

Outdoor Safety Bracelet
__

By

Sameeth Gosike

Seth Katz

Samuel Sitzmann

Final Report for ECE 445, Senior Design, Fall 2020

TA: AJ Schroeder

Professor: Arne Fli�let

9 December 2020

Project No. 37

Abstract	 		
In this project, we designed an Outdoor Safety Bracelet that allows a guardian/supervising
person to keep track of a dependent in their care who is wearing the bracelet. Our aim was
to build a comfortable bracelet that can wirelessly communicate with a monitoring device
from a distance. Not only can it track a dependent’s location within a certain radius, but it
can also detect whether the bracelet wearer has had a fall. Additionally, both devices can
send out alerts if an emergency occurs. The caretaker is able to view the state of the
bracelet wearer on an easy-to-use touchscreen display. The project involved designing two
devices, a bracelet and a monitor.

During the implementation, we faced several issues dealing with power supply, choice of
parts, and PCB design. As a result, the �inished prototype was not �itted onto a bracelet and
the fall detection feature was not implemented. However, in the end we were able to
demonstrate a working proof of concept to showcase most of the functionality of this idea.
This report will detail the design, veri�ication, and challenges faced during implementation
as well as further thoughts on improvements that can be made.

2

Contents	 		

1.			Introduction	 1	 		
1.1. Problem and Solution Overview 1
1.2 Functions & Features 2
1.3 Block Diagram 2
1.4 Block Descriptions 2

1.4.1 Power Unit 3
1.4.2 Control Unit 3

Bracelet Control Unit 3
Monitoring Device Control Unit 3

1.4.3 Sensor Unit 3
1.4.4 User Interface 4

Bracelet UI 4
Monitoring Device UI 4

2.			Design	 5	 		
2.1 Power Unit 5

2.1.1 6V Battery 5
2.2.2 Voltage Regulator 5

2.2 Control Unit 6
2.2.1 MCU 6

Software 6
Calculating Distance & Relative Location 8

2.2.2 RF Transceiver 9
2.3 Sensor Unit 9

2.3.1 GPS 9
Parsing GPS Output 10

2.3.2 Accelerometer 11
Fall Detection 11

2.4 User Interface 12
2.4.1 Monitoring Device TouchScreen 12
2.4.2 Bracelet Help Button 13
2.4.3 Bracelet Buzzer 13

3.			Design			Veri�ication	 14	 		
3.1 Power Units 14

3.1.1 6V Battery 14

3

3.2.2 Voltage Regulator 15
3.2 Control Units 15

3.2.1 MCU 15
3.2.2 RF Transceiver 15

3.3 Sensor Unit 16
3.3.1 GPS 16
3.3.2 Accelerometer 16

3.4 User Interface 17
3.4.1 Monitoring Device TouchScreen 17
3.4.2 Bracelet Help Button 17
3.4.3 Bracelet Buzzer 17

4.			Costs	 18	 		

5.			Conclusion	 19	 		
5.1 Executive Summary 19
5.2 Going Forward 19
5.3 Ethics and Safety 19

6.			References	 21	 		

Appendix			A:			R&V			Tables	 23	 		

Appendix			B:			Arduino			Code	 25	 		
Bracelet MCU Main Program 25
Monitoring Device MCU Main Program (No Screen attached) 28
Monitoring Device MCU Main Program (with Screen) 34
RF.h Header File 38
Coordinates.h Header File 40
Coordinates.cpp CPP File 41

		

4

1.			Introduction	 		

1.1.			Problem			and			Solution			Overview	 		
Caretakers have a constant responsibility to keep track of whoever they are watching.
Whether it be children, the elderly, or anyone else that needs constant supervision, keeping
an eye on them can be a full-time job. If the caretaker looks away for even a moment they
might lose track of their dependent and, depending on the situation, this could be
incredibly dangerous.

Our objective is to make this job easier by creating a device that will track and report
location and situational information to the supervising person. Speci�ically, this product will
track a dependent’s location using GPS and utilize an accelerometer to collect information
about motion and impact to detect falls. These components are �itted into a comfortable,
tamper-proof wristband/bracelet for easy wearability and comfort. This information is sent
over wireless RF communication to a monitoring device possessed by the caretaker on
which the dependent’s location will be displayed to allow constant tracking within a large
radius. Additionally, an alerting system is integrated to notify the caretaker if a fall has
occurred or if the dependent is wandering out of a safe range. The RF components also
allow for 2-way communication between the bracelet and monitoring device to send alerts
to each other in an emergency situation.

Current tracking devices on the market require a monthly subscription to a service because
they utilize SIM cards for wireless communication almost anywhere. Other devices utilize
Bluetooth, however this provides a shorter range communication. In addition, these devices
lack in providing important situational information. Our device will utilize 915 MHz RF to
communicate over long distances without the need for a monthly service. Additionally, our
device is not just for tracking location, but also sends situational motion information. This
information can be important to gather a more complete picture of a dependent’s state of
safety. Caregivers can feel less stressed about constantly watching their dependent.
Whether at the park, in a city, or even on one’s own property, this device will be incredibly
helpful to keep track of dependents and keep them safe.

1.2			Functions			&			Features	 		
The following functions and features make our device unique and provide a more complete
picture of a dependent’s safety.

● Two way wireless communication between monitoring device and bracelet

1

● AES-128 bit encrypted, 915 MHz radio frequency communication
● Relative distance and location determination
● Fall detection using a multidirectional accelerometer
● Touchscreen display that allows user to track location, state of safety and �lashes

emergency alerts

1.3			Block			Diagram	 		

		
Figure 1: Outdoor Safety Bracelet Block Diagram

1.4			Block			Descriptions	 		
There are two parts to this design. The bracelet is the device that is carried by the
dependent and the monitoring device is possessed by the caretaker or supervising person.

1.4.1 Power Unit
The power unit is responsible for supplying power to each module in both the bracelet and
monitoring device. It consists of a 6V battery and a voltage regulator to step down the
voltage for components that require less power. The power unit outputs both a 6V supply
and a 3.3V supply.

2

1.4.2 Control Unit
The control unit on both bracelet and monitoring device consists of a microcontroller as
well as a RF transceiver.

Bracelet			Control			Unit	 		

The bracelet control unit is responsible for receiving data from the Sensor Unit, processing
this data to extract the bracelet coordinates and to detect if the bracelet wearer has fallen,
and subsequently sending this information wirelessly over RF communication for the
monitoring device to receive. Additionally, it communicates an emergency alert to the
monitoring device when the Help Button is pressed or activates the Buzzer when it is
triggered from the monitoring device. The microcontroller collects GPS data in order to
parse and extract the bracelet’s coordinates. To detect if a fall occurred, it will use the
accelerometer data collected in a fall detection algorithm described later in detail. The MCU
packages any outgoing data, which includes bracelet coordinates, fall alerts, or help alerts,
outputs it to the RF transceiver where it will be sent to the monitoring device’s RF
transceiver. When the buzzer is triggered on the monitoring device, the bracelet’s RF
transceiver will receive this alert and the buzzer will be activated by the MCU.

Monitoring			Device			Control			Unit	 		

The monitoring device control unit’s primary functions are to calculate distance and
relative location between itself and the bracelet as well as updating the screen display with
location data and any triggered alerts. Once the bracelet’s coordinates are received from the
RF transceiver, the MCU will use this and its own coordinates to calculate the distance and
relative location between the two. If it has received a Fall Alert or Help Alert, the MCU will
update the screen to �lash this alert to the user. Additionally, if the buzzer is triggered by the
user, the MCU will package this information and send it to the bracelet over RF
communication.

1.4.3 Sensor Unit
The sensor unit consists of the GPS module and accelerometer (the monitoring device’s
sensor unit consists only of the GPS module). The GPS module outputs NMEA-0183 data to
the MCU which contains the device’s coordinates. The accelerometer outputs motion data
of the bracelet and will be used to detect falls.

3

1.4.4 User Interface

Bracelet			UI	 		
The bracelet’s U.I. consists of a Help Button and a Piezo Buzzer. The Help Button is pressed
when the bracelet wearer needs to alert the supervising person of an emergency. This alert
will be sent to the monitoring device to be �lashed on the screen. In the other direction, if
the supervising person needs to alert the dependent, he/she can trigger the buzzer from
the monitoring device. This alert is sent to the bracelet over RF where the buzzer is
activated, outputting an audible sound to the dependent.

Monitoring			Device			UI	 		
The monitoring device U.I. is fully implemented in a 2.4 inch touch screen LCD display. The
purpose of the monitoring device U.I. is to communicate to the user all the important
information relating to the whereabouts of the bracelet wearer including relative distance,
relative location, and alerts. The U.I. also allows the user to contact the bracelet wearer to
achieve two way communication between the monitoring device user and the bracelet
wearer. The U.I. is completely implemented into the screen. Three alerts are displayed as
lights and when an alert is triggered, the respective light �lashes. The relative distance is
printed below the lights in meters. The relative location is displayed on gauge. The angle
between the two devices is calculated and returned to the gauge so that it points in the
direction of the bracelet. Finally, a button at the bottom of the screen allows the monitoring
device user to trigger a buzzer on the bracelet notifying the bracelet wearer to stay put or
return to a predetermined location. The screen communicates with the MCU through serial
UART protocol and requires the abilities to both transmit and receive data.

		

4

2.			Design	 		

2.1			Power			Unit	 		

2.1.1 6V Battery
To supply 6V, we combined two 3V coin batteries in series (3V+3V=6V), as shown in Figure
2. We decided to use two 3V coin batteries due to their availability, capacity, and price. Each
battery has a capacity of 580mAh which is more than enough to support our systems
requiring 170mA for over three hours.

 Eq. 1 .8hours 170mA
2 580mAh* = 6

6V was necessary to provide a stable 3.3V output from the voltage regulator as well as to
power the screen on the monitoring device. The screen operates at a voltage between 4.75V
and 7V, so 6V is �ine for operation.

Figure 2: Battery Schematic

2.2.2 Voltage Regulator
The TPS7A03 low-dropout voltage regulator takes in the 6V from the batteries and
regulates to a stable 3.3V to power the circuit. Decoupling capacitors stabilize the voltage
on both the input and output, shown in Figure 3. This LDO is rated to allow 200mA, as
speci�ied in the datasheet [1]. This LDO was chosen because the required current between
the modules is 170mA and our desired input voltage is 6V.

Figure 3: Voltage Regulator with Decoupling Capacitors

5

2.2			Control			Unit	 		

2.2.1 MCU
One of the microcontroller’s main functions is communicating with the GPS, accelerometer,
and RF transceiver which each utilizes a different I/O protocol. Namely, it inputs location
data from the GPS over UART, inputs accelerometer data over I2C, and uses SPI to interface
with the RF transceiver. On the monitoring device side, the MCU interfaces with the GPS
over UART, the RF transceiver over SPI and the screen display over UART. In this use-case,
speed and performance were not huge requirements for the design, therefore, the
ATMega328P-PU 8-bit microcontroller was chosen, the same used on the Arduino Uno. In
particular this part included all the interfaces needed for the peripheral devices being used
plus additional digital pins that are needed for the user interface I/O. Schematics of the
peripheral connections to the MCU can be seen in Figure 4.

Figure 4: MCU Peripheral Connections

Software		 			
On the bracelet side, the MCU will continuously read and parse the NMEA sentences
outputting from the GPS to extract the bracelet coordinates as well as process the
accelerometer data to detect if a fall has occurred. If a fall has not been detected, the MCU
will package the latitude/longitude coordinates as well as the timestamp that the
coordinates were sent by the GPS satellite. The details of the parsing will be detailed in
Section 2.3.1. The package will then be sent over to the RF transceiver to send wirelessly to
the monitoring device. However, if a fall has been detected, the MCU will package an alert
message and send this over RF along with the location data. The details of the fall detection
algorithm will be detailed in Section 2.3.2. The software �low diagram illustrating this loop
can be seen in Figure 5. It is important to note that the diagram does not include the Help
Alert interrupt function used to alert the supervising person of an emergency. Since the
Help Button is connected to one of the MCU interrupt pins once pressed it will cause the

6

MCU to seize its current operation and immediately send out an alert message over RF to
the monitoring device where it will be �lashed on the display. This function is also included
in the reverse direction - if the Buzz Alert button is pressed on the display on the
monitoring device side, an alert message will be sent over RF to the bracelet. Once the
bracelet MCU receives the alert message from the RF transceiver, it will sound the Piezo
buzzer included on the bracelet at an audible frequency to alert the bracelet wearer.

Figure 5: Software Flow Diagram for Bracelet MCU

On the monitoring device side, the MCU calculates the distance and relative location
between the bracelet and monitoring device using the received coordinates and the
coordinates extracted from its own GPS. The details of these calculations are detailed in the
next section. The microcontroller will continuously update the screen these two location
values to the display via UART. If a Fall Alert or Help Alert is received from the bracelet, it
will update the display to �lash an alert to the user. Additionally if the bracelet is starting to
wander out of range it will display a corresponding alert. The software �low diagram
illustrating this loop can be seen in Figure 6. As described earlier, if the user triggers the
Buzzer Alert from the button on the touchscreen display, the MCU will package an alert
message and send it to the bracelet RF. Once the bracelet receives this message, it will
sound the buzzer on the bracelet.

7

Figure 6: Software Flow Diagram for Monitoring Device MCU

Calculating			Distance			&			Relative			Location	 		
Once the coordinates of both bracelet and monitoring device are extracted for a particular
point in time, the Haversine Formula is used to calculate the distance between the two
points. This equation determines the great-circle distance between two points, given the
longitude and latitude coordinates of each. In other words it calculates the shortest
distance over the earth’s surface [2]. The Haversine formula is shown below

 Eq. 2 r rcsin(d = 2 * a √sin () os(φ)cos(φ)sin ()2
2

φ φ2− 1 + c 1 2
2

2
λ λ2− 1

		
where d				is distance in meters, (Φ 1 , λ 1) and (Φ 2 , λ 2) are the latitude/longitude coordinate
pairs in degrees of the monitoring device and bracelet, respectively, and r		 is the radius of
the Earth (6,371,000 meters). There are several methods to calculate distance between two
GPS coordinates, including Vincenty’s formulae, Law of Cosines, or even an equirectangular
approximation (Pythagoras’ Theorem). However Vincenty’s proves to be more
computationally intensive than Haversine’s, the Law of Cosines is less accurate, and since
an equirectangular approximation assumes the Earth has a �lat surface it is only accurate

8

for small distances [2][3]. The Haversine Formula is much more reasonable in terms of
computational performance and has shown an average error percentage of 0.07% for
distances less than 500m.
The relative location is given using compass direction with cardinal direction and a bearing
in degrees (i.e. N is 0°, E is 90°, S is 180°, and W is 270°). Once the distance between the
bracelet and monitoring device is computed, the horizontal distance is calculated using
Haversine’s Formula. Using both distance values, simple trigonometry is used to calculate
the angle between the horizontal and hypotenuse created by the two devices, . os()Θ = c d

dx
The theta value is adjusted to match that of a compass dial. For example, if the bracelet is
NE of the monitoring device, the angle is subtracted from 90° to give the actual bearing.

2.2.2 RF Transceiver
The RFM69HCW transceiver module was chosen because it is relatively cheap, can transmit
up to 500 meters, has low power requirements, and is known by a member on our team.
The module operates at 3.3V drawing a maximum of 16mA when receiving and 130mA
when transmitting [4]. The module has AES-128 bit encryption capability to automatically
encrypt each message sent. The module communicates in the ISM band at 915 MHz which
is an open frequency band for the industrial, scienti�ic, and medical space. This module
communicates with the MCU using the SPI protocol and is interrupt driven. Our group
utilized a ¼ wavelength antenna for each module. This can be calculated using the equation

 where is the wavelength, is the speed of light in air, and is the frequency of λ = c ÷ f λ c f
the carrier waves. Therefore, our antennas were about eight centimeters in length.

2.3			Sensor			Unit	 		

2.3.1 GPS
The GP-20U7 GPS Receiver was chosen for this design to determine the location of both
bracelet and monitoring device. This module is capable of providing position and time
feedback at a rate of 1Hz with location accuracy of about 2.5m, well within eyesight.
According to the datasheet [5], given its low power consumption (40mA at 3.3V) and its
relatively small size (18.4 x 18.4 x 4mm - smaller than the dimensions of an Apple Watch
[6]) the part was deemed �it for our design. Power consumption is important since these
are portable devices with limited battery supply. It was known that the GPS would be the
largest component of the circuit and so to adhere to a watch-like design for the bracelet,
this part �it our size constraints.

9

Parsing			GPS			Output	 		
The GPS continuously outputs NMEA-1083 in different record formats data through a UART
interface to the MCU at a rate of 1x/second. To extract the coordinates of the device, the
RMC sentence was parsed accordingly. Table 1 shows the RMC data �ields, where each
sequential �ield is comma separated. Figure 7 depicts how the MCU software parses and
saves the latitude, longitude and timestamp the coordinates were read.

Table 1: RMC sentence data �ields

10

Name Description

Message ID RMC protocol header ($GPRMC)

UTC Position hhmmss.sss

Status A=data valid or V=data not valid

Latitude ddmm.mmmm

N/S Indicator N=north or S=south

Longitude ddmm.mmmm

E/W Indicator E=east or W=west

Speed Over Ground

Course Over Ground

Date ddmmyy

Magnetic Variation E=east or W=west

Checksum

<CR><LF> Message termination

Figure 7: Software �low diagram for parsing coordinate data from GPS

2.3.2 Accelerometer
The Kionix KX124-1051 Tri-axis Digital Accelerometer was chosen for this design to detect
if a fall has occurred. It is capable of outputting the acceleration rate of an object in the x, y,
and z directions to a range up to ±8 g	, where g				is the rate of acceleration due to gravity (9.81
m/s 2). The MCU communicates with the chip through I2C protocol. This particular
accelerometer was chosen according to the features given in its datasheet [7]. The
accelerometer is �itted with an ASIC to detect free-falls, jerk events (sudden peaks in
acceleration), and change in orientation, which are all required to detect a person falling.
Given the extremely small size (3 x 3 x 0.9mm) and low power consumption (145µA at 3.3V
with further power optimization built into the SoC), this part was well suited for the initial
bracelet design.

Fall			Detection	 		

A person falling, whether from a height or from a standing position, typically consists of 4
phases. Before a fall occurs, the acceleration of a person towards the Earth’s surface, a	z , is
equal to g		 due to the force of gravity. When a fall starts to occur, a	z		 approaches 0 m/s 2 and a
falling person enters a short period of free-fall. The second phase is impact which can be
characterized by a sudden spike in acceleration. This spike event illustrates a sudden and

11

great change in acceleration, or jerk. The impact is followed by a change in orientation and
a prolonged rest state where a	z		 = g	. If this sequence of events occurs in a short time frame,
about 2-3s, it can be considered a fall.The graph in Figure 8 illustrates the accelerometer
data of a phone being dropped from about 5ft which clearly depicts this chain of events.

Figure 8: Acceleration (z-axis) of a phone falling from 5ft height

The KX124-1051 is a nifty device since it is capable of sending an interrupt signal to the
MCU if either a free-fall, jerk event, or change of orientation occurred. Unfortunately due to
issues discussed in Section 3.3.2, the part was unusable. However given that the issues
could be surpassed, the bracelet MCU would have been programmed to wait for an free-fall
interrupt signal to go high. Once this occurs, it would subsequently check for a jerk, change
in orientation and a prolonged rest state. Using a counter, it would check if this chain of
events occurred within a 2-3s. If so, a fall would have been detected, and an alert message
would be sent over RF to the monitoring device to notify the supervising person.

2.4			User			Interface	 		

2.4.1 Monitoring Device TouchScreen
The Nextion Basic Display NX3224T024 touch screen encompasses the entire user
interface for the monitoring device. We chose this device because of its existing library and
touch screen capabilities. Along the top are 3 “LEDs”, that �lash for the 3 alerts: help button
pressed, distance almost out of range, and fall detected. Beneath that is the relative distance
in meters, and a gauge showing the direction to the bracelet. On the bottom is the buzz

12

button, which the guardian can press to cause the buzzer on the bracelet to go off. The
layout of this interface can be seen in Figure 9.

Figure 9: Monitoring Screen Layout

2.4.2 Bracelet Help Button
The Help Button on the bracelet allows the wearer to communicate with their guardian,
alerting them that help is needed. It consists of a simple button, and a pull down resistor
shown in Figure 10, so that the MCU receives a high signal on an interrupt pin whenever the
button is pressed.

Figure 10: Button Circuit Layout

2.4.3 Bracelet Buzzer
The buzzer on the bracelet is a PS1240 Piezo Buzzer that allows the guardian to alert the
wearer with a predetermined signal. The buzzer will buzz on and off 5 times. It is
connected to an NPN bipolar junction transistor as shown in Figure 11, which ampli�ies the
PWM signal from the MCU.

13

Figure 11: Buzzer Circuit Layout

3.			Design			Veri�ication	 		

3.1			Power			Units	 		

3.1.1 6V Battery
To verify our battery, we connected the positive and negative leads of the batteries to a
multimeter, which con�irmed that each battery output was at 3V, and con�irmed that when
combined in series, the voltage output totaled 6V. However, after inserting the batteries on
the PCB we saw a huge drop in voltage as to where the voltage across both batteries was
essentially zero. We believe this may have been due to a fault in the PCB since we tested a
variety of potential causes including high resistance in the battery holders, reverse polarity,
and loose connections. None of these tests showed any resolve. As a result we attempted to
attach the batteries together off the PCB. While the voltage issue was resolved, when
applied to a load the battery voltage was unstable and was unusable. Instead we opted to
use a 5V supply from an arduino board.

14

3.2.2 Voltage Regulator
We con�irmed the voltage regulator worked correctly by using a multimeter on both the
input and output voltages, which showed the input at 6V and the output at 3.3V, meeting
the requirement listed in Appendix A. However, when the bracelet ran with all the modules
integrated, the regulator was forced to supply more than 200mA, the maximum output of
the LDO according to the datasheet [1]. Although we calculated the max current draw of our
system to be 170mA we believe the RF module drew over its max current rating when
transmitting. This caused several of the voltage regulators to burn out. Switching to the
Arduino board for a power supply also resolved this issue as the 3.3V voltage regulator on
the board can supply up to 600mA.

3.2			Control			Units	 		

3.2.1 MCU
The MCU requirements listed in Appendix A are having a SPI, I2C, UART, and at least 4
additional digital IO pins in order to interface with each peripheral device included in the
design. This was quickly veri�ied using the ATMega’s datasheet [8]. To further ensure that
all devices were able to communicate with the MCU, each part was connected to the MCU
which was programmed to input and/or output data from the peripheral. The GPS was
connected to the UART serial pins on the MCU which was programmed to read and print
the GPS location data. The accelerometer was connected across the I2C interface on the
MCU which was programmed to read the accelerometer’s Device ID from an internal
register. This ensured that communication was stable both ways since the MCU had to send
the slave and register address to the accelerometer and then read the Device ID register’s
data. A RF transceiver was connected to the SPI pins of the MCU which was programmed to
read the Device ID and temperature of the RF chip. This also ensured 2-way communication
between the two devices. Lastly, the MCU was programmed to light an LED upon pressing
the connected Help Button and subsequently sound the bracelet Buzzer. All the
requirements were met and communication with each peripheral was successful.

3.2.2 RF Transceiver
The transmission of our RF modules were veri�ied in two ways. We �irst attached the probe
of an oscilloscope to the antenna of the module and triggered a transmission. With a single
transmission we could see a small jump in the waveform displayed on the oscilloscope, but
with continuous transmissions a 915 MHz waveform was displayed on the scope.
Additionally, an external software de�ined radio (SDR) module was used to ensure
transmission at the correct frequency. Using the SDR module along with SDR software, we

15

were able to see spikes appear on a frequency plotter centered at 915MHz for both
modules. Both methods were helpful in verifying transmission and debugging the devices.

Once transmission was veri�ied, we utilized an Arduino library made for the RFM69 module
to easily program the modules and test communication between them. We were able to run
test code on the MCU to send desired messages between the two modules and verify the
modules were receiving the others messages.

3.3			Sensor			Unit	 		

3.3.1 GPS
According to Appendix A, the GPS was acquired to output latitude/longitude coordinates at
least 1x/second with an accuracy of about 0.00001°. This was veri�ied by powering the
modules, having the MCU read the GPS data over UART, and printing the data to a Serial
monitor. We were then able to verify that the GPS indeed output latitude/longitude
coordinates and the 1Hz update by seeing the satellite timestamps were each 1 second
apart. Additionally, we allowed the modules to run overnight to monitor any �luctuations in
returned data and compare the received coordinates to the actual coordinates using Google
Maps. The data showed some �luctuation, but up to the tolerance speci�ied in the data sheet,
around 2.5 meters [5]. Although this did not meet our accuracy requirement, a 2.5 meter
tolerance was deemed �it for tracking the bracelet over larger distances where a caretaker
might not have a direct eyeline to the dependent.

3.3.2 Accelerometer
To verify the accelerometer, it was directly connected to the bracelet PCB that was designed
instead of an Arduino board. This was done due to the fact that the accelerometer IO pins
use 3.3V and the Arduino board pins operate at 5V. Since a level converter was not at hand
to downstep the Arduino IO voltage level, the accelerometer had to be soldered on the PCB
and connected directly to the ATMega chip, which uses 3.3V levels on its pins. This led to a
number of problems with connectivity and accidental shortage of the accelerometer due to
its extremely small size, depicted in Figure 13. Unfortunately due to this, the accelerometer
was neither veri�iable or usable as this required quite a skilled hand for soldering. As a
result, one of the main features of this project, Fall Detection, had to be scrapped.

16

Figure 13: Accelerometer Size Comparison

3.4			User			Interface	 		

3.4.1 Monitoring Device TouchScreen
We used the screen to verify many other components, such as the button and buzzer on the
bracelet, as well as the communication of the RF modules. Simply by observing and
interacting with the screen, we knew that both the screen and the other modules were
working as expected.

3.4.2 Bracelet Help Button
To verify that the button was hooked up correctly and working with the MCU, we pressed
the button, which was connected to an interrupt pin on the MCU. Whenever we pressed the
button, the Serial Monitor would show an alert saying it recognized the button being
pressed.

3.4.3 Bracelet Buzzer
We veri�ied the buzzer simply by connecting it to an MCU digital pin and driving it with a
PWM. This successfully veri�ied that the buzzer was operational. Through some trial and
error, we settled on a frequency of about 261 Hz that was both loud and well within the
audible range of human hearing.

17

4.			Costs	 		
Our design work cost $40/hour, 10 hours/week, over 16 weeks for three people. The
cost of all the supplies can be seen in Table 2.

 Eq. 3 6wks .5 48, 003 * hr
$40

* wk
10hr

* 1 * 2 = $ 0

Table 2: Materials Cost Summary

18

Parts Prototype Bulk

Buzzer (PS1240) $1.50 $1.13

Bracelet MCU
(ATmega328P)

$2.01 $1.67

Monitoring MCU
(ATmega328P)

$2.01 $1.67

Accelerometer
(KX124-1051)

$1.88 $0.88

GPS x2 (GP-20U7) $17.95 $17.95

Voltage Regulator x2
(LD1117-3.3)

$1.25 $1.00

RF Transceiver x2
(RFM69HCW)digikey

$5.95 $4.99 on Amazon

Battery x4 (CR2450) $0.79 $0.55

LCD Screen (ESP8266) $21.49 $21.49

Button (ALCOSWITCH) $0.19 $0.16

PCB (PCBway) $5.00 $0.37

Total $63.64 $53.51

https://www.adafruit.com/product/160
https://www.microchip.com/wwwproducts/en/atmega328p
https://www.microchip.com/wwwproducts/en/atmega328p
https://www.mouser.com/ProductDetail/Kionix/KX124-1051?qs=4v%252BiZTmLVHFvVaF9ojrIuQ%3D%3D
https://www.sparkfun.com/products/13740
https://www.adafruit.com/product/2165
https://www.amazon.com/RFM69HCW-Wireless-Transceiver-915MHz-4-pack/dp/B01F6FXZ2S
https://www.digikey.com/en/products/detail/zeus-battery-products/CR2450/9828856
https://www.amazon.com/Nextion-Module-Display-NX3224T024-ESP8266/dp/B015DMP45K
https://www.digikey.com/product-detail/en/te-connectivity-alcoswitch-switches/1825967-1/450-1654-ND/1632540

5.			Conclusion	 		

5.1			Executive			Summary	 		
In the end of the semester, our �inal product did not showcase all the goals that were
intended, including �itting onto a comfortable bracelet and the capability to detect falls.
However during the implementation process, our team was able to learn a great deal about
the design, build, and veri�ication process. We learned that much more planning is needed
in the PCB design to make sure that all modules can be tested and programmed accordingly
by exposing the correct connections. Careful thought must also go into choosing parts that
are workable and have higher tolerances as seen in our failures with the accelerometer and
LDO. Additionally, with the special challenge of COVID-19 this year, we were able to realize
that a stable test environment for remote programming and collaboration was needed
which was successfully built using a Raspberry Pi and VNC software. Although the �inal
design was implemented on a breadboard, we were able to display most of the core
functionality of our idea and are happy that we were able to push through almost all of our
challenges to create a working design.

5.2			Going			Forward	 		
To further work on this project, we intend to advance our existing goals and add new high
level goals to our system. In terms of advancing our goals, we will continue to work on
stable RF communication at increasing distances between the bracelet and the monitoring
device, using a longer antenna, and implement fall detection on a more suited
accelerometer package. Detection of a dependent drowning can be added by using a
water/pressure sensor in combination with the accelerometer. Possibilities of added
features can also include detecting high sun exposure and monitoring vitals.

5.3			Ethics			and			Safety		
As a product designed to keep susceptible people safe, there are many safety precautions
that we had to keep in mind throughout the project. First and foremost, we have a
responsibility to ensure that the physical devices themselves are safe and will not harm a
user. This means parts must be large enough to not be swallowed by children, electronics
are safely housed and do not pose any concern, there are no sharp or pointed edges…
Although we were unable to make a compact design/housing for the devices, this idea is
something that is extremely important as we move forward with the project and future
designs. Especially considering this product would most likely be utilized by parents and
their children. According to the New York Department of Health, choking is the fourth

19

leading cause of unintentional death in children under �ive years old [9]. There are other
types of bracelets on the market for children and we would ensure that there would be no
small pieces that could fall off and/or be swallowed.

Another concern is over data transmission through radio frequency communication. With
radio communication you must keep data safety in mind. Especially when the data contains
any type of personal information. In our case the data being sent is only related to the
location of a person and can only be accessed over a range of 500 m. Although it is unlikely
that someone would be close enough to extract this information, it is still important that
this concern is accounted for. Similarly, someone may try to send incorrect data to throw off
a caretaker and lead them away from the location of the bracelet wearer. To prevent any
type of data snif�ing/tampering, we utilized AES-128 bit encryption on all RF messages.
This way only two devices with the same key can communicate with each other. Any other
message will be ignored. Another concern with RF is whether or not the energy transmitted
is enough to cause damage to users and/or people in the vicinity. The FCC has very clear
regulations on the amount of RF energy that can be emitted by a device to limit exposure to
human tissue. At high power levels/kg and high frequencies, there is potential to do
damage [10]. Because of this potential the FCC decided to regulate the speci�ic absorption
rate (SAR) for humans in different contexts. The monitoring device and bracelet fall under
the limits for general population/uncontrolled exposure which has a SAR limit of 0.08
W/kg as averaged over the whole body and a peak spatial average SAR for extremities (e.g.
hands, wrists, feet, ankles, and pinnae) of 4 W/kg averaged over any 10 grams of tissue
[11]. The maximum transmit power of our transceiver is 100mW [12] which averaged over
an extremity and body is much less than the FCC limits.

Finally, one of the most important concepts while working on this project and will continue
to be important through future work is reliability. “We … in recognition of the importance
of our technologies in affecting the quality of life throughout the world, and in accepting a
personal obligation to our profession… agree: to accept the responsibility in making
decisions consistent with the safety, health, and welfare of the public…” [13]. We have a
responsibility to design reliable products especially when caretakers will be trusting our
product to “watch over” their subject. Of course there are potentially legal ways to get out of
liability, but this is often overlooked by consumers. On top of that the idea of the product is
to make the job of caretakers easier and therefore we must ensure that the devices are
reliable and have fail safes in place if something goes wrong.

20

6.			References		 			
[1] Texas Instruments “Low-Dropout Voltage Regulator” TPS7A03 datasheet, July 2019

[Revised April 2020]. Available: https://www.ti.com/lit/ds/symlink/tps7a03.pdf?ts
=1604280847082&ref_url=https%25A%252F%252Fwww.ti.com%252Fproduct%2
52FTPS7A03

[2] Movable Type Scripts “Calculate distance, bearing and more between

Latitude/Longitude points”, [Revised February 2019]. Available:
https://www.movable-type.co.uk/scripts/latlong.html

[3] Neova Solutions “Haversine Vs Vincenty: Which is the best?”, October 2019.

Available: https://www.neovasolutions.com/2019/10/04/
haversine-vs-vincenty-which-is-the-best/

[4] RFM69HCW RF Transceiver Datasheet (Sparkfun). [Online] Available:

https://cdn.sparkfun.com/datasheets/Wireless/General/RFM69HCW-V1.1.pdf
[Accessed: 9-Dec-2020]

[5] GP-20U7 GPS Receiver Datasheet (Sparkfun). [Online] Available:

https://cdn.sparkfun.com/datasheets/GPS/GP-20U7.pdf
[Accessed: 9-Dec-2020].

[6] Apple Watch. [Online] Available: https://www.apple.com/watch/

[Accessed: 9-Dec-2020].

[7] KX124-1051 Accelerometer Datasheet (Kionix). [Online]. Available:
https://www.mouser.com/datasheet/2/348/KX124-1051%20Speci�ications%20Re
v%201.0-1019154.pdf
[Accessed: 9-Dec-2020].

[8] ATMega328P MCU Datasheet (Microchip). [Online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168
A-PA-328-P-DS-DS40002061B.pdf
[Accessed: 9-Dec-2020].

21

[9] New York Department of Health “Choking Prevention for Children”,
[Revised April 2017]. Available:
https://www.health.ny.gov/prevention/injury_prevention/choking_prevention_for_
children.htm

[10] RF Safety FAQ (Federal Communications Commission). [Online] Available:

https://www.fcc.gov/engineering-technology/electromagnetic-compatibility-divisio
n/radio-frequency-safety/faq/rf-safety#Q6. [Accessed: 1- Oct- 2020].

[11] 47 CFR § 1.1310 - Radiofrequency radiation exposure limits. (Legal Information

Institute). [Online]. Available: https://www.law.cornell.edu/cfr/text/47/1.1310
[Accessed: 1- Oct- 2020].

[12] RFM69HCW Datasheet (Hoperf Electronic). [Online]. Available:

https://cdn.sparkfun.com/datasheets/Wireless/General/RFM69HCW-V1.1.pdf.
[Accessed: 1- Oct- 2020].

[13] IEEE Code of Ethics (IEEE). [Online]. Available:

http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 16- Sep-
2020].

		 	

22

Appendix			A:			R&V			Tables	

23

Module Name High-Level Requirements Points

Control Module
(MCU)

● Module should successfully acquire and parse
data from GPS (UART) and accelerometer
(I2C) to calculate location and detect fall

● Module should be able to receive alert
interrupts and activate buzzer/flash alert on
screen

● (Bracelet) Module should be able to package
GPS/Alert data and send to RF module

● (Monitoring) Module should be able to update
screen with Location/Status data

10

RF Transceiver
Module

● Module should be able to successfully send
and receive data to/from bracelet/monitoring
device over wireless RF communication at
915MHz

5

GPS Module ● Module should be able to obtain
bracelet/monitoring device’s coordinates and
send to MCU over UART

● Should update coordinates every 1 second
(1Hz)

● Should be able to be accurate to 0.00001°

5

Fall Detection
Module
(Accelerometer)

● Module should be able to raise interrupt during
free-fall event, single-tap (acceleration spike)
event, and orientation change event

● Module should be able calculate bracelet’s
acceleration within +-2g range on 3 axis

5

Monitoring
Display Module

● Module should display monitoring device User
Interface with no glitches with bracelet status
and location

● User should be able to interact with
touch-screen button to send out alert to
bracelet

5

24

Bracelet HMI
Module (Help
Button+Buzzer)

● Button should be debounced and raise signal
to send out ‘Help Alert’ to monitoring device

● Buzzer should sound at hearable frequency
when ‘Buzz Alert’ is sent to bracelet

5

Power Units

● Module should supply enough steady power to
the circuit and its components

5

 Total 50

Appendix			B:			Arduino			Code	 		

Bracelet			MCU			Main			Program	 		
#include <SoftwareSerial.h>
#include "Coordinates.h"
#include "RF.h"

//#de�ine RAWGPS true
//#de�ine SHOWGPSPARSE true
#de�ine RFDEMO true

SoftwareSerial gpsSerial(9,8);
RFM69 rf; //(RF69_SPI_CS, IRQPIN, false, IRQNUM);

const byte HelpButtonPin = 2;
unsigned long button_time = 0;
unsigned long last_button_time = 0;

const byte BuzzerPin = 6;

void setup() {
 Serial.begin(9600);
 while(!Serial);
 gpsSerial.begin(9600);
 while(!gpsSerial);

// pinMode(HelpButtonPin, INPUT);
// attachInterrupt(digitalPinToInterrupt(HelpButtonPin), sendHelpAlert, RISING);
// pinMode(BuzzerPin, OUTPUT);

 rf_init(rf);

#ifdef RAWGPS
 Serial.println("Printing raw GPS Data...enter 'e' to continue to next test");
 char c = 0;
 while(c != 'e') {
 char gpsByte;
 if(gpsSerial.available()) {
 gpsByte = gpsSerial.read();
 Serial.print(gpsByte);
 }

25

 if(Serial.available())
 c = Serial.read();
 }
#endif

#ifdef SHOWGPSPARSE
 char c = 0;
 Serial.println("Printing parsed GPS Data...enter 'e' to continue to next test");
 Coordinates coord(gpsSerial, Serial);
 while(c != 'e') {
 coord.get_coordinates();
 Serial.println("Parsed GPS Data");
 Serial.print("Time: "); Serial.println(coord.timestamp, 5);
 Serial.print("Latitude: "); Serial.println(coord.latitude, 5);
 Serial.print("Longitude: "); Serial.println(coord.longitude, 5);

 if(Serial.available())
 c = Serial.read();
 }
#endif

#ifdef RFDEMO
 char c = 0;
 Serial.println("RF Communication Demo...enter '~' to exit");
 Serial.print("Node "); Serial.print(MYNODEID, DEC); Serial.println(" ready!");
 while(c != 126) {
 //Sending
 static char sendbuffer[62];
 static int sendlength = 0;
 if(Serial.available()) {
 c = Serial.read();

 if(c != '\r') {
 sendbuffer[sendlength] = input;
 sendlength++;
 }
 if((input == '\r') || (sendlength == 61)) {
 Serial.print("sending to node ");
 Serial.print(TONODEID, DEC);
 Serial.print(", message [");
 for (byte i = 0; i < sendlength; i++)
 Serial.print(sendbuffer[i]);

26

 Serial.println("]");

 if(rf.sendWithRetry(TONODEID, sendbuffer, sendlength))
 Serial.println("Message sent sucessfully!");
 else Serial.println("Message not sent");

 sendlength = 0;
 }
 }

 //Receiving
 if(rf.receiveDone()) {
 Serial.print("received from node ");
 Serial.print(rf.SENDERID, DEC);
 Serial.print(", message [");
 for (byte i = 0; i < rf.DATALEN; i++)
 Serial.print((char)rf.DATA[i]);
 if(rf.ACKRequested()) {
 rf.sendACK();
 Serial.println("ACK sent");
 }
 }
 }
#endif
}

void loop() {
///Add ifndef to init gps and RF////
#ifndef DEMOMODE
#endif
 Serial.println("Starting normal system operation...");

 Coordinates coord(gpsSerial, Serial);
 if(coord.get_coordinates()) {
 Serial.println("Sending GPS Data to Monitoring Device: "); Serial.print(coord.timestamp, 5);
Serial.print(",");
 Serial.print(coord.latitude, 5); Serial.print(",");
 Serial.print(coord.longitude, 5); Serial.println();
 �loat gps_data[] = {coord.timestamp, coord.latitude, coord.longitude};
 if(rf_send(rf, gps_data, 0, 0))
 Serial.println("GPS Data sent successfully!");
 else Serial.println("ERROR: Data not sent");
 }

27

}

//Help Button Alert
void sendHelpAlert() {
 �loat gps_data[3];
 button_time = millis();
 if(button_time - last_button_time > 50) {
 Serial.println("HELP ALERT TRIGGERED!");
 last_button_time = button_time;
 }
}

//Buzzer Alert
void buzzer() {
 for(int i = 0; i < 5; i++) {
 tone(BuzzerPin, 2000);
 delay(1000);
 noTone(BuzzerPin);
 delay(1000);
 }
}

Monitoring			Device			MCU			Main			Program			(No			Screen			attached)	 		
#include <SoftwareSerial.h>
#include <Nextion.h>
#include "Coordinates.h"
#include <RFM69.h>
#include <SPI.h>

#de�ine IRQPIN 2
#de�ine IRQNUM 0
#de�ine NETWORKID 0
#de�ine MYNODEID 2
#de�ine TONODEID 1
#de�ine FREQ RF69_915MHZ
#de�ine KEY "SAMSETHSAMEEUIUC"

//#de�ine RAWGPS true
//#de�ine SHOWGPSPARSE true
//#de�ine RFDEMO true

28

typedef struct {
 char message_type = 'G'; //G = GPS data, H = Help Alert, B = Buzzer Alert
 �loat gps_timestamp;
 �loat gps_latitude;
 �loat gps_longitude;
} RFPayload;

SoftwareSerial gpsSerial(9,8);
RFM69 rf; //(RF69_SPI_CS, IRQPIN, false, IRQNUM);

void setup() {
 Serial.begin(9600);
 while(!Serial);
 gpsSerial.begin(9600);
 while(!gpsSerial);

 //rf_init(rf);
 rf.setCS(10);
 rf.initialize(FREQ, MYNODEID, NETWORKID);
 rf.setHighPower();
 rf.encrypt(KEY);

#ifdef RAWGPS
 Serial.println("Printing raw GPS Data...enter 'e' to continue to next test");
 char c = 0;
 while(c != 'e') {
 char gpsByte;
 if(gpsSerial.available()) {
 gpsByte = gpsSerial.read();
 Serial.print(gpsByte);
 }

 if(Serial.available())
 c = Serial.read();
 }
#endif
#ifdef SHOWGPSPARSE
 Serial.println("Printing parsed GPS Data...enter 'e' to continue to next test");
 char c = 0;

29

 Coordinates coord(gpsSerial, Serial);
 while(c != 'e') {
 coord.get_coordinates();
 Serial.println("Parsed GPS Data");
 Serial.print("Time: "); Serial.println(coord.timestamp, 5);
 Serial.print("Latitude: "); Serial.println(coord.latitude, 5);
 Serial.print("Longitude: "); Serial.println(coord.longitude, 5);

 if(Serial.available())
 c = Serial.read();
 }
#endif
#ifdef RFDEMO

 Serial.println("RF Communication Demo...press '~' to exit");
 Serial.print("Node "); Serial.print(MYNODEID, DEC); Serial.println(" ready!");
 //char c = 0;
 while(1) {
 //Sending
 static char sendbuffer[62];
 static int sendlength = 0;
 if(Serial.available()) {
 char c = Serial.read();

 if(c != '\r') {
 sendbuffer[sendlength] = c;
 sendlength++;
 }
 if((c == '\r') || (sendlength == 61)) {
 Serial.print("sending to node ");
 Serial.print(TONODEID, DEC);
 Serial.print(", message [");
 for (byte i = 0; i < sendlength; i++)
 Serial.print(sendbuffer[i]);
 Serial.println("]");

 if(rf.sendWithRetry(TONODEID, sendbuffer, sendlength))
 Serial.println("Message sent sucessfully!");
 else Serial.println("Message not sent");

30

 sendlength = 0;
 }
 }

 //Receiving
 if(rf.receiveDone()) {
 Serial.print("received from node 1");
 Serial.print(", message [");
 for (byte i = 0; i < rf.DATALEN; i++)
 Serial.print((char)rf.DATA[i]);
 Serial.println("]");

 if(rf.ACKRequested()) {
 rf.sendACK();
 Serial.println("ACK sent");
 }
 }
 }
#endif

 Serial.println("Starting normal system operation...");
}

void loop() {
#ifndef DEMOMODE
#endif
 static RFPayload data;
 char c;
 if(Serial.available()) {
 c = Serial.read();
 if(c == 'B') {
 Serial.println("BUZZER ALERT TRIGGERED!");
 data.message_type = 'B';
 if(rf.sendWithRetry(TONODEID, (const void*)(&data), sizeof(data), 10, 500))
 Serial.println("Alert sent successfully!");
 else Serial.println("ERROR: Alert not sent");
 }
 }

 Coordinates coord(gpsSerial, Serial);

31

 if(coord.get_coordinates()) {
 Serial.println("----------");
 Serial.println("*Monitoring Device GPS Data*");
 Serial.print("Timestamp: "); Serial.println(coord.timestamp, 3);
 Serial.print("Latitude: "); Serial.println(coord.latitude, 5);
 Serial.print("Longitude: "); Serial.println(coord.longitude, 5);
 }
 else Serial.println("No satellite �ix! GPS Data invalid");

 if(rf.receiveDone()) {
 Serial.println();
 data = *(RFPayload*)rf.DATA;

 if(data.message_type == 'G') {
 Serial.println("*Received Bracelet GPS Data*");
 Serial.print("Timestamp: "); Serial.println(data.gps_timestamp, 3);
 Serial.print("Latitude: "); Serial.println(data.gps_latitude, 5);
 Serial.print("Longitude: "); Serial.println(data.gps_longitude, 5);

 �loat d = calc_distance(coord.latitude, coord.longitude, data.gps_latitude,
data.gps_longitude);
 Serial.print("Distance: "); Serial.println(d, 3);
 int rel_loc = calc_rel_loc(coord.latitude, coord.longitude, data.gps_latitude,
data.gps_longitude, d);
 }
 if(data.message_type == 'H') {
 for(byte i = 0; i < 5; i++)
 Serial.println("HELP ALERT!");
 //Send alert to screen
 }
 if(rf.ACKRequested()) {
 rf.sendACK();
 Serial.println("ACK SENT");
 }
 }
 Serial.println("----------"); Serial.println();

}

//Distance Function

32

�loat calc_distance(�loat lat1, �loat long1, �loat lat2, �loat long2)
{
 �loat R = 6371000;
 //Convert to radians
 lat1 = lat1 * (M_PI/180);
 long1 = long1 * (M_PI/180);
 lat2 = lat2 * (M_PI/180);
 long2 = long2 * (M_PI/180);

 //Find deltas
 �loat dlat = lat2 - lat1;
 �loat dlong = long2 - long1;

 �loat d = pow(sin(dlat/2),2) + cos(lat1) * cos(lat2) * pow(sin(dlong/2),2);
 d = 2 * asin(sqrt(d));
 d = d * R;

 return d;
}

//Relative Location Function
int calc_rel_loc(�loat lat1, �loat long1, �loat lat2, �loat long2, �loat d) {
 �loat dir;
 �loat dlat = lat2 - lat1;
 �loat dlong = long2 - long1;

 if(dlat > 0 && dlong == 0)
 return 90;
 else if(dlat < 0 && dlong == 0)
 return 270;
 else if(dlat == 0 && dlong > 0)
 return 180;
 else if(dlat == 0 && dlong < 0)
 return 0;

 �loat dx;
 int theta;
 dx = calc_distance(lat1, long1, lat1, long2);
 theta = acos(dx / d);
 theta = theta * (180/M_PI);

33

 if(dlat > 0 && dlong > 0) { //NE
 int x = 90 - theta;
 Serial.print("Location: "); Serial.print(x, DEC); Serial.println("deg NE");
 theta = 180 - theta;
 return theta;
 }
 else if(dlat > 0 && dlong < 0) { //NW
 int x = 270 + theta;
 Serial.print("Location: "); Serial.print(x, DEC); Serial.println("deg NW");
 return theta;
 }
 else if(dlat < 0 && dlong > 0) { //SE
 int x = 90 + theta;
 Serial.print("Location: "); Serial.print(x, DEC); Serial.println("deg SE");
 theta = 180 + theta;

 return theta;
 }
 else if(dlat < 0 && dlong < 0) { //SW
 int x = 279 - theta;
 Serial.print("Location: "); Serial.print(x, DEC); Serial.println("deg SW");
 theta = 360-theta;
 return theta;
 }
}

Monitoring			Device			MCU			Main			Program			(with			Screen)	 		
#include <SoftwareSerial.h>
#include <Nextion.h>
#include "Coordinates.h"
#include <RFM69.h>
#include <SPI.h>

#de�ine IRQPIN 2
#de�ine IRQNUM 0
#de�ine NETWORKID 0
#de�ine MYNODEID 2

34

#de�ine TONODEID 1
#de�ine FREQ RF69_915MHZ
#de�ine KEY "SAMSETHSAMEEUIUC"

//#de�ine RAWGPS true
//#de�ine SHOWGPSPARSE true
//#de�ine RFDEMO true

typedef struct {
 char message_type = 'G'; //G = GPS data, H = Help Alert, B = Buzzer Alert
 �loat gps_timestamp;
 �loat gps_latitude;
 �loat gps_longitude;
} RFPayload;

SoftwareSerial gpsSerial(9,8);
RFM69 rf; //(RF69_SPI_CS, IRQPIN, false, IRQNUM);

NexButton b0 = NexButton(0,1,"b0");
NexGauge z0 = NexGauge(0,2,"z0");
NexRadio r0 = NexRadio(0, 8, "r0"); //Help
NexRadio r1 = NexRadio(0, 9, "r1"); //Out of range
NexRadio r2 = NexRadio(0, 10, "r2"); //Fall
NexNumber n0 = NexNumber(0, 11, "n0");
NexTouch *nex_listen_list[]={&b0, NULL};

bool pressed = false;
void b0PushCallback(void *ptr) {
 pressed = !pressed;
 RFPayload data;
 if(pressed) {
 b0.setText("Buzzing");
 data.message_type = 'B';
 rf.sendWithRetry(TONODEID, (const void*)(&data), sizeof(data), 4, 500)
 }
 else b0.setText("Buzz");
}

void setup() {
 b0.attachPush(b0PushCallback);

35

 screenSerial.begin(9600);
 Serial.begin(9600);
 while(!Serial);
 gpsSerial.begin(9600);
 while(!gpsSerial);

 //rf_init(rf);
 rf.setCS(10);
 rf.initialize(FREQ, MYNODEID, NETWORKID);
 rf.setHighPower();
 rf.encrypt(KEY);
}

void loop() {
 nexLoop(nex_listen_list);

 static RFPayload data;
 Coordinates coord(gpsSerial, Serial);
 coord.get_coordinates()

 if(rf.receiveDone()) {
 data = *(RFPayload*)rf.DATA;

 if(data.message_type == 'G') {
 �loat d = calc_distance(coord.latitude, coord.longitude, data.gps_latitude,
data.gps_longitude);
 n0.setValue(dist);
 �loat rel_loc = calc_rel_loc(coord.latitude, coord.longitude, data.gps_latitude,
data.gps_longitude, d);
 z0.setValue(rel_loc);
 }
 if(data.message_type == 'H') {
 �lash_alert(r0);
 }
 if(rf.ACKRequested())
 rf.sendACK();
 }

}

36

//Flash Alert Radio Function
void �lash_alert(NexRadio r) {
 for(int i = 0; i < 10; i++) {
 r.setValue(1);
 delay(500);
 r.setValue(0);
 delay(500);
 }
}

//Distance Function
�loat calc_distance(�loat lat1, �loat long1, �loat lat2, �loat long2)
{
 �loat R = 6371000;
 //Convert to radians
 lat1 = lat1 * (M_PI/180);
 long1 = long1 * (M_PI/180);
 lat2 = lat2 * (M_PI/180);
 long2 = long2 * (M_PI/180);

 //Find deltas
 �loat dlat = lat2 - lat1;
 �loat dlong = long2 - long1;

 �loat d = pow(sin(dlat/2),2) + cos(lat1) * cos(lat2) * pow(sin(dlong/2),2);
 d = 2 * asin(sqrt(d));
 d = d * R;

 return d;
}

//Relative Location Function
int calc_rel_loc(�loat lat1, �loat long1, �loat lat2, �loat long2, �loat d) {
 �loat dir;
 �loat dlat = lat2 - lat1;
 �loat dlong = long2 - long1;

 if(dlat > 0 && dlong == 0)
 return 90;
 else if(dlat < 0 && dlong == 0)

37

 return 270;
 else if(dlat == 0 && dlong > 0)
 return 180;
 else if(dlat == 0 && dlong < 0)
 return 0;

 �loat dx;
 int theta;
 dx = calc_distance(lat1, long1, lat1, long2);
 theta = acos(dx / d);
 theta = theta * (180/M_PI);

 if(dlat > 0 && dlong > 0) { //NE
 theta = 180 - theta;
 return theta;
 }
 else if(dlat > 0 && dlong < 0) //NW
 return theta;
 else if(dlat < 0 && dlong > 0) { //SE
 theta = 180 + theta;
 return theta;
 }
 else if(dlat < 0 && dlong < 0) { //SW
 theta = 360-theta;
 return theta;
 }
}

RF.h			Header			File	 		
#ifndef RF_H
#de�ine RF_H

#include <RFM69.h>
#include <SPI.h>

#de�ine IRQPIN 2
#de�ine IRQNUM 0
#de�ine NETWORKID 0
#de�ine MYNODEID 1

38

#de�ine TONODEID 2
#de�ine FREQ RF69_915MHZ
#de�ine KEY "SAMSETHSAMEEUIUC"

typedef struct {
 char message_type[2] = {0, 0};
 �loat gps_timestamp;
 �loat gps_latitude;
 �loat gps_longitude;
} RFPayload;

void rf_init(RFM69 rf) {
 rf.setCS(10);
 rf.initialize(FREQ, MYNODEID, NETWORKID);
 rf.setHighPower();
 rf.encrypt(KEY);
}

RFPayload rf_receive(RFM69 rf) {
 RFPayload data;
 if(rf.receiveDone() && rf.DATALEN == sizeof(RFPayload)) {
 data = *(RFPayload*)rf.DATA;
 }
 return data;
}

boolean rf_send(RFM69 rf, �loat gps_data[], boolean alert = 0, int alert_type = 0) { //HELP:
alert_type = 1, FALL; alert_type = 2
 RFPayload data;

 if(alert) {
 data.message_type[0] = 'A';
 if(alert_type == 1)
 data.message_type[1] = 'H';
 else if(alert_type == 2)
 data.message_type[1] = 'F';
 }

 else {
 data.message_type[0] = 'G';
 data.gps_timestamp = gps_data[0];
 data.gps_latitude = gps_data[1];
 data.gps_longitude = gps_data[2];

39

 }

 if(rf.sendWithRetry(TONODEID, (const void*)(&data), sizeof(data)))
 return 1;
 else return 0;
}

#endif

Coordinates.h			Header			File	 		
#ifndef COORDINATES_H
#de�ine COORDINATES_H

#include <Arduino.h>
#include <SoftwareSerial.h>
#include <math.h>

class Coordinates {

 public:
 Coordinates(SoftwareSerial &gps_ser, HardwareSerial &hw_ser);
 �loat latitude;
 �loat longitude;
 �loat timestamp;
 boolean get_coordinates();

 private:
 HardwareSerial *hw_stream;
 SoftwareSerial *gps_stream;
 boolean read_gps_uart(char gps_data[]);
 boolean �indRMC(char gps_data[]);
 boolean parse_gps_data(char gps_data[]);
};

40

#endif

Coordinates.cpp			CPP			File	 		
#include "Coordinates.h"

#de�ine SHOWGPSPARSE true

Coordinates::Coordinates(SoftwareSerial &gps_ser, HardwareSerial &hw_ser) {
 gps_stream = &gps_ser;
 hw_stream = &hw_ser;
}

boolean Coordinates::get_coordinates() {
 char gps_data[128];
 boolean gps_data_valid = false;

 while(!gps_data_valid) {
 if(read_gps_uart(gps_data)) {
#ifdef SHOWGPSPARSE
 int i = 0;
 hw_stream->println("RMC GPS message: ");
 while(gps_data[i] != '\0') {
 hw_stream->print(gps_data[i]);
 i++;
 }
 hw_stream->println();
#endif
 gps_data_valid = parse_gps_data(gps_data);
 if(gps_data_valid)
 return 1;
 }
 }
}

boolean Coordinates::read_gps_uart(char gps_data[]) {
 boolean newData = false;
 static boolean recvInProgress = false;

41

 static byte idx = 0;
 char c;
 int i, j;
 char temp[128];

 while(gps_stream->available() > 0 && newData == false) {
 c = gps_stream->read();

 if(recvInProgress == true) {

 if(c != '\n') {
 temp[idx] = c;
 idx++;
 }

 else {
 temp[idx] = '\0';
 recvInProgress = false;
 idx = 0;
 if(�indRMC(temp)) {
 newData = true;
 i = 0;
 while(temp[i] != '\0') {
 gps_data[i] = temp[i];
 i++;
 }
 for(j = i; j < 128; j++)
 gps_data[j] = '\0';
 return 1;
 }
 }
 }

 else if(c == '$')
 recvInProgress = true;
 }

 return 0;
}

42

boolean Coordinates::�indRMC(char gps_data[]) {
 if(gps_data[2] == 'R' && gps_data[3] == 'M' && gps_data[4] == 'C')
 return true;
 else return false;
}

boolean Coordinates::parse_gps_data(char gps_data[]) {
 int i = 6;
 int j = 0;

 //Parse time
 char gps_time[11];
 while(gps_data[i] != ',') {
 gps_time[j] = gps_data[i];
 i++; j++;
 }
 while(j < 11){
 gps_time[j] = 0;
 j++;
 }
 timestamp = atof(gps_time);

 //Parse status
 char gps_status;
 i++;
 gps_status = gps_data[i];
 if(gps_status == 'A') {

 //Parse lat. coordinates
 char lat_deg[3]; lat_deg[2] = 0;
 char lat_min[9]; lat_min[8] = 0;
 i += 2; j = 0;
 while(j < 2) {
 lat_deg[j] = gps_data[i];
 i++; j++;
 }
 j = 0;
 while(j < 8) {
 lat_min[j] = gps_data[i];
 i++; j++;

43

 }
 latitude = atof(lat_deg) + (atof(lat_min)/60.00000);

 //Parse lat. direction
 i++;
 if(gps_data[i] == 'S')
 latitude = latitude * -1;

 //Parse long. coordinates
 char long_deg[4]; long_deg[3] = 0;
 char long_min[9]; long_min[8] = 0;
 i += 2; j = 0;
 while(j < 3) {
 long_deg[j] = gps_data[i];
 i++; j++;
 }
 j = 0;
 while(j < 8) {
 long_min[j] = gps_data[i];
 i++; j++;
 }
 longitude = atof(long_deg) + (atof(long_min)/60.00000);

 //Parse long. direction
 i++;
 if(gps_data[i] == 'W')
 longitude = longitude * -1;

 return 1;
 }

 else return 0;
}

44

