
Pedal-Powered Smart
Bike

Team 29
By Alex Sirakides, Karl Kamar and Anshul Desai

Introduction

- Lack of electrical development in marketed bikes

- Need for more bikers in growing cities

- Need to make bike user experience comparable to modern cars

- Need to make bikes more attractive to modern users

High Level Requirements and Objectives

- Provide bikers with Safety Enhancements

- Increase available information to bikers on trips

- Introduce Automation to bike’s controls (ALS)

- Incorporate these features in a self-contained system

Calculations Behind Power Supply Design
- Average torque on pedals:

Biker Weight x Pedal Length x 2π = 65x9.81 x 0.17 x sin(θ)

 = 108.4 N-m

>>>>> Drag is too big which makes it impossible to pedal. 0V output.

- Torque in hinge system scenario:

Normal Reaction = Motor Weight = Mass x g = 5.6lb x 0.453592kg/lb x 9.81 = 24.92 N

Friction = Dynamic Friction Constant x Normal Reaction = 0.5 x 24.92 = 12.46 N

Torque = Friction x sin(θ) x Motor Brush Length = 12.46 x sin(90) x 1.1in x 0.0254in/m = 0.348 N-m

0.348 N-m corresponds to 124W, 6.6A, 3320 RPM at an Efficiency of 76%:

>>>>> 14.28V output

Motor Chart

Power Supply Mechanism

- 24VDC Brush Motor Produces Power

- Metal Cylinder Attached to the Brush

- Friction of Tyre on Cylinder Drives Rotation

- Hinge System Permits Motor Mobility for Safety

Battery

- 12V/2.3Ah vs 8V/3.2Ah

- Power Supply for all the bike’s UI

- Lead Acid Rechargeable

Initial Charge Controller Plan

Charge Controller

- Controls Flow of Current from Motor to Battery (0.1 x Rated Battery Current)

- Maintains Battery Voltage within a safe range (0.9 x Rated Voltage - 1.2 x Rated Voltage)

- Maintains Charge Flow Direction in one direction

- Based on Relay Switch system that connects/disconnects output from input

- Displays voltage across battery terminals

- Prefabricated vs. Soldered Ourselves

- Diode Added

Buck Converter

- 5V/3A output

- Chosen over Linear Voltage Regulator (Loss and Heat)

- Powers MCU, Lights and Display

- Ensures Constant Voltage is provided to DC components

ATMEGA328P Development Process

1) Burn Bootloader to multiple microcontrollers
2) Program microcontroller directly from Arduino Uno

 Verification: 2 x pF Capacitors, 1 x 16 MHz Oscillating Crystal,
 1 x 5V regulated power source

Removing MicroSD Card Reader
Previous use cases:

● Storing path data every update

● Distance calculation from summed path data

● Average speed calculation from stored path

● Ride time from first and most recent reading

● Potential for reverse geocoding

Issues:

● SD card write would disrupt GPS data,

feeding garbage values

● MCU not fast enough to reverse geocode

Solution:

● Utilize MCU EEPROM to save state data on

update

● Instantly retrieve saved data on init

● Display relevant lat/long data

Bonus Verification:

● Pins available on PCB for ALS, FET, light and

reset switches, no need for redesign!

Function Tree

processLoop() Function

Libraries used: NeoSWSerial, NeoGPS

Called on availability of GPS Software Serial object (1 Hz)

Pseudo-algorithm:

1) Read ALS and RESET_BUTTON state

2) Save GPS data to fix
3) Call buttonCheck() and printTemplate()
4) Save exercise statistics to EEPROM

NEO-6M GPS Sensor

Processing NMEA GPS Data

Verification: Serial monitor of Arduino IDE outputs NMEA sentences

$GPRMC (Min. recommendation for GPS data) ex:

$GPRMC,220516,A,5133.82,N,00042.24,W,173.8,231.8,130694,004.2,W*70

Timestamp Latitude/Longitude Speed (Knots) Datestamp

GPS fix updated at beginning of processLoop():

fix.speed_mph() - Speed converted from knots to miles per hour

fix.latitude(), fix.longitude() - Latitude and Longitude returned as floating-point

fix.heading() - Calculated heading returned in degrees clockwise from North

etc…
ALSO verifiable from Arduino IDE Serial monitor

printTemplate() Function

Libraries used: AdafruitGFX, Adafruit SSD1325 Display Driver

Updates with GPS module (1 Hz)

Pseudo-algorithm:

1) Clear display video buffer (prepping cursor)

2) Validate fix
a) Prints with only GPS time fix (ride time increments)

b) Prints with GPS time and GPS location fix (all stats increment)*

c) Like (a), default time “6:00:00”, no ride time

3) Build video buffer with variables saved to flash memory

4) Display video buffer
*printHeading() called with fix.heading()

(b) Time + Location Fix

(a) Time Fix

Statistics Functions
speedAvg():

1. Return (reject) if speed

is below 0.5 miles per

hour

2. Redistribute average

based on current

speed, previous

average, and previous

count

3. Increment previous

count

totalDistance():

1. Return (reject) if speed is

below 1.0 miles per hour

and location is invalid

2. Calculate square (or

Haversine) distance

between current and

previous location

3. Update previous location

to new location

rideTime():

1. On init (startup/record), save

start time
a. Pull elapsed time from

previous sessions via

EEPROM (startup only)

2. Else, calculate difference

between current time and

start time
a. Include previous session

time (startup only)

resetButton() and buttonCheck()

resetButton() simply resets all statistics and sets previous time for rideTime() to current (constant)

buttonCheck() pseudo-algorithm:

1. If RESET_BUTTON is LOW, call resetButton()
2. Else, call speedAvg(), totalDistance(), rideTime()
3. ALSO, verify state of ALS-FET system (a -> b -> c -> a -> …):

a. If ALS previous state LOW, now HIGH, pulse head and tail lights on

b. Else if ALS previous state HIGH, now LOW, save start time

c. Else if ALS previous state LOW, still LOW, and 5 seconds from start time, pulse head and tail lights off

4. Save previous state of ALS-FET system

Buttons in Circuit

Power Button:

- Mechanical switch disconnecting battery from CC & System

- Mounted above the battery

Reset Button:

- Mounted next to right turn signal

- Active HIGH with pull down resistor

Turn Signals

Turn Signal Buttons

- Active HIGH with pull down resistors

- Cannot provide necessary flashing

N-Channel FET & Duty Cycle

- Flashing driven via the microcontroller

- Allows for any flashing speed

- Allows for pin reduction

Turn Signals Continued

Turn Signal FSM

- LEDs were 3-state FSMs (Off, On, Blink)

- Could only be toggled mechanically

- Initial State is on

Soldering

- Cannot solder to aluminium

- Additional resistor to offset additional voltage

Head and Tail Lights

LED FSM

- These were 5-state FSMs

- Initiale State was on

- Could be digitally controlled via microcontroller

- Button active low, otherwise high-z

- 2M ohm pull-up resistor

Ambient Light Sensor

Controls Head & Tail Lights

- Head and tail lights are on when system power is turned on

- If light out -> 5 second delay -> pulse 4x to turn off

- If dark out -> ALS goes HIGH -> pulse to turn on head & tail lights

- When operating off Arduino board power, we had to adjust for a race condition, this went

away once integrated

Fixing Oversights

Anything which was overlooked in development was added to a through

hole board inserted behind our PCB

- Pull up resistors

- Pull down resistors

- Crystal oscillator

Debugging

Most of the system was verifiable via inspection but still things did occasionally go wrong and when they did

we debugged as follows:

We approached it this way once the battery, CC, and programming had been completed.

- Check if everything had power

- Check if GPS sensor LEDs were on

- Check if OLED displayed anything

- Check if ALS was outputting properly

- Check if head & tail light were working

- Check if reset button worked

- Check if turn signals work

Recommendations for Further Works

- Adding USB charging ports to the bike

- Added temperature sensors

- Reverse geocoding using faster microcontroller

- Simplifying the wiring of the system

- Higher resolution color display with touch interface

Questions?

