ECE 445 FALL 2020

COVID-19 Hearing Aid

(Sponsored by Ryan Corey)

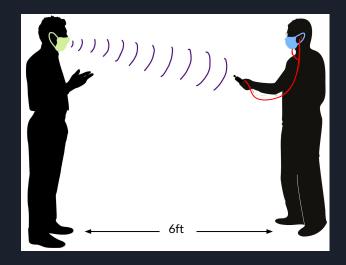
Team #38 Saul Rodriguez (srodri28) Kartik Kansal (kkansal2)

Brief Disclosure

We are a two-person online group, limited to the tools we've personally acquired and could afford.

Background

- Covid mask issue: muffled speech as well as preventing the listener from reading the speakers lips
- Previous solutions:
- Clear masks
- Hearing aids

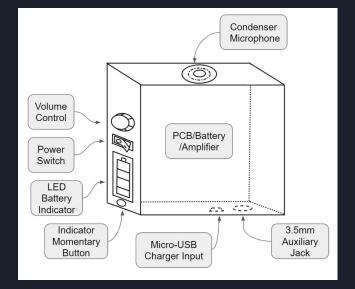


Introduction - Our Solution

• A portable, powered, and unidirectional microphone

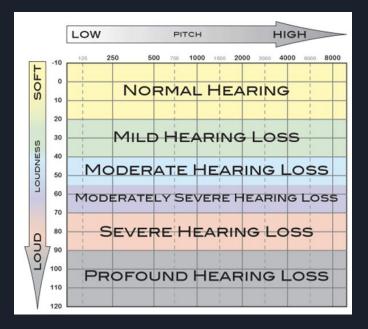
• Adjustable amplification

• User required headphones


Objective

• Allow the user to control the volume/amplification via a dial

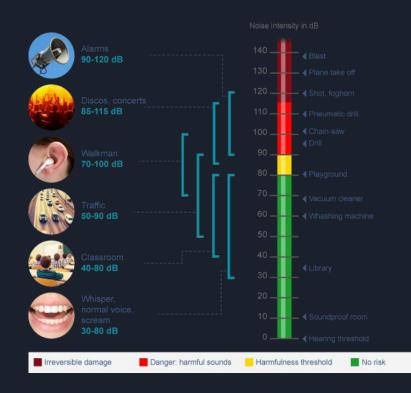
as well as used their own

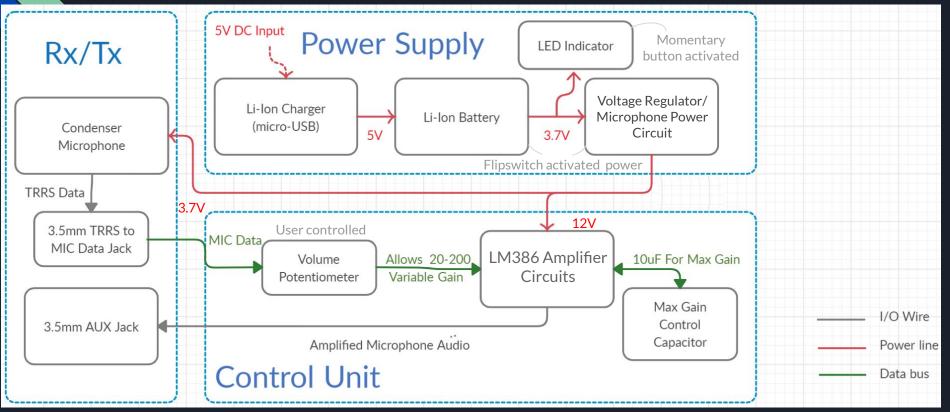

prefered headphones.

 Create everything cost effectively and with simplicity to allowing for DIY inspiration and replication

Design Considerations and High-Level Requirements

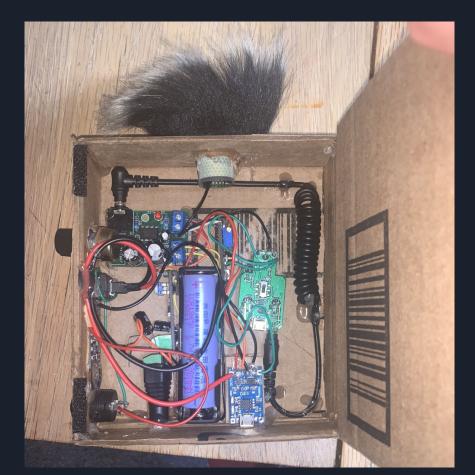
- Device should amplify sounds to at least 90 dB in order to accommodate those with profound hearing loss [1]
- Should pick up sounds as low as 54 dB, which is the incoming sound pressure level from a normal conversation from 6 feet away [2]
- Need to pick up sounds in at least the range of 80–260 Hz, which is the frequency range for typical speech [3]


Distance		Voice Level (dB PSIL)						
(ft)	(m)	Normal	Raised	Very Loud	Shouting			
1	0.3	70	76	82	88			
3	0.9	60	66	72	78			
6	1.8	54	60	66	72			
12	3.7	48	54	60	66			
24	7.3	42	48	54	60			

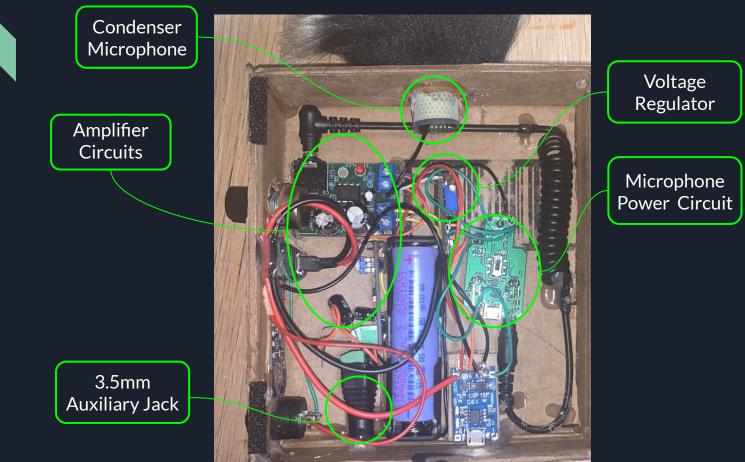

Ethics and Safety

 Prolonged sounds that are about 80 dB and louder are considered harmful to human hearing [4]

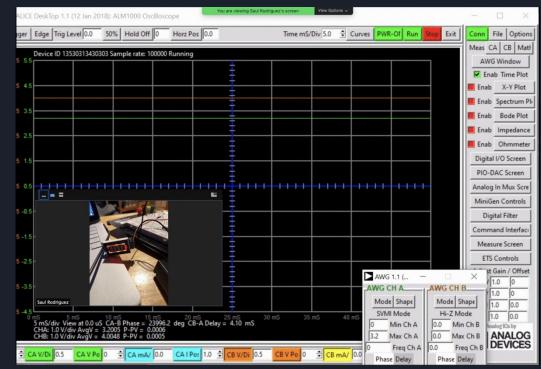
 In order to accomodate people with profound hearing loss while also not harming the hearing of other's, it was necessary to implement a volume control dial



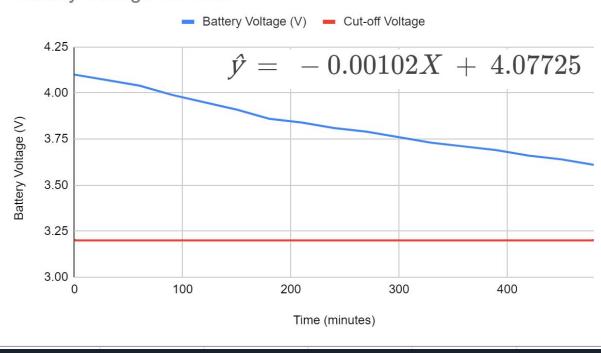
BLOCK DIAGRAM



Physical Model

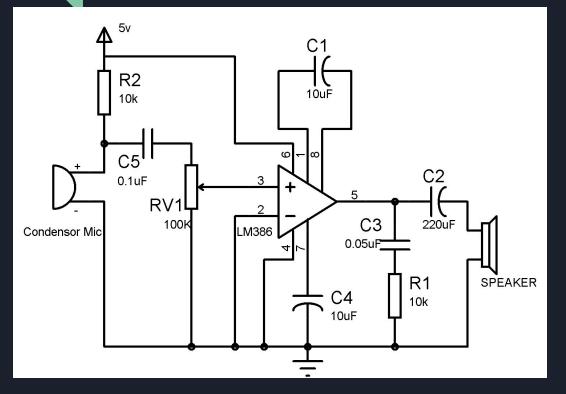


Physical Model


Battery Indicator

- Tested battery indicator using Alice
- At 3.2 V, the battery is just barely turned on
- With each increase in 0.2 V, one additional LED indicator turns on
- At 4 V, all four LED indicators are on

Battery Voltage vs. Time



Operation Time: Goal (6 hrs)

Achieved (at least 8 hrs)

Using Linear Regression and setting ŷ to the cut-off voltage (3.2) estimate run time equals approximately 860 min or 14.33 hrs

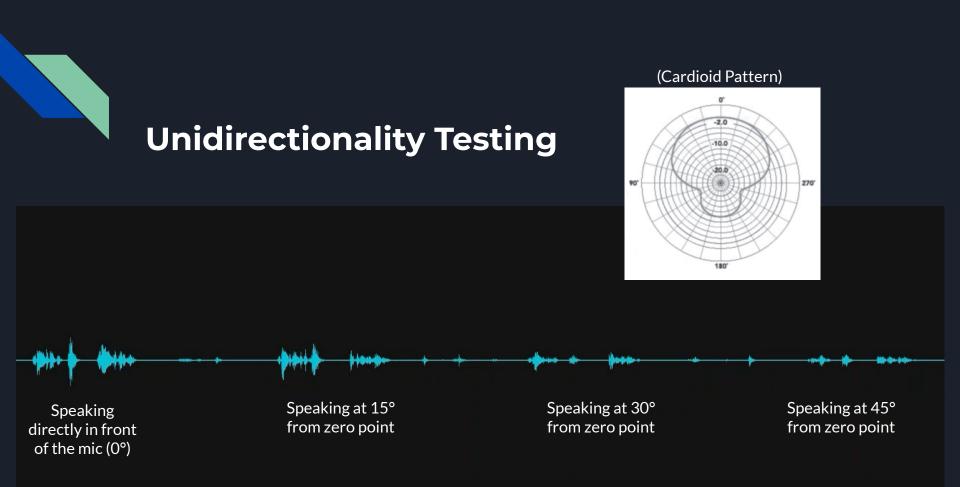
The Amplifier Circuit

- In place of the R2 pull down resistor we've applied the microphone power circuit
- RV1 is the Variable Resistance adjusted with a 100k ohm potentiometer
- The node where C3 in series with R1 and C2 insect represents where filtering raw signal the begins.

Gain Multiplication

- Microphone sensitivity is -42 dB ± 1 dB, with 0 dB producing 1 V/Pa
- 1 Pa (pascal) equals 94 dB sound pressure (SPL)
- Every -6 dB decreases voltage by one half
- The expression that gives the gain (Av) between a reference V0 and a measured V1 (in dB):

20*log(V1/V0)


$$V0 ~=~ 1V \cdot \left(rac{1}{2}
ight)^{rac{-42 \, dB}{-6 \, dB}} ~=~ 7.8125 \ mV$$

$$V1~=~7.8125~mV~ imes~200~{
m (Gain)}=~1.5625~V$$

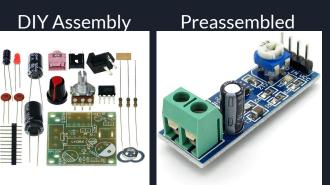
$$Av = 20 \cdot \log \left(\left. rac{1.5625 \, V}{7.8125 \, mV}
ight) pprox 46 \ dB$$

$$94\ dB - 42\ dB + 46\ dB = 98\ dB$$



Additional Testing

 Frequency capture range: Goal (80 to 260 Hz) Achieved (50-10kHz)



 Decibel capture: Goal (as low as 54 dB) Achieved (as low as 42.1dB)

Affordability - DIY Inspiration

Part #	Description	Manufacturer	Vendor	Quantity	Cost/ Unit	Total Cost
LGDBHG21	Rechargeable Battery	LG Chem	18650 Battery Store	1	\$5.99	\$5.99
RK-0500500	Micro-USB Charger (x6)	DZS Elec	Amazon	1	\$1.165	\$6.99
MT3608	Voltage Regulator (x10)	WOWOONE	Amazon	1	\$0.995	\$9.95
-	On/Off Switch (x10)	VQVAAQ	Amazon	1	\$0.698	\$6.98
YXM04	Mini Cardioid Condenser Microphone	Bietrun	Amazon	1	\$23.63	\$23.63
COM-11996	Momentary Button	Sparkfun	Sparkfun	1	\$0.95	\$0.95
GR-US-145	Battery Capacity Indicator (x2)	DAOKI	Amazon	1	\$2.995	\$5.99
2914	Audio Plug Terminal Block	-	Adafruit	1	\$2.50	\$2.50
2915	Audio Jack Terminal Block	-	Adafruit	1	\$2.50	\$2.50
LM386	Mini Power/Audio Amplifier Board/Volume Adjustable Control (x2)	Acxico	Amazon	1	\$3.595	\$7.19
Total				E E	\$45	\$72.31

Alternative Power Supply

Conclusions

- Amplification via a dial to a resistive potentiometer works properly and efficiently. Allows for distance capture and audio amplification without damaging the user's ears.
- Slight buzzing noise from first amplifier can increase dramatically across the second amplifier. Finding the buzz frequency can lead to filtering.
- The hefty design size was made more open for displaying the circuits in a way that represented the flow of our block diagram. This can be scaled much thinner to attract the appeal of being a portable device.

Future Work

- Remove buzzing noise with RC filtering at the right frequency found using an oscilloscope
- Incorporate AA batteries as the power supply.
 - This is easier for the typical consumer to obtain and is much cheaper.
 - Their battery capacity ranges from 2000-3000mAh
 - Also come in a rechargeable form.
- Find a more affordable condenser microphone and create our own PCB for the "microphone power circuit" to bring the total cost down.

Sources

[1] Asha.org. [Online]. Available:

https://www.asha.org/uploadedFiles/Consensus-Paper-From-Hearing-Care-Associations.pdf. [Accessed: 04-Dec-2020].

- [2] "Voice Level at Distance," *Engineeringtoolbox.com*. [Online]. Available: https://www.engineeringtoolbox.com/voice-level-d 938.html. [Accessed: 04-Dec-2020].
- [3] "What is the frequency range of human speech?," *Reference.com*, 04-Aug-2015. [Online].
 Available:https://www.reference.com/science/frequency-range-human-speech- 3edae27f8c397c65.
 [Accessed: 03-Dec-2020].
- [4] "Harmful Noise Levels," *Healthlinkbc.ca*. [Online]. Available: https://www.healthlinkbc.ca/health-topics/tf4173. [Accessed: 04-Dec-2020].

QUESTIONS?

THANKS FOR VIEWING