

Sub-Gigahertz Arduino Shield

By: Alex Beck, Christopher Baldwin

Team 16

December 2020

i

Abstract
This document is the final report for the Sub-Gigahertz Arduino Shield project. The
report will include the design considerations we made, our tests, and our results.

i

Table of Contents
1. Introduction………………………………………………………………………………1

1.1 High Level Requirements………………………………………………………….1
2. Design…………………………………………………………………………………....1

2.1 5-Volt Buck Converter……………………………………………………………...3
2.2 3.3-Volt Buck Converter……………………………………………………………4
2.3 MCU………………………………………………………………………………….6
2.4 Finishing the PCB​ ​…………………………………………………………………..9
2.5 CC1310 Software ..……………………………………………………………….11

2.5.1 SPI Slave Thread​ ​...…………………………………………………….....12
2.5.2 RF Tx Thread ..…………………………………………………………....12
2.5.3 RF Rx Thread ..……………………………………………………………13
2.5.4 Remote IO Thread ………………………………………………………..14

2.6 Arduino Software​ ​..………………………………………………………………..15
3. Implementation ..………………………………………………………………………15
4. Verification ..…………………………………………………………………………...17
5. Cost​ ​and Schedule…………………………………………………………………….18
6. Conclusion ..…………………………………………………………………………...19

6.1 Accomplishments………………………………………………………………….19
6.2 Uncertainties……………………………………………………………………….19
6.3 Future Work / Alternatives………………………………………………………..20
6.4 Ethical Considerations……………………………………………………………20

7. References……………………………………………………………………………..21

8. Appendix A: Source Code………...………………………………………………….23

9. Appendix B: Requirement and Verification
Table…..………………………………23

9.1 Buck Converter…………………………………………………………………….23

9.2 Sub-1 Gigahertz Arduino Shield…………………………………………………24

ii

1.0 Introduction

There is currently a gap in the market for cheap, low power, and long-range wireless
communications. Our team planned to solve this issue by creating a Sub-Gigahertz
Arduino Shield. An Arduino Shield is a device that is connected to an Arduino and gives
it extra functionality. Our Arduino Shield will enable wireless communication with the
Arduino. Once the Arduino receives the wireless signal, it will execute a
pre-programmed response. The pre-programmed response can be changed by the
consumers to better suit their own needs. Our team decided to base the project around
Arduinos because they are easy-to-use tools that can be used by both beginners and
experts. Since the Arduino is accessible to a wide range of consumers, our device will
also be widely accessible. Our Arduino Shield will operate using wireless signals with
frequencies below one gigahertz because they offer longer ranges and lower power
consumption than higher frequency wireless signals. Alex designed and soldered the
PCB while Christopher created the code for the project.

1.1 High Level Requirements
● The Arduino Shield must be able to convert a 7-17 DC input voltage into 5

volts for the Arduino.
● The Arduino must be able to send and receive wireless signals from a remote

and execute a pre-programed action upon receiving a signal from the remote.
2.0 Design

Our Arduino Shield has five main parts. It has a 5-volt buck converter, a 3.3-volt
buck converter, an MCU, six load switches, and an antenna. The 5-volt buck converter
supplies power to the Arduino. The 3.3-volt buck converter supplies power to the MCU.
The MCU sends and receives wireless signals using the antenna. The load switches
send power to other devices. The Arduino Shield will also include two LEDs for
debugging purposes. The block diagram for our Arduino Shield is shown in Figure 1.

In this project we chose to use the Sub-1Gigahertz protocol from Texas
Instruments rather than Bluetooth, Wifi, ZigBee, 6LoWPAN, and other wireless
protocols.​ ​We chose to use the Sub-1 Gigahertz protocol due to it having lower noise
from BLE/Zigbee/WIFI devices and due to its ability to penetrate and bend around
obstacles. The energy of the transmission can be described as follows.

P​R ​∝ P​T​ / d​2​ f​2
Where P​R​ is the power at the receiver, P​T​ is the power at the transmitter, d is the

distance between transmitter and receiver, and f is the frequency of transmission. This
means we have longer range for the same power or lower power for the same range.
This combined with the reduced noise makes Sub-1 Gigahertz satisfy our requirements.

In this project we chose to use load switches instead of relays or discrete
transistors due to their small size, low parasitic power draw, and quick output discharge.
This means that the user could use a PWM signal with their higher voltage output.

1

Figure 1: The block diagram for the Arduino Shield.

Originally, we planned to use the 3.3-volt output of the Arduino to supply power
to the MCU. However, we soon realized that the Arduino cannot supply the current that
the MCU requires. To solve this problem, we used a 3.3-volt buck converter to power
the MCU in addition to using the Arduino to power it. Initially, we were unsure if the
3.3-volt buck converter should convert the input voltage to 3.3 volts or if it should
convert the five-volt output of the other buck converter to 3.3 volts. Ultimately, we chose
to convert the input voltage to 3.3 volts because it was more power efficient compared
to other options such as an LDO. The efficiency of an LDO is

𝜂 = V in
V out

which for this case would be 66% efficient. Comparing this to the buck converter, we
believe that the buck converter was the better option.

2.1 5-Volt Buck Converter

2

The 5-volt buck converter supplies power to the Arduino. It converts an input
voltage between seven and seventeen volts down to five volts. It allows a maximum
current of 0.6 amps since that is the maximum input current of the Arduino. To meet the
low power goal of our project, we decided the 5-volt buck converter must be at least 80
percent efficient. To create the 5-volt buck converter, we used a TPS563249 buck
converter [1] because we were already familiar with the part. We generated a circuit for
the 5-volt buck converter using Texas Instruments’ Webench Power Designer [2] by
inputting the TPS563249 part and the circuit requirements stated above. The generated
circuit for the 5-volt buck converter is shown in Figure 2.

Figure 2: The generated circuit for the 5-volt buck converter using Webench Power
Designer.

After we generated the circuit, we then recreated it as an Eagle schematic. We
downloaded the ECAD files for the TSP563249 from the Texas Instruments website and
imported them into Eagle. For the other parts of the circuit, we found what specific parts
we needed to use in the generated circuit’s bill of materials. Once we knew what
specific parts were needed, we imported their ECAD designs into Eagle. The ECAD
design of the inductor caused some confusion for a while. The generated circuit showed
the inductor as a two-pin device while the ECAD design of the inductor showed it as a
three-pin device. Concerned, we looked at the inductor’s data sheet [3] hoping to find
out why there was a third pin. Fortunately, the data sheet had an answer. The third pin
of the inductor is not connected to the circuit. It exists to increase the mounting stability
of the inductor. With that issue solved, we finished the Eagle schematic for the 5-volt
buck converter. The Eagle schematic and the PCB layout of the 5-volt buck converter
are shown in Figure 3 and Figure 4, respectively.

3

Figure 3: The Eagle schematic of the 5-volt buck converter.

Figure 4: The PCB layout of the 5-volt buck converter.

2.2 3.3-Volt Buck Converter

The 3.3-volt buck converter takes an input voltage between seven and seventeen
volts and converts it to 3.3 volts. We used another TPS563249 buck converter since it
could also convert the input voltage down to 3.3 volts. Unlike the 5-volt buck converter,
the 3.3-volt buck converter can output a much higher current. It was decided the

4

maximum current of the 3.3-volt buck converter would be three amps. The 3.3-volt buck
converter needs to be highly efficient to meet the low power goal of the project. We
decided the efficiency of the 3.3-volt buck converter must be at least 80 percent. Using
the parameters above, we generated a circuit for the 3.3-volt buck converter using
Webench Power Designer [2]. The generated circuit for the 3.3-volt buck converter is
shown in Figure 5.

Figure 5: The generated circuit for the 3.3-volt buck converter.

The 3.3-volt buck converter’s circuit is very similar to the 5-volt buck converter’s
circuit. The Rfbt resistor is now 45.3 kilohms and Cout has one more 22 uF capacitor.
All the other parts are the same as the 5-volt buck converter. Using the generated
circuit, we created an Eagle schematic and a PCB layout for the 3.3-volt buck converter.
The schematic and the PCB layout are shown in Figure 6 and Figure 7, respectively.

Figure 6: The Eagle schematic of the 3.3-volt buck converter based on the
generated circuit.

5

Figure 7: The PCB layout design for the 3.3-volt buck converter.

2.3 MCU

The MCU receives wireless signals for the Arduino shield using an antenna. We
used the TI’s TIDA-00484 reference design[4] as a template for our RF antenna design
shown in Figure 8. Our MCU used a CC1310F128RHBR chip while the TIDA-00484
layout uses a CC1310F128RGZR chip. As shown on the CC1310 datasheet [5], the
main difference between the pins of the two chips is that the CC1310F128RHBR chip
has less DIO pins than the CC1310F128RGZR chip. We chose this package due to the
pitch of the device pads being bigger than the other packages. This was done to assist
in hand soldering the board and to help with cost. For a future iteration, this may be
substituted for the RGZ package to add additional functionality to the shield.

The MCU features an ARM main CPU as well as a separate RF Core. This
allows for much better flexibility with power as the main CPU can enter low power states
while the program waits for an RF packet. The main CPU is able to communicate to the
RF core through system calls which allow for high levels of programming abstraction.

The CC1310 has a number of features we did not use in this project such as AES
encryption, an 8 channel ADC, a constant current source, and an 8 bit DAC. By using
the larger package size, we might be able to give the user access to these features at
minimal increase in cost.

6

Figure 8: The TIDA-00484 layout. Our MCU uses a CC1310F128RHBR chip instead of
the CC1310F128RGZR chip in the layout.

While we were working on the schematic and board design for the MCU, we
initially used generic parts for the resistors, capacitors, and the inductors. We used
generic parts because the TIDA-00484 reference design document [4] did not include a
bill of materials. Christopher believed that there should be a bill of materials for it
somewhere online, so we went looking. After a few hours of searching, we finally found
a separate document that included the bill of materials for the TIDA-00484 [6]. We then
swapped out all the generic parts in the schematic with the parts specified in the bill of
materials. We also imported an ECAD file for the Arduino and connected it to the MCU.
The MCU’s schematic and board design are shown in Figure 9 and Figure 10,
respectively.

7

Figure 9: The schematic for the MCU. The Arduino is the part with many pins near the
top and the CC1310F128RHBR chip is the part with many pins southwest of the

Arduino.

Figure 10: The board design for the MCU.

8

2.4 Finishing The PCB

The last step was to put everything together onto one schematic and one board.
First, we added the load switches to the MCU schematic. We used six TPS22810DBVR
[7] switches to make the load switches. We also added the two LEDs to the schematic.
Then, we imported the 5-volt buck converter and the 3.3-volt buck converter into the
schematic and wired everything together. The wiring was difficult near the right side of
the CC1310F128RHBR chip because it was crowded with wires. We successfully wired
everything together despite the difficulty. The finished schematic for the entire PCB is
shown in Figure 11.

Figure 11: The finished schematic for the PCB.

After finishing the schematic, we had to complete the board design for the PCB.
We moved the parts for the 5-volt buck converter, the 3.3-volt buck converter, the load
switches, and the LEDs onto the board. We positioned the load switches near the
bottom, the 5-volt buck converter near the top, and the 3.3-volt buck converter near the
left side of the PCB. We also placed the LEDs to the right of the CC1310F128RHBR
chip. Once all the parts were in place, we started working on the antenna. To create the
antenna, we curled a 50-nanometer thick wire between the front and the back of the
PCB ten times. The antenna we used is shown in Figure 12.

9

Figure 13: The antenna of our Arduino Shield.

After we made the antenna, we realized that the current PCB design was larger
than 100 mm by 100 mm. That was a problem since the Arduino Shield is supposed to
fit on a 100 mm by 100 mm PCB. To make the Arduino shield fit on a 100 mm by 100
mm PCB, we rearranged a lot of parts and wires. Once the PCB fit inside a 100 mm by
100 mm area, we ran the DRC test to see if the PCB design had any issues. The DRC
found tiny bits of unconnected wires in the design. These were likely left over from when
we rearranged a lot of parts and wires to make the design fit inside a 100 mm by 100
mm area. We deleted the left-over wires and looked at the next error. The DRC
considered the end of the antenna to be an air wire since it was not connected to
anything. The end of the antenna is not supposed to be connected to anything, so we
manually approved the error. The DRC gave us no more warnings, so we generated the
Gerber files and submitted them to PCBway.

The PCB design ended up failing PCBway’s audit. They said that the design
failed the audit because it did not have a keepout layer. To try and solve this error, we
made a small keepout layer box near the bottom of the PCB. However, this did not fix
the error. After a lot of trial and error, we realized that the problem had nothing to do
with the PCB design. The problem was that we generated the Gerber files without
including the layers of the PCB. Making sure to actually include the layers of the PCB,
we once again generated the Gerber files and submitted them to PCBway. This time,
the PCB design passed the audit. The finished PCB design is shown in Figure 13.

10

Figure 13: The finished PCB design.

2.5 CC1310 Software
The CC1310 runs on TI’s Real Time Operating System (RTOS). This OS is a

stripped UNIX operating system which has guaranteed finite execution time for system
calls. These RTOS operating systems are useful for low power and system critical
applications where starvation of program is not acceptable. These operating systems
are common in ARM cores such as microcontrollers and FPGA SoCs where memory
space is limited and power is a primary concern.

TI’s RTOS supports POSIX threading (aka Pthreads) on the CC1310’s single
ARM core processor which means that separate functions are able to share execution
time of the processor with a set priority. This means that code can be run in a
pseudo-simultaneous manner. In practical terms, the threads allow the program to split
up code execution in order to best utilize the processor. To synchronize code between
threads, we use semaphores, an atomic counter, which allows threads to wait (and yield
execution time) until the semaphore is posted (counted up).

11

2.5.1 SPI Slave Thread
The primary thread of execution on the Sub-1Gigahertz Shield is the SPI Slave

Thread. This thread handles setting the SPI Slave transaction buffer, SPI Slave
transaction length, and decoding the incoming SPI buffer.

Figure 14: SPI Slave Pthread Flowchart

2.5.2 RF Tx Thread
The Tx thread spends a majority of its time waiting for a signal (semaphore post)

from the SPI thread. This semaphore means the thread will only run when a command

12

is sent from the Arduino along with a new buffer of data. Once a signal is received, the
thread cancels the RF Rx call, runs the Tx command, then signals the RF Rx thread to
continue. This synchronization is needed so that the Rx thread does not run the Rx
command before the Tx thread runs the Tx command.

Figure 15: RF Tx Pthread Flowchart

2.5.3 RF Rx Thread
This thread runs the Rx command until cancelled by the Tx thread. Running the

Rx command stops execution of the thread which is the main reason why threading was
required by the project. When an RF packet is received, the callback function is run
which gets the RF data and updates the shield status with RF_Received.

13

Figure 16: RF Rx Pthread Flowchart

2.5.4 Remote IO Thread
The IO thread was developed for the remote emulated by a TI Evaluation Board

(aka EVM). The purpose of this thread is to take in two button inputs which trigger RF
Tx commands. This thread also interfaced with slightly modified Tx and Rx threads
which allowed the user to see threads sent and had special RF decode functions.

Figure 17: Remote IO Pthread Flowchart

14

2.6 Arduino Software
The Arduino software polls the shield using SPI (with Arduino as Master) calls

which returns the status. Once the status returns that the RF is received, the Arduino
retrieves the RF packet. The user is then given the flexibility on how the information is
interpreted. For our demo, we implemented a primitive identification and message
scheme which allowed the Arduino and remote to send and receive commands and
strings. The source code can be found in Appendix B.

3.0 Implementation

Once the PCBs arrived, we started going to the lab to solder parts onto them.
First, we soldered on the chips for the two buck converters and the load switches. Then,
we soldered on the LEDs and the inductors for the two buck converters. We did not
solder the third pin of the inductors since they were not connected to the circuit. With
that done, we started soldering on the resistors, capacitors, and the rest of the
inductors. We did run into some issues while soldering. We found that capacitor 21 was
extremely close to the 5-volt buck converter’s inductor. This made soldering on
capacitor 21 extremely difficult and awkward, but we eventually managed to solder it on.
Capacitor 21 and the 5-volt buck converter’s inductor are shown in Figure 14. We also
realized that we were missing parts for R6, R7, and R15. We quickly ordered parts for
them because we needed them to arrive before the final demo.

Figure 14: Capacitor 21 and the inductor. Capacitor 21 was almost touching the top left
corner of the inductor.

Once the missing parts arrived, we went to the lab and started soldering on the
remaining parts. We soldered on the missing parts and started soldering in the pins. We
soldered on the pins for the V_IN, UART, DCDC, RXTX, and the pins that attach to the
Arduino. However, we soon realized that the pins we were using did not actually fit onto
the Arduino. We did not have time to order different pins, so we had to improvise. We
unsoldered the pins and replaced them with wires. The Arduino was now connected to
the Arduino Shield through wire instead of pins. The replacement wires are shown in
Figure 15.

15

Figure 15: The replacement wires for the pins that did not fit onto the Arduino.

The final part that was soldered on was the CC1310F128RHBR chip for the
MCU. Since all the soldering pads were underneath the chip, we could not use the
soldering iron like all the other parts. We used a heat gun instead. First, we put a very
small amount of solder on the PCB’s soldering pads. Then, we put a drop of flux and the
chip onto the soldering pads. Now it was time to use the heat gun. Initially, we set the
heat gun to 300 degrees Celsius like the tutorial video that we watched [8] suggested.
However, the MCU did not get soldered onto the board at this temperature. We ended
up increasing the temperature of the heat gun all the way up to 450 degrees Celsius
before the MCU would finally get soldered on. With the MCU soldered on, the PCB was
ready to be tested. The completed PCB is shown in Figure 16.

Figure 16: The PCB with all the parts soldered on.

16

4.0 Verification

First, we tested the two buck converters. The two buck converters must output a
voltage within 5% of the target voltage, remain below the maximum operating
temperature (125 degrees Celsius), and must be at least 80% efficient. The first thing
we tested was the output voltage. We set the input voltage to 12 volts and measured
the output voltage with a digital multimeter. We found that the output of both buck
converters was around 5% higher than the target voltage. The output of the 5-volt buck
converter was 5.27 volts and the output of the 3.3-volt buck converter was 3.47 volts.
This should not cause any problems for our circuit and fulfills requirement one in the
buck converter’s R&V table. We then obtained the output current and calculated the
efficiency. The efficiency of the two buck converters were both 88% efficient. This fulfills
requirement three in the buck converter’s R&V table. It should be noted that the
measured efficiency was slightly less than Webench Power Designer’s estimated
efficiency. It estimated that the efficiency would be 90%. Then, we measured the
temperature of the circuit with a thermometer. The temperature of the circuit was not
anywhere near the maximum operating temperature. The temperature of the circuit
never rose above 60 degrees Celsius. This fulfills requirement two in the buck
converter’s R&V table.

Then, we tested the other parts of the board. First, we tested the voltage output
of the 3.3 volt pin of the Arduino to make sure it meets the input range of the CC1310.
Using a multimeter, we found that the voltage output was 3.301 volts. Since this voltage
fell within the input range of the CC1310, requirement one of the Arduino Shield R&V
table was fulfilled. We tested the MCU, however, we found that we could not program it.
The MCU needed more pins than our PCB had in order to be programmed. Since the
MCU could not get programmed, the MCU would not work. We could not fix the problem
because we did not have time to order new PCBs. Fortunately, we were still able to test
our code by using EVMs (evaluation modules) instead of the MCU. Next, we tested the
load switches. We found that they outputted the correct voltage (12 volts), had a rising
voltage time of six milliseconds, and a falling voltage time of 25 milliseconds. The rising
voltage time and the falling voltage time are shown in Figure 17 and Figure 18,
respectively.

17

Figure 17 (Left): The rising voltage time of the load switches is six milliseconds.

Figure 18(Right): The falling voltage time of the load switches is 25 milliseconds.

5.0 Cost and Schedule

Table 1: The weekly schedule for our project.

18

Week Alex Beck Christopher Baldwin

10/5 Finish schematic for buck
converters

Figure out SPI for Arduino

10/12 Finish schematic for MCU Figure out SPI for CC1310

10/19 Finish designing PCB Order components

10/26 Order PCBs Figure out RF
communication for CC1310

11/2 Obtain case for the
Arduino Shield

Figure out RF
communication for CC1310

11/9 Start Soldering PCB Figure out RF
communication for CC1310

11/16 Finish Soldering PCB Finish Software

11/23 Thanksgiving Break Thanksgiving Break

11/30 Work on Presentation Work on Presentation

12/7 Work on Final Report Work on Final Report

Table 2: The parts we purchased and the price of those parts.

Total Cost of Parts = $95.96

Labor Costs = $30 per hour * 30 hours * 2 people = $1800

Total Cost = $1800 + $95.96 = $1895.96

In an industrial setting, the labor cost should be much lower because the
producer can make the product in much less time. In addition, they do not have to
research and design the project like our team did. This will reduce the time needed by a
large amount.

6.0 Conclusion
Our project was very ambitious to begin with and with only two group members,

things only got harder. We used 23 unique components on the board with many of them
being incredibly small SMD components.

6.1 Accomplishments

The buck converters gave us acceptable outputs and reached our efficiency
goals. The load switches functioned and allowed us to output at much higher voltages
than the Arduino or CC1310. The code we developed worked on the EVM boards and
proved the concept of the shield to be a success.

6.2 Uncertainties

While we know the software worked we were not able to successfully flash the
program onto the MCU. This means we did not get to test the filter and antenna of the
shield which we had developed.

19

Part Amount ordered Cost ($)
PCB 10 53 (Including Shipping)

CC1310F128RHBR chip 1 4.379
TPS563249 2 0.50
TPS22810 6 4.81

TSX-3225 24.0000MF20G-AC3 1 0.33
Resistors 15 0.78

Capacitors 36 2.70
Inductors 11 6.85

Pins 19 22.61

6.3 Future Work / Alternatives
In the future, we may try this concept again. The project needs to have the board

redesigned in order to function as a stackable shield. Another offshoot of the project is
to create a separate board which attaches by a cable. This would allow for other
devices such as raspberry pis to also utilize the same framework. This could mean that
the user also is able to run an internal web server and connect their devices to IoT
managers like Alexa.

6.4 Ethical Considerations

We believe our device upholds the ethical considerations of the IEEE Code of
Ethics [9]. Our project seeks to enable people to create more projects of their own and
ultimately seeks to empower those especially with limited resources all the while
keeping their devices secure and private.

20

7.0 References

[1] TPS563249, Texas Instruments, Available at:
https://www.ti.com/product/TPS563249

[2] Webench Power Designer, Texas Instruments, Available at:
https://www.ti.com/design-resources/design-tools-simulation/webench-power-designer.h
tml

[3] Ser1590 Shielded Power Inductors, Mousre.com, Available at:
https://www.mouser.com/datasheet/2/597/ser1590-270632.pdf

[4] TIDA-00484 Schematic and Block Diagram (Rev. C), Texas Instruments, 2018.
Available at:
https://www.ti.com/lit/df/tidrey5c/tidrey5c.pdf?ts=1604001692547&ref_url=https%253A%
252F%252Fwww.google.com%252F

[5] CC1310 SimpleLink^TM Ultra-Low-Power Sub-1 GHz Wireless MCU datasheet
(Rev.D), Texas Instruments, July 2018. Available at:
https://www.ti.com/lit/ds/symlink/cc1310.pdf?ts=1604010202434&ref_url=https%253A%
252F%252Fwww.ti.com%252Fproduct%252FCC1310

[6] TIDA-00484 BOM (Rev. C), Texas Instruments, 9/11/2018. Available at:
https://www.ti.com/lit/df/tidrey6c/tidrey6c.pdf?ts=1604080634089&ref_url=https%253A%
252F%252Fwww.google.com%252F

[7] TPS22810, 2.7-18-V, 79-m​ Ω​ On-Resistance Load Switch With Thermal Protection,
Texas Instruments, January 2018, Available at:
https://www.ti.com/lit/ds/symlink/tps22810.pdf?HQS=TI-null-null-mousermode-df-pf-null-
wwe&ts=1606858018556&ref_url=https%253A%252F%252Fwww.mouser.com%252F

21

https://www.ti.com/product/TPS563249
https://www.ti.com/design-resources/design-tools-simulation/webench-power-designer.html
https://www.ti.com/design-resources/design-tools-simulation/webench-power-designer.html
https://www.mouser.com/datasheet/2/597/ser1590-270632.pdf
https://www.ti.com/lit/df/tidrey5c/tidrey5c.pdf?ts=1604001692547&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/df/tidrey5c/tidrey5c.pdf?ts=1604001692547&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/cc1310.pdf?ts=1604010202434&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FCC1310
https://www.ti.com/lit/ds/symlink/cc1310.pdf?ts=1604010202434&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FCC1310
https://www.ti.com/lit/df/tidrey6c/tidrey6c.pdf?ts=1604080634089&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/df/tidrey6c/tidrey6c.pdf?ts=1604080634089&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/tps22810.pdf?HQS=TI-null-null-mousermode-df-pf-null-wwe&ts=1606858018556&ref_url=https%253A%252F%252Fwww.mouser.com%252F
https://www.ti.com/lit/ds/symlink/tps22810.pdf?HQS=TI-null-null-mousermode-df-pf-null-wwe&ts=1606858018556&ref_url=https%253A%252F%252Fwww.mouser.com%252F

[8] How To Solder QFN MLF chips Using Hot Air without Solder Paste and Stencils,
CuriousInventor, May 2, 2010, Available at:
https://www.youtube.com/watch?v=c_Qt5CtUlqY

[9] IEEE Code of Ethics, IEEE, 2020. Available at:
https://courses.engr.illinois.edu/ece445/documents/ECE_445_Final_Report_Guidelines.
pdf

22

https://www.youtube.com/watch?v=c_Qt5CtUlqY
https://courses.engr.illinois.edu/ece445/documents/ECE_445_Final_Report_Guidelines.pdf
https://courses.engr.illinois.edu/ece445/documents/ECE_445_Final_Report_Guidelines.pdf

8.0 Appendix A: Source Code
The source code can be found on github at the following link:

https://github.com/chrisbaldwin2/Sub-G-Shield​/

9.0 Appendix B: Requirement and Verification Table

9.1 Buck Converter

23

Requirements Verification Testing Result

1. Provide 5 V ±5% from a
7-17V DC source in the
range of 0-600 mA

2.​ ​The system should
remain below the maximum
operating temperature of all
the devices at room
temperature (20 °C - 30 °C).

3. Efficiency of the DC-DC
conversion from 7-17 V to 5 V
must be 80% or higher at 600
mA.

1A. Measure the output
voltage using a multimeter,
ensuring the output voltage
stays within 5% of 5V with a
current source load
sweeping from 0 to 600 mA.

2A. During verification for
Requirement 1 an IR
thermometer or K-type
thermocouple will be used to
check all devices and ensure
they remain within their
thermal operating
temperature.

3A. We will measure the
current and voltage at both
the input and output when
the output current is at 600
mA.We will use this to
calculate the total power and
efficiency of the buck/PMIC.

1A. Measured at
5.27420V for 5V
buck and 3.47749 for
3.3V buck under no
load. We may tweak
the feedback resistor
in the future but it is
acceptable. (​PASS​).

2A. The buck did not
reach over 60 °C.
The acceptable
range is (-40​ ​°C, 125
°C) (​PASS​).

3A. Worst case
efficiency measured
was 88.15% (90%
predicted) (​PASS​).

https://github.com/chrisbaldwin2/Sub-G-Shield/

9.2 Sub-1 Gigahertz Arduino Shield

* Logic high refers to the range between VDD and VDD/2. Logic low refers to the range
between VCC and VDD/2. VDD refers to the max rated current of that IO value and
VCC refers to the effective ground/neutral/zero voltage of the subsystem.

24

Requirements Verification Testing Result

1. CC1310 controller will be
powered from the 3.3 V output
of Arduino

2.​ ​The shield will be able to
send and receive instructions
and data with the Arduino over
the I2C and/or SPI bus
protocols.

3.​ ​The shield will trigger
RF/GPIO signals from
commands received over I2C
and/or SPI bus protocols. The
shield will also buffer
commands sent by the remote
and/or other shields.

1A. Measure 3.3 V output of
Arduino with a multimeter to
ensure that it will meet the
input range of the CC1310
with input and load transients.

2A. Given a command from
the Arduino over I2C and/or
SPI, we ensure that the
CC1310 is able to trigger a
response**.

2B. The shield will also be able
to send data to the Arduino
either by having the Arduino
poll a register on the CC1310
or by changing the voltage of a
digital pin on the Arduino.

3A. We will measure the GPIO
output signal with a multimeter
to ensure that the output
reaches logic high* and
returns to logic low* whenever
specified by the
command/message.

1A. The Arduino
measured 3.301V
(Acceptable 1.8V,
3.8V) (​PASS​).

2A. The shield is
able to trigger
GPIO, send data
over serial com,
and send RF data
(​PASS​).

2B. The shield
was able to send
data by having the
Arduino poll the
status register of
the shield (​PASS​).

3A. We were able
to measure and
see that the LED
reached logic high
due to an input
over SPI (​PASS​).

** A triggered response from the CC1310 may be any internal/external state change
which is caused by an external stimulus. A triggered response may be but is not limited
to an internal register value change, a change in GPIO output, an RF
command/message output, a print statement over UART, etc.. External stimulus may be
but is not limited to an RF command sent by another Sub-Gigahertz chip either by
shield, remote, or EVM; a change in GPIO input; a command/message sent over I2C
and/or SPI; etc..

25

