
Software Controlled Physical

Sound Sources

By
Ben Sisserman - Bens3

Micki Rentauskas - Mar3
Won Woo Lyu - Wlyu2

Final Report for ECE 445, Senior Design, Fall 2020
TA: Anthony Schroeder

9 December 2020
Group No. 26

Abstract

This document outlines the design and fabrication process of our senior design project. We
designed three separate devices, each capable of producing their own distinct sounds. These devices
function identically in terms of software, but each controls a different mechanism for producing sound.
The first board controls an array of relays to power electronics on and off. The second board controls a
servo motor to strike objects repeatedly to generate noise. The third board uses a vintage phone’s ringing
hardware to generate a ringing noise on command. All three boards communicate over WiFi, and hence
need a jitter buffer to limit latency variation to no more than 30 milliseconds for consistency during the
testing of hearing aids. We successfully implemented the Relay board and the Servo board, and verified
the performance of the jitter buffer on these devices. Unfortunately, we encountered issues controlling the
ringing hardware for the Ring board.

1

Contents

1. Introduction 4

1.1 Problem 4

1.2 Solution 4

1.3 High Level Requirements 5

1.4 Visual Aids 5

1.5 Block Diagram 8

2 Design 9

2.1 Design Procedure 9

2.1.1 Relay Board Hardware 9

2.1.2 Servo Board Hardware 10

2.1.3 Ring Board Hardware 10

2.1.4 Battery Sense Hardware 12

2.1.5 Jitter Buffer 12

2.1.6 Communication Software 13

2.1.6 LCD display 13

2.2 Design Details 13

2.2.1 Relay Board Hardware 13

2.2.2 Servo Board Hardware 13

2.2.3 Ring Board Hardware 14

2.2.4 Battery Sense Hardware 14

2.2.5 Jitter Buffer 14

2.2.6 Communication Software 15

2.2.6 LCD display 16

3 Verification 17

3.1 Relay Board 17

3.2 Servo Board 17

3.3 Ring Board 17

2

3.4 Jitter Buffer 18

4 Costs and Schedule 19

4.1 Parts 19

4.2 Labor 21

4.3 Schedule 21

5 Conclusion 22

5.1 Accomplishments 22

5.2 Uncertainties 22

5.3 Ethical considerations 22

5.4 Future work 22

References 23

Appendix A Circuit Schematics and Board Layout 24

Appendix B Requirement and Verification Tables 28

3

1. Introduction

1.1 Problem
Testing hearing aids has always been a task to audiologists since soundfield speakers with the

introduction of background noise through a soundfield speaker cannot replicate real-world experiences.
Improvements of technologies have made a smallear leap between lab testing of hearing aids and actual
real-world listening, but these systems are very complex and still not fully capture the real-world sounds
[1]. They are complex, because replication of real-world environments requires a variety of different
types of sounds from different distances and angles. The best way to produce a sound from a speaker that
yields accurate real-world results is to put eight speakers around the person for every 45 degrees [2],
which tells that it will be harder to produce accurate real-world sound if the lab environment gets
complex.

1.2 Solution
Our project is an array of software-controlled physical sound sources (SCPSS) consisting of three

different modules for driving different sound types. Our system is for the Illinois Augmented Listening
Laboratory, and most specifically post-doctoral student Ryan Corey, who is doing research on
noise-cancelling hearing aids. Currently, their test system for prototypes is an array of speakers which
they play sounds on via wired MIDI cables [4]. The issues with this setup are that the sound samples must
be recorded in anechoic chambers, which is an expensive process, as well as the fact that speakers are
unidirectional, and can only produce sound along the axis it is facing [3]. Our system offers a solution to
these problems by using physical sound sources such as blenders, struck objects, and ringing bells, while
still capable of being automated by controlling via a Python script on the researchers’ PC.

Figure 1. The conference room used for the massive distributed array dataset

4

1.3 High Level Requirements
● The devices must be able to control at least three different physical sound sources.
● Latency variation must be kept to a minimum. Latency itself is not a concern, but latency must

not vary by more than 30 milliseconds.
● Devices must function with at least six feet of distance between devices for simulating real-world

environments and circumstances.

1.4 Visual Aids
The visual aids on parts of the project and the overall physical diagram are shown in the

following figures. First, we have the host, which is a researcher's PC and this will run the python module.
Using the router that is connected to the host, this will facilitate communication between the host and
devices over Wifi. The microcontroller that communicates with Wifi will control the devices, and devices
are connected to the physical sound sources. The Relay board will make sounds by controlling electronics
such as a blender or vacuum, the servo board will strike an object using the servo motor and a metal arm,
and the ringing board will ring vintage phone ringing hardware.

5

Figure 2. System Overview Diagram

6

Figure 3. Servo PCB

Figure 4. Relay enclosure

7

1.5 Block Diagram
The full block diagram for the SCPSS system can be found in Figure 6. Our project was divided into 2 main parts, hardware and software,

with subcomponents for each. Hardware consisted of three different boards with similar communication systems, but different circuitry for driving
the sound sources: relay-type, servo-type, and ringing-type. The software consisted of a python module for the Host to control the boards,
implementing the jitter buffer on all three boards, programming the microcontrollers to communicate over TCP and their LCD displays.

Figure 5. Overall System Block Diagram

8

2 Design
We opted for a system with three different variations of sound by considering the typical types of

sound found in the average building or home. The Relay Board controls a variety of wall-powered devices
such as a vacuum or blender, the Servo Board controls a servo used to strike objects and produce sound,
and the Ring Board contains circuitry to drive an old-fashioned ringing phone. The last sound type was a
specific ask by our sponsor, and upon researching how phone bells are driven (using ~+/-100V square
waves), we decided that this warranted its own separate module.

2.1 Design Procedure

2.1.1 Relay Board Hardware
For the relay board, we opted to use a secondary off-the-shelf board with high-power relays to

switch wall-powered sound-producing devices on and off. The only inputs needed from the
communication module is a GPIO to toggle to the relays, which is supplied for a set duration by the
ESP32. We opted for relays rather than MOSFETs because as mentioned in the high-level requirements,
latency itself is not a concern, so we could use slower relays for operation, which are also cheaper and
less likely to fail in the case of faults.

Due to the use of wall voltage in this module, for safety reasons we opted to use a terminal rail
and terminal blocks to provide high isolation across nodes and simplify wiring substantially. For
additional safety, the hardware was enclosed by a laser cut acrylic enclosure (shown in Figure 4) which
still allowed access to the hardware in case modifications are needed, and the sound devices were plugged
into mounted wall plugs to eliminate the need to modify any cords. The actual circuit schematic and board
layout can be found in Appendix A Figure 13 and 14.

Figure 6. Relay Board Schematic

9

2.1.2 Servo Board Hardware
For the servo board, we had a simple goal of making sound by striking the object, and making the

board to be free on placing. To achieve the first goal of striking, we are using the servo motor, which will
be controlled by the GPIO of the microcontroller, ESP32, by sending 3.3VDC of PWM (pulse width
modulation). For the second goal, this board has an independent power source of battery pack that outputs
6VDC, and this gives power to LCD screen, ESP32 and the servo motor. Since 3.3VDC is the power that
is needed to turn on the LCD Screen and ESP32, the board uses a buck chip to lower the power source
from 6VDC to 3.3VDC.

Since the board is relatively dependent on the power source of the battery pack to become
independent from the position of placing, we needed a way to show to the user that the battery is low or
not on the board. For this, the board uses a voltage sense circuit, which will detect the specific power that
the power source outputs and changes the background color of the LCD screen as high for green and low
for red. Figure 7 shows the flow of the servo board and helps to understand the above description easily.
Additionally, to create a neat appearance and prevent short from surface contact, the entire board was
enclosed in a laser cut acrylic enclosure as shown in Figure 3. The actual circuit schematic and board
layout can be found in Appendix A Figure 15 and 16.

Figure 7. Servo Type Board Schematic

2.1.3 Ring Board Hardware
Our sponsor specifically requested a vintage phone ringing sound, and after researching how they

worked and disassembling the phone I found at a thrift shop, we concluded that the hardware is driven by
a ~100V, low frequency square wave [8]. This square wave causes an alternating current in a solenoid,
which according to Ampere’s law [9] creates an oscillating magnetic field and thus causes the metal
hammer between the bells to oscillate and ultimately ring the pair of bells. To keep materials across

10

boards similar, we opted to use the same 6VDC battery pack as the servo board and step it up to around
~60VDC.

In order to alternate positive and negative 60V across the solenoid with MOSFETs, an H-bridge
is needed since the required gate to source voltages for the FETs becomes fairly high if the source of the
FET is at 60VDC. See Fig. 8 for the layout of the ringing hardware driving circuitry. Additionally, using
an H-bridge allows for the prevention of shorting our 60VDC output from the boost chip by adding a
several nanosecond delay between switching. Finally, there is also a capacitor in series with the ringing
solenoid, tuned at resonance to create an LC resonant circuit. The equation for the resonant frequency is
as follows:

ω0 = 1
√LC

Equation 1: Resonant freq. for an LC circuit
Which can be rearranged to:

Ctuned = 1
ω L2

Equation 2: Tuned capacitor value for resonance
Creating a resonant LC circuit minimizes power losses and thus heat generation by maximizing parallel
reactance and minimizing series reactance, and the power is able to oscillate between the inductor and
capacitor efficiently [10]. The actual circuit schematic and board layout can be found in Appendix A
Figure 17 and 18.

Figure 8. Ringer Type Board Schematic

11

Figure 9. H-Bridge and MOSFET Circuit Diagram

2.1.4 Battery Sense Hardware
Since the ESP32 input pins have a max voltage rating of 3.3V, in order to sense the battery

voltage to estimate the battery status, we had to use a voltage divider to scale it down. Also, using a
voltage divider is advantageous because the sense circuitry will draw little current. The servo and ring
boards, as seen in Figure 7 and Figure 8, both have the battery voltage divider, and the voltage at the
ESP32 input can be found using the following equation:

VV sense = R2

R +R1 2 battery

Equation 3: Voltage divider equation

Which can be reorganized for the battery voltage:

VV battery = R2

R +R1 2
sense

Equation 4: Battery voltage from voltage divider

2.1.5 Jitter Buffer
For our implementation of the jitter buffer, we planned to calculate the latency of our incoming

commands from the Host PC using a timestamp encoded into the command, and then delay the execution
of the commands until by the difference between the latency and the size of the buffer. This method
creates a floor value for the latency that messages must satisfy to be executed. By making this buffer large
enough, messages are almost always buffered and hence execute with little variation in latency.

Originally, we intended to calculate the latency by deducing the time difference between the
ESP32 microcontroller and the Host PC. Using the time difference between the two computers, the
timestamp on the message, and the internal clock of the ESP32, we could calculate the latency of the
message:

12

Latencyactual = Timeesp + Time Difference - TimestampHost

Equation 5: calculating latency

2.1.6 Communication Software
For communication we needed to use a protocol that would facilitate communication over WiFi

between the Host and the boards. The two protocols we considered were UDP and TCP. We initially
planned to use UDP since it was simpler to implement, had greater speed, and we had prior exposure with
this protocol. However, as we continued to think about our design, we decided to use TCP because of its
reliability. Reliability for us was a more important factor than speed, because if one of our devices does
not receive a single command during a test by the IALL, that whole test needs to be repeated. Although
TCP is slower than UDP, that would not hinder our project goals since we use our jitter buffer to slow
down messages anyway.

2.1.6 LCD display
In order to communicate with the user directly on the state of the boards, we decided to use the

SPI interface on the ESP32 to control an LCD display. We wanted to show on this board the IP and Port
of the board for the Host to establish communication, the current state of the device and most recent
commands for easier use and troubleshooting. We also wanted to display the status of the batteries to the
user. After getting familiar with the Sparkfun SerLCD, we decided to change the backlight on the LCD
display to indicate that the batteries need to be charged.

2.2 Design Details

2.2.1 Relay Board Hardware
The method for turning wall-powered devices on and off was designed in the same way wall

switches work. The line input to the devices is held at 120VAC, while the relays toggle shorting and
opening the connection from line to neutral to turn the device on or off, respectively. The ground off all of
the devices were tied together to the power ground connected to the wall and also tied to the metal body
of the terminal rail to ensure a safe path to ground for everything in the case of a fault.

2.2.2 Servo Board Hardware
To strike the object, the servo motor needs to move from 0° to 180° repeatedly while it is turned

on. Since every motor has its own PWM to move its own position, we first had to find out how Futaba
S3003 servo motor’s PWM looks like. Below Figure X. shows how the output of PWM should look like
from the GPIO of the ESP32 to control the motor as we desired. With 20 ms of the duty cycle, the high

signal of 3.3VDC needs to repeatedly hit from 0 ms and around 3 ms, 1 ms for 0° and 2 ms for 180°.

13

Figure 10. Pulse Width Modulation for Servo Motor

2.2.3 Ring Board Hardware
The solenoid’s inductance was measured to be 41.6842 H, and the frequency we chose to operate

at was 22Hz, so the value for the tuned capacitor can be plugged into Equation 2 as follows:

.2μF Ctuned = 1
(2π22) 41.68422 = 1

2.2.4 Battery Sense Hardware
The ESP32 can map the sense voltage serial value to a 0V to 3.3V range in order to convert it to a
meaningful value, and then use Equation 4 to estimate the battery voltage and therefore state of charge.
Plugging in the resistor values (R1 as 1MΩ and R2as 100kΩ) we get:

V 1V V battery = 100K
1M+100K

sense = 1 sense

2.2.5 Jitter Buffer
When implementing the jitter buffer, we encountered issues trying to calculate the time difference

between the ESP32 and Host PC. After trying a few different approaches we found online with
inconsistent results, we decided to be a little more creative about how we calculate the latency. The key of
our approach is that we do not need the actual latency of the commands, only the variation of the latency,
thus we can use an approximated latency by using a constant reference. When the ESP32 and the Host PC
initialize their TCP connection, synchronize their clocks by creating timers on both the Host and the
ESP32. These clocks are not entirely synchronized because of the initial latency of the first TCP message,
but this initial latency is constant and thus can be used as a reference for approximating the latency. We

have outlined the method below.

Initialize Timers on both Host and ESP32

14

Timeesp = TimeHost + Latency0

When command received, estimate latency by
assuming Timeesp == TimeHost

Latencyest = Timeesp - Timestamppc

= Latencyactual + Latency0

Since Latency0 is constant, we can use Latencyest to measuring variation
Equation 2: calculating approximate latency

One additional aspect of the jitter buffer that should be noted is that network jitter can vary from
one network to another. This means that a buffer that is large enough to work on my network may not be
large enough to work on the IALL’s network. For this reason, we decided to include in our python
module a command for creating custom buffer sizes. This way, if the user is experiencing bad
performance, they can increase the size of the buffer.

2.2.6 Communication Software
For implementing communication between the Host and the ESP32 using TCP, we created a

finite state machine that would bring the board to an operational state only once the board had established
communication with the Host. Using this FSM, the boards can always reinitialize communication if for
any reason WiFi connectivity or the Host become unavailable without having to reboot the device.

Figure 11. Finite state machine of ESP32 for establishing communication

The following is a detailed explanation of the states and their transitions:

1. INIT - Initialize data structures for WiFi, TCP, and SPI interfaces.
2. WiFi CONNECT - Repeatedly attempt to connect to WiFi using the current credentials. Display

on LCD “Connecting to WiFi...”
3. TCP CONNECT - Wait for a TCP client to connect. Display the IP and Port on LCD for the user

to initialize an SCPSS object in Host that establishes communication with the ESP32.
4. OPERATIONAL - In this state we are waiting for an incoming stream of bytes from the Host. If

the TCP connection is lost, we move back to TCP CONNECT. Once a message arrives, the
device moves to the decode state.

15

5. DECODE - The decode state uses our string encoding to get commands along with the time
stamp.

Encoding Scheme:

Example: C10T1534E

C - Indicates the command. The first character is taken as the on or off bit, the next
character is an optional field that is used to indicate which of the four relays to activate
on the Relay board.

T - Indicates the timestamp in milliseconds on the Host when the message was sent.
This numeric string is converted to an integer.

E - Indicates the termination of the current command.

6. JITTER BUFFER - Delays execution of command if approximate latency is smaller than the
buffer size, otherwise continues to EXECUTE.

7. EXECUTE - The current command is executed on the respective mechanism and the ESP32
returns to OPERATIONAL for the next command.

2.2.6 LCD display
In implementing the SPI interface we countered some confusion finding the pins on the ESP32

for SPI, and this confusion was exacerbated due to using the Arduino IDE for programming the ESP32,
since the Arduino core for ESP32 has its own pin configuration. Fortunately, the ESP32 has the capability
to use almost any pin for any of its compatible interfaces. We used the Arduino SPI library to set up a
virtual SPI data structure that would let us use any pins for the SPI interface.

16

3 Verification

3.1 Relay Board
Following assembly and component level testing (see Appendix B, Table 3), as well as testing for

any shorts in the circuit with a handheld multimeter, we plugged the system into wall power via power
strip with an internal circuit breaker in case of any unintentional high currents. Next, we plugged a lamp
into each of the four outlets to make testing quieter, and manually triggered the input pins with a voltage
source and checked that the lamps turned on and off as expected. Once each relay was checked, we
connected the ESP32 to header inputs on the board and connected to it on our PC. We then triggered
relays once at a time and in combination in a basic test script and manually checked that the lamps were
toggling as expected. Finally, to verify our current rating and high-level requirements, we plugged in a
blender and a vacuum cleaner and ran our test scripts and checked for the response, and also moved our
specified six foot distance away from the host PC. The relay board module overall was a success, and we
were able to control two different sound devices, with the ability to expand to four devices, from our six
foot distance requirement.

3.2 Servo Board
To accomplish level testing (see Appendix B, Table 4), we first had to check if the output of

PWM from the ESP32 is the same as we expected like Figure 10. With using the oscilloscope in the lab,
we correctly outputted the PWM with the duty cycle of 20 ms that repeatedly hit 0 ms and 3 ms from the
specific GPIO of ESP32. This level test was checking mostly the software part of the servo board with
simply connecting the motor to ESP32. Another software part in verification is being able to change the
background color of LCD when battery is low. Since we had a battery pack that has a low battery, we
were able to find out that checking the 6V battery pack’s voltage whether it is lower than 5V was enough
to detect that power source is low or not through using the multimeter. By implementing a checking
output of battery less than 5V with ESP32, we were able to change the color of LCD background by green
or red depending on the battery status.

Servo board also had various hardware subsystems (see Appendix B Table 2) such as buck
converter, LCD display and battery sense circuit that were also used in ring board. For the buck converter,
we were able to check the output of 3.3V from converting 6V of the battery pack using the multimeter.
Also using the multimeter, we were able to verify that the battery sense circuit outputs 3.3V. Last part of
the verification is the LCD Display, and the printing command on the LCD display is verified by
checking the output on the display when the command was inputted from the host. Putting all these
software and hardware subsystems together, we were able to build the servo board that turns on and off
with various functions.

3.3 Ring Board
During verification, we ran into an issue with the output of the H-bridge on this board that caused

the ringing hardware to fail. Instead of a neat +/- 60V square wave, there was high frequency and high
amplitude ringing at the transitions of the waveform. This effectively created a much higher frequency
signal that caused the direction of the magnetic field to change at the same frequency, around 100kHz,
and the force on the striking mechanism was not in one direction long enough to cause it to move far
enough to strike the bells. The desired square wave was at 22Hz, and applied a force on the hammer long

17

enough to strike one bell before the magnetic field changed directions and the hammer was forced in the
other direction, striking the other bell, and so on, oscillating for the requested duration.

We believe there are two main reasons for this undesired wave form: PCB layout for the boost
converter and the MOSFETs. In the PCB design the boost converter was spaced out more than necessary,
and through hole components were chosen in many places in order to enable trying out components with
different parameters, and this created undesirable inductances because of long traces and excess wire.
From [11], we case see that in switching converters, when the unwanted inductances are charged in the
first part of the switching cycle, when the switches alternate the inductances cause resonance with
parasitic capacitances across the switches and thus create large voltage spikes which are then dampened.
Also, since this ringing was so large and the boost converter and H-bridge were only rated for up to 100V,
we went through all of our spares of these components while debugging

Given the accelerated nature of the course, we were not able to make an additional PCB order to
try to mediate these issues. Given more time though, the first objective would be to make the traces for
the boost converter as short as possible and choose as many surface mount parts as we can, and then add
pads across MOSFETs for the addition of snubber circuits to suppress voltage spikes. Next, we would
measure parasitic inductances and impedance and calculate values for the snubber circuitry. As before, we
would also be sure to put the max rated capacitance at the input and output of the converter. All these
efforts should eliminate the large ringing we observed and hopefully get the ringing board working.

3.4 Jitter Buffer
For verification of the Jitter buffer, instead of trying to record the activation of the sound, we

made use of the serial communication monitor to report the approximate latency and the time passed from
the timestamp to the execution of the command. To quantify the effectiveness of differently sized buffers,
we performed 5 rounds of sending 200 commands for increasingly larger buffers and then took an average
of their performance. As you can see below, for smaller buffers, some messages arrive with over 30ms
variation from the buffer size, while when using larger buffers, like 200ms, the buffer covers all incoming
messages and we have achieved our high-level requirement.

Figure 12. Performance of Jitter buffer for different buffer sizes.

18

4 Costs and Schedule
A summary of total hardware and labor costs follows.

4.1 Parts
In Table 1, you can find the cost breakdown for the project, the per-unit cost difference for bulk
purchasing, and the total costs.

19

Table 1. Parts Costs
Part Manufacturer Retail

Cost ($)
Bulk

Purchase
Cost ($)

Actual Cost ($)

Terminal Rail Power Converter
(120VAC - 3.3VDC)
(PSK-10W-3-DIN)

CUI Inc. $21.60 $19.89 $21.60

ESP32-S2-SAOLA1 Espressif Systems $8 $8 $24

LCD Display Sparkfun $19.95 $19.95 $59.85

Wall cord (EPS614-ND) Inventus Power $4.03 $2.34 $4.03

Wall input socket (Q335-ND) Qualtek $0.88 $0.49 $0.88

Power outlet (Q227-ND) Qualtek $0.99 $0.55 $3.96

Terminal Rail
(277-2293-ND)

Phoenix Contact $5.43 $4.06 $5.43

Terminal Rail Partitions
(277-2040-ND)

Altech Corp. $0.80 $0.55 $8.00

Terminal blocks, various colors
(277-3243-ND)

Phoenix Contact $1.34 $0.92 $20.10

Terminal block jumper pieces
(3030161)

Phoenix Contact $0.67 $0.46 $6.70

Ground terminal block
(277-17411-ND)

Phoenix Contact $4.51 $3.11 $4.51

Terminal block end plate
(277-2038-ND)

Phoenix Contact $0.64 $0.47 $1.28

6V AA Ni-MH Rechargeable
Batteries

Amazon $2.14 $2.14 $17.11

20

4 AA Battery Holder LampVPath (Amazon) $2.99 $2.99 $5.98

Servo Motor
FutabaS3003

Futaba $14.70 $10.03 $14.70

Boost converter (6VDC to
30VDC) (MC34063ADR2G)

ON Semiconductor $0.60 $0.20 $3.00

6VDC to 3.3VDC buck chip
(AP1509-33SG-13)

Semtech Corp. $1.60 $0.64 $9.60

180uH inductor
(B82144F2184J000)

TDK Electronics $0.84 $0.36 $3.36

Diodes (MBRA140T3G) ON Semiconductor $0.41 $0.10 $4.10

H-Bridge (HIP4082IBZ) Renessas $4.40 $2.21 $17.60

5 terminal output
(2368-25-E700-05-ND)

NTE Electronics, Inc $1.27 $1.27 $1.27

2 terminal output
(2368-25-E700-02-ND)

NTE Electronics, Inc $0.51 $0.51 $2.55

Header pins set
(S1011EC-40-ND)

Sullins Connector
Solutions

$0.66 $0.34 $1.98

22KΩ Resistor n/a (already
have)

n/a n/a

44KΩ Resistor n/a (already
have)

n/a n/a

High Voltage Quad Relay
Board

Amazon $22.76 $22.76 $22.76

Various capacitors n/a (already
have)

n/a n/a

Vintage phone hardware n/a $3.00 n/a $3.00

Plexiglass sheet Home Depot $21.99 n/a $43.98

Total: $311.32

4.2 Labor
Our fixed development costs are estimated to be $40/hour, 10 hours/week for three people. We consider
approximately 60% of our final design in this semester (16 weeks).

.5 80, 003 * hr
$40

* wk
10hr

* 0.6
16 wks

* 2 = $ 0

4.3 Schedule

21

Week Micki Ben Won Woo

10/5 Finalize relay board PCB Set up Github Set up Github

10/12 Finalize servo and ring
board PCBs and parts

Create encoding for
message structure

Set up ESP32S2

10/19 Breadboard with
components then test on
PCBs

Firmware and Python
code for TCP
communication

Work on Servo Motor
with ESp32S2

10/26 Reworked ring PCB State machine for
embedded software

Connect Motor with
TCP communication

11/2 Finalize hardware, build
enclosures

Jitter buffer
development

Finalize Servo Board
and Ring Board

11/9 Prepare Mock Demo Jitter buffer testing Prepare Mock Demo

11/16 Prepare Demonstration Prepare
Demonstration

Prepare
Demonstration

11/23 Begin Final Report Begin Final Report Begin Final Report

11/30 Prepare Presentation Prepare Presentation Prepare Presentation

12/7 Finalize Final Report Finalize Final Report Finalize Final Report

5 Conclusion

5.1 Accomplishments
The relay board and servo board can be considered as the finished part in the project. We are

certain that our sponsor will easily use our project as soon as he gets the boards and their documentation.
Since there has been a full enclosure for both of relay and servo boards, we are certain that it will protect
any users from the high voltage of electricity, and boards are already prepared to be used in any kind of
demo or research for IALL.

5.2 Uncertainties
The only uncertain part is the project’s ability of using the school Wifi. For the demo of this

project, we simply used one hotspot from the phone; however, using school Wifi can be necessary for
IALL to use the project for their research.

5.3 Ethical considerations
Since the relay-type board is connected to the wall power, we have to care about any components

that are connected to this board since there is a possibility of getting an electric shock. In order to avoid
this, we used a terminal block (aka terminal rail) to avoid any kinds of poor connected wires. Using itl led
to a convenient and safer way to distribute power from a single input source of the wall power to multiple
outputs. This ethical consideration was inspired by safety concerns from an implementation of the IEEE
Code of Ethics Section I.1, “disclose promptly factors that might endanger the public or the environment”
[6]. We are also considering ordering a commercial relay board to separate between sensitive components
like the microcontroller and the AC power. Even though the project was built with this ethic
consideration, the user still needs to be careful when using the project since there can be a potential
danger while using it.

5.4 Future work
Revising the ringing module in order to get it functioning would be the first priority for future

work, and would entail redesigning portions of the PCB and choosing several replacement components.
Once this board is finalized, a new plexiglass enclosure will need to be cut to enclose it in a similar
manner as the servo board.

On the software side, the Git repository containing the firmware and module for using the system
need to have documentation finalized in order to ensure there is no confusion in using the system, and if
issues arise, the lab can debug the code as needed.

Finally, we would like to expand the functionality of the jitter buffer by improving the method of
clock synchronization between the microcontrollers and the Host PC, so that we can calculate the actual
latency of the commands and provide consistency across instances of the devices. At the moment, we can
only guarantee consistency within the same test on a single device.

22

References

[1] Miller, A., 2020. Extending Hearing Aid Testing Beyond The Walls Of The Sound Booth | Phonak
Audiology Blog - Phonak Pro - Life Is On . [online] Phonak Audiology Blog - Phonak Pro - life is on.
Available at:
<https://audiologyblog.phonakpro.com/extending-hearing-aid-testing-beyond-the-walls-of-the-sound-
booth/> [Accessed 28 September 2020].

[2] Staff, H., 2007. Developing And Testing A Laboratory Sound System That Yields... . [online] Hearing
Review. Available at:
<https://www.hearingreview.com/practice-building/practice-management/developing-and-testing-a-la
boratory-sound-system-that-yields-accurate-real-world-results> [Accessed 28 September 2020].

[3] Physics Lecture Demonstration Facility. 2014. How Does A Candle Flame Respond To A Sound
Wave? - Question Of The Week 2014 Summer Girls Special Part 1. [online] Available at:
<https://lecdem.physics.umd.edu/question-of-the-week-archive/154-qotw-020-with-answer.html#:~:te
xt=Sound%20propagates%20as%20a%20longitudinal,the%20speaker%20along%20its%20axis.>
[Accessed 28 September 2020].

[4] Corey, R., 2019. Massive Distributed Microphone Array Dataset | Innovation In Augmented Listening
Technology - University Of Illinois At Urbana-Champaign. [online] Innovation in Augmented
Listening Technology. Available at:
<https://publish.illinois.edu/augmentedlistening/massive-distributed-microphone-array-dataset/>
[Accessed 2 November 2020].

[5] Wilson, M., 2019. Network Jitter - What Is It And How To Monitor It With Software/Tools . [online]
PC & Network Downloads. Available at: <https://www.pcwdld.com/network-jitter> [Accessed 1
October 2020].

[6] Ieee.org. n.d. IEEE Code Of Ethics . [online] Available at:
<https://www.ieee.org/about/corporate/governance/p7-8.html> [Accessed 28 September 2020].

[7] Campus Admin. Manual. 2001. Appropriate Use Of Computers And Network Systems. [online]
Available at: <https://cam.illinois.edu/policies/fo-07/> [Accessed 29 September 2020].

[8] Telephone Ring Voltage Tech Bulletin. (2018, September 14). Retrieved December 08, 2020, from
http://www.sandman.com/knowledgebase/ring-voltage-tech-bulletin

[9] N. N. Rao, Fundamentals of Electromagnetics for Electrical and Computer Engineering, Prentice-Hall,
2009.

[10] Kudeki & Munson, Analog Signals and Systems Prentice Hall, 2009.

[11] Ringing at switching nodes: Basic Knowledge. (n.d.). Retrieved December 09, 2020, from
https://techweb.rohm.com/knowledge/dcdc/dcdc_pwm/dcdc_pwm03/3164

23

Appendix A Circuit Schematics and Board Layout

Figure 13. Circuit Schematic of the Relay Board

Figure 14. Relay Board Layout

24

Figure 15. Circuit Schematic of the Servo Board

Figure 16. Servo Board Layout

25

Figure 17. Circuit Schematic of Ring Board

26

Figure 18. Ring Board Layout

27

Appendix B Requirement and Verification Tables

28

 Table 2. System and Common Components Requirements and
Verifications

Subsystem Requirement Verification Verificatio
n status
(Y or N)

ESP32 Jitter Buffer prevents network jitter
greater than 30ms

Sent 200 messages over TCP
with Buffer = 200ms

Y

 Output GPIO for relay board Upload firmware setting
GPIOs high and low and
check with multimeter

Y

Output PWMs for servo and ringing
board

Upload firmware outputting
PWMs with a set duty cycle
and period and verify with
oscilloscope

Y

LCD Display Display Text and battery status over
SPI

Displayed strings of various
lengths and switched
between charged and
discharged batteries

Y

Buck Converter Step down 6VDC input to 3.3V +/-
0.3VDC output

Attach to power supply and
check with multimeter

Y

 Be able to supply at least 1.5 A Check with multimeter while
powering system

Y

Battery Sense
Circuit

Scale battery voltage to a value the
ESP32 can handle using a voltage
divider

Convert serial input value on
ESP32 and multiply by
resistor divider equation and
check that it’s approximately
equal to the measured battery
voltage

Y

Draws at most 5 uA Checked with multimeter Y

 Table 3. Relay Board Requirements and Verifications

Subsystem Requirement Verification Verificati
on status
(Y or N)

Relays Open/close with GPIO command
within 10ms

Checked on scope by applying
square wave to the input pin
and measure time difference
from opening/closing and
square wave rising/falling

Y

*See design section for analysis

29

 Tolerate up to 12A for each relay at
120VAC

Tested with sound-producing
devices drawing around 11 A

Y

Terminal Rail Provide high isolation between
circuit nodes

Check that multimeter shows
overload or tens of megaohms
of resistance between nodes

Y

Terminal Rail
Mounted Power

Converter

Step down 120VAC to 3.3VDC
+/-5V

Plug into wall and check
voltage output with
multimeter

Y

 Be able to supply at least 1.5 A Check with multimeter while
powering system

Y

 Table 4. Servo Board Requirements and Verifications

Subsystem Requirement Verification Verificati
on status
(Y or N)

Servo Motor Provides enough torque to make the
strike audible for at least 10 ft

Tested with chime x10 in
large room

Y

 Table 5. Ring Board Requirements and Verifications

Subsystem Requirement Verification Verificati
on status
(Y or N)

Boost Converter Convert 6VDC to 60VDC +/-5V Connect 6VDC power supply
and probe output

Y

Provide at least 1.5A current Load test with electronic load
in lab, setting current to 1.5A

Y

H Bridge Output +/-60V square wave Probe with oscilloscope Y*

Vintage Phone
Hardware

Ring for at least 30 seconds
continuously

Send command from Python
module for 30 seconds of
sound and time ringing

N*

