for the resistors, capacitors, and the inductors. We used 
generic parts because the TIDA-00484 reference design document [4] did not include a 
bill of materials. Christopher believed that there should be a bill of materials for it 
somewhere online, so we went looking. After a few hours of searching, we finally found 
a separate document that included the bill of materials for the TIDA-00484 [6]. We then 
swapped out all the generic parts in the schematic with the parts specified in the bill of 
materials. We also imported an ECAD file for the Arduino and connected it to the MCU. 
The MCU’s schematic and board design are shown in Figure 9 and Figure 10, 
respectively. 
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Figure 9: The schematic for the MCU. The Arduino is the part with many pins near the 
top and the CC1310F128RHBR chip is the part with many pins southwest of the 

Arduino. 

 

 

Figure 10: The board design for the MCU.  
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2.4 Finishing The PCB 

The last step was to put everything together onto one schematic and one board. 
First, we added the load switches to the MCU schematic. We used six TPS22810DBVR 
[7] switches to make the load switches. We also added the two LEDs to the schematic. 
Then, we imported the 5-volt buck converter and the 3.3-volt buck converter into the 
schematic and wired everything together. The wiring was difficult near the right side of 
the CC1310F128RHBR chip because it was crowded with wires. We successfully wired 
everything together despite the difficulty. The finished schematic for the entire PCB is 
shown in Figure 11. 

 

Figure 11: The finished schematic for the PCB. 

 

After finishing the schematic, we had to complete the board design for the PCB. 
We moved the parts for the 5-volt buck converter, the 3.3-volt buck converter, the load 
switches, and the LEDs onto the board. We positioned the load switches near the 
bottom, the 5-volt buck converter near the top, and the 3.3-volt buck converter near the 
left side of the PCB. We also placed the LEDs to the right of the CC1310F128RHBR 
chip. Once all the parts were in place, we started working on the antenna. To create the 
antenna, we curled a 50-nanometer thick wire between the front and the back of the 
PCB ten times. The antenna we used is shown in Figure 12. 

9 



 

Figure 13: The antenna of our Arduino Shield. 

 

After we made the antenna, we realized that the current PCB design was larger 
than 100 mm by 100 mm. That was a problem since the Arduino Shield is supposed to 
fit on a 100 mm by 100 mm PCB. To make the Arduino shield fit on a 100 mm by 100 
mm PCB, we rearranged a lot of parts and wires. Once the PCB fit inside a 100 mm by 
100 mm area, we ran the DRC test to see if the PCB design had any issues. The DRC 
found tiny bits of unconnected wires in the design. These were likely left over from when 
we rearranged a lot of parts and wires to make the design fit inside a 100 mm by 100 
mm area. We deleted the left-over wires and looked at the next error. The DRC 
considered the end of the antenna to be an air wire since it was not connected to 
anything. The end of the antenna is not supposed to be connected to anything, so we 
manually approved the error. The DRC gave us no more warnings, so we generated the 
Gerber files and submitted them to PCBway. 

The PCB design ended up failing PCBway’s audit. They said that the design 
failed the audit because it did not have a keepout layer. To try and solve this error, we 
made a small keepout layer box near the bottom of the PCB. However, this did not fix 
the error. After a lot of trial and error, we realized that the problem had nothing to do 
with the PCB design. The problem was that we generated the Gerber files without 
including the layers of the PCB. Making sure to actually include the layers of the PCB, 
we once again generated the Gerber files and submitted them to PCBway. This time, 
the PCB design passed the audit. The finished PCB design is shown in Figure 13. 
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Figure 13: The finished PCB design.  

2.5 CC1310 Software 
The CC1310 runs on TI’s Real Time Operating System (RTOS). This OS is a 

stripped UNIX operating system which has guaranteed finite execution time for system 
calls. These RTOS operating systems are useful for low power and system critical 
applications where starvation of program is not acceptable. These operating systems 
are common in ARM cores such as microcontrollers and FPGA SoCs where memory 
space is limited and power is a primary concern.  

TI’s RTOS supports POSIX threading (aka Pthreads) on the CC1310’s single 
ARM core processor which means that separate functions are able to share execution 
time of the processor with a set priority. This means that code can be run in a 
pseudo-simultaneous manner. In practical terms, the threads allow the program to split 
up code execution in order to best utilize the processor. To synchronize code between 
threads, we use semaphores, an atomic counter, which allows threads to wait (and yield 
execution time) until the semaphore is posted (counted up).  
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2.5.1 SPI Slave Thread 
The primary thread of execution on the Sub-1Gigahertz Shield is the SPI Slave 

Thread. This thread handles setting the SPI Slave transaction buffer, SPI Slave 
transaction length, and decoding the incoming SPI buffer.  

 

Figure 14: SPI Slave Pthread Flowchart 

 

2.5.2 RF Tx Thread 
The Tx thread spends a majority of its time waiting for a signal (semaphore post) 

from the SPI thread. This semaphore means the thread will only run when a command 
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is sent from the Arduino along with a new buffer of data. Once a signal is received, the 
thread cancels the RF Rx call, runs the Tx command, then signals the RF Rx thread to 
continue. This synchronization is needed so that the Rx thread does not run the Rx 
command before the Tx thread runs the Tx command.  

 

Figure 15: RF Tx Pthread Flowchart 

2.5.3 RF Rx Thread 
This thread runs the Rx command until cancelled by the Tx thread. Running the 

Rx command stops execution of the thread which is the main reason why threading was 
required by the project. When an RF packet is received, the callback function is run 
which gets the RF data and updates the shield status with RF_Received. 
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Figure 16: RF Rx Pthread Flowchart 

2.5.4 Remote IO Thread 
The IO thread was developed for the remote emulated by a TI Evaluation Board 

(aka EVM). The purpose of this thread is to take in two button inputs which trigger RF 
Tx commands. This thread also interfaced with slightly modified Tx and Rx threads 
which allowed the user to see threads sent and had special RF decode functions.  

 

Figure 17: Remote IO Pthread Flowchart 
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2.6 Arduino Software 
The Arduino software polls the shield using SPI (with Arduino as Master) calls 

which returns the status. Once the status returns that the RF is received, the Arduino 
retrieves the RF packet. The user is then given the flexibility on how the information is 
interpreted. For our demo, we implemented a primitive identification and message 
scheme which allowed the Arduino and remote to send and receive commands and 
strings. The source code can be found in Appendix B. 

 

3.0 Implementation 

Once the PCBs arrived, we started going to the lab to solder parts onto them. 
First, we soldered on the chips for the two buck converters and the load switches. Then, 
we soldered on the LEDs and the inductors for the two buck converters. We did not 
solder the third pin of the inductors since they were not connected to the circuit. With 
that done, we started soldering on the resistors, capacitors, and the rest of the 
inductors. We did run into some issues while soldering. We found that capacitor 21 was 
extremely close to the 5-volt buck converter’s inductor. This made soldering on 
capacitor 21 extremely difficult and awkward, but we eventually managed to solder it on. 
Capacitor 21 and the 5-volt buck converter’s inductor are shown in Figure 14. We also 
realized that we were missing parts for R6, R7, and R15. We quickly ordered parts for 
them because we needed them to arrive before the final demo.  

 

Figure 14: Capacitor 21 and the inductor. Capacitor 21 was almost touching the top left 
corner of the inductor. 

 

Once the missing parts arrived, we went to the lab and started soldering on the 
remaining parts. We soldered on the missing parts and started soldering in the pins. We 
soldered on the pins for the V_IN, UART, DCDC, RXTX, and the pins that attach to the 
Arduino. However, we soon realized that the pins we were using did not actually fit onto 
the Arduino. We did not have time to order different pins, so we had to improvise. We 
unsoldered the pins and replaced them with wires. The Arduino was now connected to 
the Arduino Shield through wire instead of pins. The replacement wires are shown in 
Figure 15. 
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Figure 15: The replacement wires for the pins that did not fit onto the Arduino. 

The final part that was soldered on was the CC1310F128RHBR chip for the 
MCU. Since all the soldering pads were underneath the chip, we could not use the 
soldering iron like all the other parts. We used a heat gun instead. First, we put a very 
small amount of solder on the PCB’s soldering pads. Then, we put a drop of flux and the 
chip onto the soldering pads. Now it was time to use the heat gun. Initially, we set the 
heat gun to 300 degrees Celsius like the tutorial video that we watched [8] suggested. 
However, the MCU did not get soldered onto the board at this temperature. We ended 
up increasing the temperature of the heat gun all the way up to 450 degrees Celsius 
before the MCU would finally get soldered on. With the MCU soldered on, the PCB was 
ready to be tested. The completed PCB is shown in Figure 16. 

 

Figure 16: The PCB with all the parts soldered on. 
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4.0 Verification 

First, we tested the two buck converters. The two buck converters must output a 
voltage within 5% of the target voltage, remain below the maximum operating 
temperature (125 degrees Celsius), and must be at least 80% efficient. The first thing 
we tested was the output voltage. We set the input voltage to 12 volts and measured 
the output voltage with a digital multimeter. We found that the output of both buck 
converters was around 5% higher than the target voltage. The output of the 5-volt buck 
converter was 5.27 volts and the output of the 3.3-volt buck converter was 3.47 volts. 
This should not cause any problems for our circuit and fulfills requirement one in the 
buck converter’s R&V table. We then obtained the output current and calculated the 
efficiency. The efficiency of the two buck converters were both 88% efficient. This fulfills 
requirement three in the buck converter’s R&V table. It should be noted that the 
measured efficiency was slightly less than Webench Power Designer’s estimated 
efficiency. It estimated that the efficiency would be 90%. Then, we measured the 
temperature of the circuit with a thermometer. The temperature of the circuit was not 
anywhere near the maximum operating temperature. The temperature of the circuit 
never rose above 60 degrees Celsius. This fulfills requirement two in the buck 
converter’s R&V table. 

Then, we tested the other parts of the board. First, we tested the voltage output 
of the 3.3 volt pin of the Arduino to make sure it meets the input range of the CC1310. 
Using a multimeter, we found that the voltage output was 3.301 volts. Since this voltage 
fell within the input range of the CC1310, requirement one of the Arduino Shield R&V 
table was fulfilled. We tested the MCU, however, we found that we could not program it. 
The MCU needed more pins than our PCB had in order to be programmed. Since the 
MCU could not get programmed, the MCU would not work. We could not fix the problem 
because we did not have time to order new PCBs. Fortunately, we were still able to test 
our code by using EVMs (evaluation modules) instead of the MCU. Next, we tested the 
load switches. We found that they outputted the correct voltage (12 volts), had a rising 
voltage time of six milliseconds, and a falling voltage time of 25 milliseconds. The rising 
voltage time and the falling voltage time are shown in Figure 17 and Figure 18, 
respectively.  
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Figure 17 (Left): The rising voltage time of the load switches is six milliseconds. 

Figure 18(Right): The falling voltage time of the load switches is 25 milliseconds. 

 

5.0 Cost and Schedule 

Table 1: The weekly schedule for our project. 
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Week Alex Beck Christopher Baldwin 

10/5 Finish schematic for buck 
converters 

Figure out SPI for Arduino 

10/12 Finish schematic for MCU Figure out SPI for CC1310 

10/19 Finish designing PCB Order components 

10/26 Order PCBs Figure out RF 
communication for CC1310 

11/2 Obtain case for the 
Arduino Shield 

Figure out RF 
communication for CC1310 

11/9 Start Soldering PCB Figure out RF 
communication for CC1310 

11/16 Finish Soldering PCB Finish Software 

11/23 Thanksgiving Break Thanksgiving Break 

11/30 Work on Presentation Work on Presentation 

12/7 Work on Final Report Work on Final Report 



Table 2: The parts we purchased and the price of those parts. 

 

Total Cost of Parts = $95.96 

Labor Costs = $30 per hour * 30 hours * 2 people = $1800 

Total Cost = $1800 + $95.96 = $1895.96 

 

In an industrial setting, the labor cost should be much lower because the 
producer can make the product in much less time. In addition, they do not have to 
research and design the project like our team did. This will reduce the time needed by a 
large amount.  

 

6.0 Conclusion 
Our project was very ambitious to begin with and with only two group members, 

things only got harder. We used 23 unique components on the board with many of them 
being incredibly small SMD components. 

 

6.1 Accomplishments 

The buck converters gave us acceptable outputs and reached our efficiency 
goals. The load switches functioned and allowed us to output at much higher voltages 
than the Arduino or CC1310. The code we developed worked on the EVM boards and 
proved the concept of the shield to be a success. 

6.2 Uncertainties  

While we know the software worked we were not able to successfully flash the 
program onto the MCU. This means we did not get to test the filter and antenna of the 
shield which we had developed. 
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Part Amount ordered Cost ($) 
PCB 10 53 (Including Shipping) 

CC1310F128RHBR chip 1 4.379 
TPS563249 2 0.50 
TPS22810 6 4.81 

TSX-3225 24.0000MF20G-AC3 1 0.33 
Resistors 15 0.78 

Capacitors 36 2.70 
Inductors 11 6.85 

Pins 19 22.61 



6.3 Future Work / Alternatives 
In the future, we may try this concept again. The project needs to have the board 

redesigned in order to function as a stackable shield. Another offshoot of the project is 
to create a separate board which attaches by a cable. This would allow for other 
devices such as raspberry pis to also utilize the same framework. This could mean that 
the user also is able to run an internal web server and connect their devices to IoT 
managers like Alexa. 

6.4 Ethical Considerations 

We believe our device upholds the ethical considerations of the IEEE Code of 
Ethics [9]. Our project seeks to enable people to create more projects of their own and 
ultimately seeks to empower those especially with limited resources all the while 
keeping their devices secure and private. 
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8.0 Appendix A: Source Code 
The source code can be found on github at the following link: 

https://github.com/chrisbaldwin2/Sub-G-Shield​/ 

 

9.0 Appendix B: Requirement and Verification Table 

9.1 Buck Converter 
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Requirements Verification Testing Result 

1. Provide 5 V ±5% from a 
7-17V DC source in the 
range of 0-600 mA 

 

 

 

2.​            ​The system should 
remain below the maximum 
operating temperature of all 
the devices at room 
temperature (20 °C - 30 °C). 

  

 

3.       Efficiency of the DC-DC 
conversion from 7-17 V to 5 V 
must be 80% or higher at 600 
mA. 

1A. Measure the output 
voltage using a multimeter, 
ensuring the output voltage 
stays within 5% of 5V with a 
current source load 
sweeping from 0 to 600 mA.  

 

2A. During verification for 
Requirement 1 an IR 
thermometer or K-type 
thermocouple will be used to 
check all devices and ensure 
they remain within their 
thermal operating 
temperature. 

  
3A. We will measure the 
current and voltage at both 
the input and output when 
the output current is at 600 
mA.We will use this to 
calculate the total power and 
efficiency of the buck/PMIC. 

1A. Measured at 
5.27420V for 5V 
buck and 3.47749 for 
3.3V buck under no 
load. We may tweak 
the feedback resistor 
in the future but it is 
acceptable. (​PASS​). 
 
2A. The buck did not 
reach over 60 °C. 
The acceptable 
range is (-40​ ​°C, 125 
°C) (​PASS​). 
 
 
 
 
3A. Worst case 
efficiency measured 
was 88.15% (90% 
predicted) (​PASS​). 

https://github.com/chrisbaldwin2/Sub-G-Shield/


 
9.2 Sub-1 Gigahertz Arduino Shield 

* Logic high refers to the range between VDD and VDD/2. Logic low refers to the range 
between VCC and VDD/2. VDD refers to the max rated current of that IO value and 
VCC refers to the effective ground/neutral/zero voltage of the subsystem. 
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Requirements Verification Testing Result 

1. CC1310 controller will be 
powered from the 3.3 V output 
of Arduino  

 

 

2.​  ​The shield will be able to 
send and receive instructions 
and data with the Arduino over 
the I2C and/or SPI bus 
protocols. 

 

 

 

 

 

 

3.​ ​The shield will trigger 
RF/GPIO signals from 
commands received over I2C 
and/or SPI bus protocols. The 
shield will also buffer 
commands sent by the remote 
and/or other shields. 
 

1A. Measure 3.3 V output of 
Arduino with a multimeter to 
ensure that it will meet the 
input range of the CC1310 
with input and load transients. 

  

2A. Given a command from 
the Arduino over I2C and/or 
SPI, we ensure that the 
CC1310 is able to trigger a 
response**. 

  

2B. The shield will also be able 
to send data to the Arduino 
either by having the Arduino 
poll a register on the CC1310 
or by changing the voltage of a 
digital pin on the Arduino.  

  

3A. We will measure the GPIO 
output signal with a multimeter 
to ensure that the output 
reaches logic high* and 
returns to logic low* whenever 
specified by the 
command/message.  
 

1A. The Arduino 
measured 3.301V 
(Acceptable 1.8V, 
3.8V) (​PASS​). 
 

 

2A. The shield is 
able to trigger 
GPIO, send data 
over serial com, 
and send RF data 
(​PASS​). 
 
 
2B. The shield 
was able to send 
data by having the 
Arduino poll the 
status register of 
the shield (​PASS​). 
 
 
3A. We were able 
to measure and 
see that the LED 
reached logic high 
due to an input 
over SPI (​PASS​). 



  

** A triggered response from the CC1310 may be any internal/external state change 
which is caused by an external stimulus. A triggered response may be but is not limited 
to an internal register value change, a change in GPIO output, an RF 
command/message output, a print statement over UART, etc.. External stimulus may be 
but is not limited to an RF command sent by another Sub-Gigahertz chip either by 
shield, remote, or EVM; a change in GPIO input; a command/message sent over I2C 
and/or SPI; etc.. 
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